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   Abstract: This paper provides Closed-form expressions for the 
average channel capacity and probability of outage of dual-branch 
Selection Combining (SC) over uncorrelated Nakagami-0.5 fading 
channels. This channel capacity and probability of outage are 
evaluated under Optimum Power with Rate Adaptation (OPRA) and 
Truncated Channel Inversion with Fixed Rate transmission (TIFR) 
schemes. Since, the channel capacity and probability of outage 
expressions contain an infinite series, the series are truncated and 
bounds on the truncated errors are presented. The corresponding 
expressions for Nakagami-0.5 fading are called expressions under 
worst fading condition with severe fading.  
Finally, numerical results are presented, which are then compared 
to the channel capacity and probability of outage results for no 
diversity case, which has been previously published under OPRA 
and TIFR schemes. It has been observed that OPRA provides 
improved average channel capacity and probability of outage, as 
compared to TIFR under worst case of fading. 
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1. Introduction 

Channel capacity is becoming increasingly a primary 
concern in the design of wireless communication systems 
as the demand for wireless communication services, such 
as wireless personal area networks, satellite-terrestrial 
services, wireless mobile communication services, is 
growing rapidly. Since wireless communication systems 
are subjected to fading, which is undesirable. The channel 
capacity in fading environment can be improved by 
employing diversity combining and / or Adaptive 
transmission schemes [1]-[5]. 
Diversity combining, which is known to be a powerful 
technique that can be used to mitigate fading in wireless 
mobile systems. Maximal ratio combining, equal gain 
combining, SC are the most fundamental diversity 
combining techniques [3]-[4]. 
Adaptive transmission is another effective scheme that 
can be used to mitigate fading. Adaptive transmission 
requires accurate channel estimation at the receiver and a 
reliable feedback path between the receiver and the 
transmitter [6]. There are four adaptation transmission 
schemes such as OPRA, Optimum Rate Adaptation with 
constant transmit power (ORA), Channel Inversion with 
Fixed Rate transmission (CIFR) and Truncated Channel 
Inversion with Fixed Rate (TIFR) [6]-[8]. 
Numerous researchers have worked on the study of 

channel capacity over fading channels. Specifically, [3]-
[4], [6]-[9] discuss the average channel capacity over 
Nakagami-m (for 1≥m ) fading channels under different 
adaptive transmissions schemes. In [10], average channel 
capacity of dual-SC and-MRC over correlated Hoyt 
fading channels using ORA, OPRA, CIFR and TIFR 
schemes was presented. An analytical performance study 
of the channel capacity for correlated generalized gamma 
fading channels with dual-branch SC under the different 
power and rate adaptation schemes was introduced in 
[11]. 
In [12], an expression for the average channel capacity of 
Nakagami-0.5 fading channels with MRC diversity has been 
presented using OPRA and TIFR schemes. Expressions for 
the channel capacity in Rician and Hoyt fading environment 
with MRC were obtained in [13]. However, analytical study 
of the dual-branch uncorrelated Nakagami-0.5 fading 
channels capacity with SC under OPRA, and TIFR schemes 
has not been considered so far. The Nakagami-m  model has 
been widely used in general to study wireless mobile 
communication system performance, less attention appears 
to have been focused on the particular case of Nakagami-0.5 
fading. At the same time that results obtained for Nakagami-
0.5 will have great practical usefulness, they will be of 
theoretical interest as a worst fading case. All previously 
published literature related to the average channel capacity 
with SC over Nakagami-m fading channels using OPRA and 
TIFR schemes are not applicable for 5.0=m . 

