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Abstract: Mobile traffics are becoming more dominant due to 
growing usage of mobile devices and proliferation of IoT. The 
influx of mobile traffics introduce some new challenges in traffic 
classifications; namely the diversity complexity and behavioural 
dynamism complexity. Existing traffic classifications methods are 
designed for classifying standard protocols and user applications 
with more deterministic behaviours in small diversity. Currently, 
flow statistics, payload signature and heuristic traffic attributes are 
some of the most effective features used to discriminate traffic 
classes. In this paper, we investigate the correlations of these 
features to the less-deterministic user application traffic classes 
based on corresponding classification accuracy. Then, we evaluate 
the impact of large-