This paper fills this gap by presenting an analytical 
performance study of the average channel capacity and 
probability of outage of dual-branch SC using OPRA, and 
TIFR schemes under most practical challenging fading 
scenario said to be worst fading conditions. 
In this paper, SC has been considered which is one of the 
least complex diversity combining techniques [14]. The 
dual-branch diversity has been considered since it offers 
the maximum SNR improvement, besides offering 
minimum complexity and physical space requirements 
[14]. The remainder of this paper is organized as follows: 
In Section 2, the channel model is defined. In Section 3, 
average channel capacity and probability of outage of 
dual-branch SC over uncorrelated Nakagami-0.5 fading 
channels are derived for OPRA and TIFR schemes. In 
Section 4, several numerical results are presented and 
analyzed, whereas in Section 5, concluding remarks are 
given. 
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2. Channel Model 

The probability distribution function (pdf), )(γγp  of the 

received SNR at the output of dual-branch SC under 
Nakagami-m  fading channels is given by [15]-[16] is 
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where γ  is the average received SNR, )5.0( ≥mm  is the 

fading parameter, and (.)mQ
 
is the MarcumQ -function, 

which can be represented, when m  is not an integer, as 
given in [15] 
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where .],[.Γ is the complementary incomplete gamma 

function. 
As we consider worst case of fading, then by [17] 
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Hence, the pdf of dual-branch SC under worst case of 
fading using above mathematical transformation is 
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3. AVERAGE CHANNEL CAPACITY 

In this section, we present closed-form expressions for the 
average channel capacity of uncorrelated Nakagami-0.5 
fading channels with dual-branch SC under OPRA and 
TIFR schemes. It is assumed that, for the above 
considered adaptation scheme, there exist perfect channel 
estimation and an error-free delayless feedback path, 
similar to the assumption made in [8]. 

 3.1  OPRA 
The average channel capacity of the fading channel with 
received SNR distribution, , )(γγp , and optimal power and 

rate adaptation ( OPRAC [bit/sec]) is given in [6] as 
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where B [Hz] is the channel bandwidth and 0γ  is the 

optimum cutoff SNR level below which data transmission 
is suspended. This optimum cutoff must satisfy the 
equation given by [6] as 
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The channel fade level must be tracked both at the 
receiver and the transmitter, hence the transmitter has to 
adapt its power and rate accordingly, allocating high 
power levels and rate for good channel conditions 
( γ large), and lower power levels and rates for 
unfavorable channel conditions (γ small). 
When. 0γγ < , no data is transmitted, the optimal scheme 

suffers a probability of outage outP , equal to the 

probability of no transmission, given by [6]-[7] is 

∫ ∫
∞

−==
0

00

)(1)(

γ

γ
γγ γγγγ dpdpPout  (5) 

Substituting (2) in (4) for optimal cutoff SNR 0γ  then 
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Using [17], we have 
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Using this mathematical transformation (6) becomes 
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where [ ].;.;.11F  is the Kummer confluent hypergeometric 

function. 
Evaluating the above integral using some mathematical 
transformation by [17], we obtain 
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where [.]iE  is the exponential integral function. 

The numerical of value of 0γ , which satisfies (7) can be 

calculated using MATHEMATICA, result shows that 0γ  

increases as  γ  increases and 0γ  always lies in the 

interval [0, 1] The value of cutoff SNR 0γ  that satisfies 

(7) for each γ  is used for finding average channel 
capacity per unit bandwidth. 
Substituting (2) in (3), the average channel capacity of 
dual-branch SC under worst case of fading scenario is 
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As we know by [17] is  
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Substituting (9) in (8) and after some mathematical 
transformation, the average channel capacity under worst 
case of fading is 
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Following can be taken from the first part of above integral 
of (11) is 
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This can be solved using partial integration as follows 
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Evaluating above partial integration using these 
mathematical transformations, we obtain 
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Second part of above integral of (11) can be solved using 
[17]-[18] 
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Substituting (12) and (13) in (11), the average channel 
capacity of dual-branch SC under Nakagami-0.5 fading 
channel is 
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The computation of the average channel capacity 
according to (14) requires the computation of an infinite 
series. To efficiently compute the series, we truncate the 
series and derive bounds for the truncating error. 
The average channel capacity per unit bandwidth in (14) 
can be written as 

OPRAOPRA ENOPRA ηηη += , where 

OPRANη is the expression in (14) with the infinite series 

truncated at the N th term as 
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and 
OPRAEη  is the truncation error resulting from 

truncating the infinite series in (14)  
The lower bound for the capacity can be derived by using 
the relationship between the area of the pdf and the 
expression of the average channel capacity per unit 
bandwidth. 
As we know that area of pdf )(γγp  is P  equal to unity. 
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Substituting (2) into (15), and evaluating the integrals 
followed with mathematical manipulation using [17]-[18], 
we get 
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and 
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then 
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Hence, the average channel capacity in (14) can be lower 
bounded by using (18), (21) and (22) as  
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where 
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The upper bound for OPRAη  is derived as 

OPRAOPRA upENOPRA −+< ηηη  

where 
OPRAupE−η , which is the upper bound of 
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i.e. na  monotonically decreases with increase of,n  
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After evaluating the integral (25) and some mathematical 
manipulations using [17]-[18], we obtain the upper bound 

OPRAupE−η for, 
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Therefore, the average channel capacity per unit 
bandwidth in (14) can be upper bounded as 
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Hence, the average channel capacity per unit bandwidth is 

bounded using (26) and (23) as 
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We have derived upper and lower bounds on the errors 
resulting from truncating the infinite series in above final 
average channel capacity expression. Those bounds can 
be used effectively to determine the number of terms 
needed to achieve desired accuracy. 
Substituting (2) in (5) for probability of outage, then 
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After evaluating the above integral by using mathematical 
transformation [17], we obtain 
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The computation of the probability of outage according to 
(28) requires the computation of an infinite series. 
Similarly as channel capacity, we truncate the series and 
derive bounds for the probability of outage using some 
mathematical transformation [17]. 
The probability of outage in (28) can be written 
as EOPRANOPRAOPRA PPP ,, += , where NOPRAP ,  is the 

expression in (28) with the infinite series truncated at the 
N th term as 
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and EOPRAP ,  is the truncation error resulting from 

truncating the infinite series in (28) . 
Hence, the probability of outage is bounded as similar to 
average channel capacity using [17]-[18] as 
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    3.2  TIFR 
The average channel capacity of fading channel with 
received SNR distribution )(γγp  under TIFR scheme 

( TIFRC [bit/sec]) is defined in [6]-[7] as 
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The cutoff level 0γ , can be chosen either to accomplish a 

specific probability of outage, outP which is given in (5), or 

to maximize the average channel capacity (30).  
Hence, using (2) 
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Integrating (31) using mathematical transformation by 
[17], we obtain 
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Substituting (2) in (5) foroutP , then 
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[ ]0γγ ≥P  can be obtained using [17], as 
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The computation of the [ ]0γγ ≥P according to (33) requires 

the computation of an infinite series. So, we truncate the 
series and derive bounds for the. [ ]0γγ ≥P . 
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where [ ]NP 0γγ ≥  is (33) with the infinite series truncated 

at Nn = . 
Hence, the [ ]0γγ ≥P is bounded similar to probability of 

outage under OPRA using [17]-[18] as 
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This bound can be denoted as 
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The expression of probability of outage in case of TIFR is 
same as (29), except the cutoff SNR level. In this case the 
cutoff SNR level 0γ , can be chosen to maximize the average 

channel capacity in (30). Hence the bound of probability of 
outage in case of TIFR can be denoted as 
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constant for given value0γ andγ . Hence, the average 

channel capacity per unit bandwidth for dual-branch SC is 
bounded as the bounds of [ ]0γγ ≥P , except that the bounds 

are multiplied by a positive constant
0,γγC .It means that the 

bounds of average channel capacity per unit bandwidth 

TIFRη  in  case of TIFR for each value0γ andγ  becomes 
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Finally, the bound of average channel capacity per unit 
bandwidth in case of TIFR can be denoted as 

TIFRTIFRTIFRTIFR lowENTIFRupEN −− +>>+ ηηηηη
 

4. Numerical Results and Analysis 

In this section, various performance evaluation results for the 
average channel capacity per unit bandwidth and probability 
of outage have been obtained using dual-branch SC under 
worst fading condition. These results also focus on average 
channel capacity and probability of outage comparisons 
between no diversity using [12] and dual-branch SC under 
OPRA and TIFR schemes. 
Table 1. shows 

OPRANη  at two different levels of truncation, 

5=N  and 15=N , for dual-branch SC along with its 
truncation error bounds 

OPRAupE−η and 
OPRAlowE−η  It is seen 

that the truncation error bounds becomes tighter as the 
truncation level N  increases.  

 
Table 1. Comparison of

OPRANη ,
OPRAupE−η , and 

OPRAlowE−η  at two different values of N  for worst case of 

fading. 

 
Hence in order to get desired accuracy the infinite series in 

OPRAη  has been truncated at the 15th for drawing fig. 1. 

In fig. 1, the average channel capacity per unit bandwidth of 
dual-branch SC under OPRA scheme is plotted as a function 
of the average received SNR per branchγ . For comparison, 

the average channel capacity per unit bandwidth of 
Nakagami-0.5 fading channel without diversity, which was 
obtained in [12, Eq. (8)], is also presented in fig. 1. As 
expected, by increasing γ and/or employing diversity, 

average channel capacity per unit bandwidth improves. 
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Figure 1. Average channel capacity per unit bandwidth  
under OPRA for a Nakagami-0.5 fading channels versus 

average received SNR. 

Table 2. shows NOPRAP ,  at two different levels of 

truncation, 5=N  and 15=N , for dual-branch SC along with 
its truncation error bounds

upEOPRAP −, , and
lowEOPRAP

−, . 
 

Table 2. Comparison of NOPRAP , , 
upEOPRAP

−, ,and 

lowEOPRAP
−,  at two different values of N  for worst case 

of fading. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 5=N  

 

[ ]dBγ  

 

OPRANη  

 

OPRAupE−η  

 

OPRAlowE−η  

-10 0.1844003 0.35140 0.14825 

-5 0.5073238 0.28697 0.18892 

0 1.0859664 0.26870 0.23936 

5 1.9739237 0.31500 0.30073 

10 3.1482559 0.38678 0.37233 

 15=N  

 

[ ]dBγ  

 

OPRANη  

 

OPRAupE−η  

 

OPRAlowE−η  

-10 0.2534597 0.16563 0.08559 

-5 0.6017111 0.14023 0.10093 

0 1.2117708 0.13305 0.11996 

5 2.1379537 0.14709 0.14311 

10 3.3568817 0.17511 0.17011 

 5=N  

 

[ ]dBγ  

 

NOPRAP ,  

 

upEOPRAP −,

 

 

lowEOPRAP −,

 

-10 0.6232582539 0.0653675 1.5667192×10-4 

-5 0.4383344079 0.0474504 8.3288090×10-6 

0 0.2584629245 0.0287698 1.8807318×10-7 

5 0.1253386000 0.0142201 1.6584278×10-9 

10 0.0509878788 0.0058436 6.169986×10-12 

 15=N  

 

[ ]dBγ  

 

NOPRAP ,  

 

upEOPRAP −,

 

 

lowEOPRAP −,  

-10 0.6232599015 0.0257515 0 

-5 0.4383344613 0.0186926 0 

0 0.2584629251 0.0113360 0 

5 0.1253386000 0.0056019 0 

10 0.0509878788 0.0023020 0 
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It is seen in table that the truncation error bounds become 
tighter as the truncation level,N , increases. Hence in order 
to get desired accuracy the infinite series in OPRAP  has been 

truncated at the 15th for drawing fig. 2. 
In fig. 2, the probability of outage of dual-branch SC under 
OPRA scheme is plotted as a function of the average 
received SNR per branchγ . For comparison, the probability 

of outage of Nakagami-0.5 fading channel without diversity, 
which was obtained in [12, Eq. (9)], is also presented in 
fig.2. As expected, by increasing γ and/or employing 

diversity, probability of outage improves 
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Figure 2. Probability of outage for a Nakagami-0.5 fading 

channels  versus average received SNR under OPRA 
scheme. 

In fig. 3, the average channel capacity per unit bandwidth of 
dual-branch SC under TIFR scheme is plotted as a function 
of the cutoff SNR 0γ  for several values of the average 

received SNR per branchγ . As expected, by increasing γ  

average channel capacity per unit bandwidth improves. 
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Figure 3. Average channel capacity per unit bandwidth for a 
Nakagami-0.5 fading channels with dual-branch SC versus 

the cutoff SNR under TIFR scheme. 

Table 3. shows NTIFRP ,  at two different levels of 

truncation, 45=N  and 55=N , for dual-branch SC along 
with its truncation error bounds

upETIFRP −, , and 

lowETIFRP −, . It is seen in table that the truncation error 

bounds become tighter as the truncation level, N , increases. 
 

Table 3. Comparison of NTIFRP , , 
upETIFRP −, ,and 

lowETIFRP −,  at two different values of N  for worst case of 

fading. 

Hence in order to get desired accuracy the infinite series in 

TIFRP  has been truncated at the 55 th for drawing fig. 4. 
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Figure 4. Probability of outage for a Nakagami-0.5 fading 

channels versus average received SNR under TIFR scheme. 

 45=N  

 

[ ]dBγ  

 

NTIFRP ,  

 

upETIFRP −,  

 

lowETIFRP −,  

-10 0.767417818 0.0108675 0 

-5 0.634092244 0.00918851 0 

0 0.472983905 0.00702055 0 

5 0.338303036 0.00509988 0 

10 0.231889515 0.0035177 0 

 55=N  

 

[ ]dBγ  

 

NTIFRP ,  

 

upETIFRP −,  

 

lowETIFRP −,  

-10 0.766182507 0.00894409 0 

-5 0.632856933 0.00756222 0 

0 0.471748594 0.0057797 0 

5 0.337067725 0.00419725 0 

10 0.230654204 0.0028951 0 
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In fig. 4, using the cutoff SNR levels0γ , the probability of 

outage with dual-branch SC under TIFR scheme is plotted as 
a function of the average received SNR per branchγ . For 
comparison, the probability of outage of uncorrelated 
Nakagami-0.5 fading channels with dual-branch SC and 
without diversity, which was obtained in [12], is also 
presented in fig. 4. As expected, by increasing γ and/or 
employing diversity, probability of outage improves. 
Table 4. shows[ ]NP 0γγ ≥ , at two different levels of 

truncation, 45=N  and 55=N , for dual-branch SC along 
with its truncation error bounds [ ]upperP 0γγ ≥  and 

[ ] lowerP 0γγ ≥ .  

 
Table 4. Comparison of [ ]NP 0γγ ≥ , [ ]upperP 0γγ ≥  and 

[ ] lowerP 0γγ ≥  at two different values of N  for worst case 

of fading. 

 
It is seen that the truncation error bounds becomes tighter as 
the truncation level N  increases. Note that the truncation 
levels that were used to calculate the average channel 
capacity for table 5 is 55=N . 
Table. 5. shows 

TIFRNη  at two different levels of truncation, 

45=N  and 55=N , for dual-branch SC along with its 
truncation error bounds 

TIFRupE−η and 
TIFRlowE−η  . It is 

seen that the truncation error bounds becomes tighter as the 
truncation level N  increases. Hence in order to get desired 
accuracy the infinite series in TIFRη  has been truncated at 

the 55th for drawing fig. 5. 

Table 5. Comparison of
TIFRNη ,

TIFRupE−η , and 

TIFRlowE−η  at two different values of N  for worst case of 

fading 

 
Figure.5 depicts the average channel capacity per unit 
bandwidth of a dual-branch SC system over uncorrelated 
Nakagami-0.5 fading channels under TIFR scheme as a 
function of the average received SNR per branchγ . For 
comparison, the average channel capacity per unit bandwidth 
of Nakagami-0.5 fading channel without diversity, which 
was obtained in [12, Eq.(18)], is also presented in fig. 5.  
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Figure 5. Average channel capacity per unit bandwidth 
under TIFR for a Nakagami-0.5 fading channels versus 

average received SNR. 

 45=N  

 

[ ]dBγ
 

 

[ ]NP 0γγ ≥  

 

[ ]upperP 0γγ ≥

 

 

[ ] lowerP 0γγ ≥  

-10 0.232582182 0.0833333 0.00691896 

-5 0.365907756 0.0833333 0.00691896 

0 0.527016095 0.0833333 0.00691896 

5 0.661696963 0.0833333 0.00691896 

10 0.768110485 0.0833333 0.00691896 

 55=N  

 

[ ]dBγ
 

 

[ ]NP 0γγ ≥  

 

[ ]upperP 0γγ ≥

 

 

[ ]lowerP 0γγ ≥  

-10 0.23381749 0.0666667 0.00568365 

-5 0.36714307 0.0666667 0.00568365 

0 0.52825140 0.0666667 0.00568365 

5 0.66293227 0.0666667 0.00568365 

10 0.76934579 0.0666667 0.00568365 

 45=N  

 

[ ]dBγ  

 

TIFRNη  

 

TIFRupE−η  

 

TIFRlowE−η  

-10 0.30454776 0.109118289 9.0598×10-3 

-5 0.629511362 0.143367442 0.01190345 

0 1.18533825 0.187429091 0.01556178 

5 2.016898662 0.254005731 0.02108947 

10 3.108404873 0.337234865 0.02799979 

 55=N  

 

[ ]dBγ  

 

TIFRNη  

 

TIFRupE−η  

 

TIFRlowE−η  

-10 0.306165297 0.0872947 7.442285×10-3 

-5 0.631636609 0.1146940 9.778208×10-3 

0 1.188116636 0.1499434 0.012783381 

5 2.020663964 0.2032048 0.017324163 

10 3.11340393 0.2697881 0.023000708 
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As expected, by increasing γ and/or employing diversity, 
average channel capacity per unit bandwidth improves. 
In fig. 6, the average channel capacity per unit bandwidth of 
uncorrelated Nakagami-0.5 fading channels is plotted as a 
function of γ , considering OPRA, and TIFR adaptation 
schemes with the aid of (27), and (35). It shows that, for 
Nakagami-0.5 fading channel condition OPRA achieves the 
highest capacity, whereas TIFR achieves the lowest capacity. 
As expected by increasing γ  the channel capacity difference 
between OPRA and TIFR adaptation scheme increases 
slightly more in dual-branch SC since probability of outage 
improves. 
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Figure 6. Average channel capacity per unit bandwidth for a 

Nakagami-0.5 fading channel versus average received 
SNRγ  using different adaptation scheme. 

In fig. 7, it is depicted that for the Nakagami-0.5 fading 
conditions, OPRA achieves improved probability of outage 
compared to TIFR.  
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Figure 7. Probability of outage for a Nakagami-0.5 fading 

channels versus average received SNR under different 
adaptation schemes. 

It can also be observed that the probability of outage of TIFR 
for dual-branch SC is higher than the probability of outage 
OPRA with no diversity using [12]. 

5. Conclusions 

In this paper, we analyze the average channel capacity and 
probability of outage of dual-branch SC over uncorrelated 
Nakagami-0.5 fading channels for OPRA and TIFR schemes. 
Closed-form expressions for the average channel capacity 
and probability of outage of dual-branch SC for OPRA and 
TIFR schemes have been obtained. Numerically evaluated 
results have been plotted and compared. It has been found 
that by increasing γ and/or employing diversity, average 

channel capacity improves for both the cases OPRA and 
TIFR. But the amount of improvement is slightly larger in 
case of OPRA. The probability of outage with dual-branch 
SC under TIFR is higher than the probability of outage with 
no diversity using OPRA, even when average received SNR 
γ  increases. It is very important to note that probability of 

outage under TIFR scheme is not improved adequately than 
the probability of outage under OPRA even as dual-branch 
SC is applied. This paper finally conclude that Nakagami-0.5 
fading channels using TIFR scheme remains in outage for 
longer duration than using OPRA, even employing diversity 
and / or increasing average received SNRγ . 
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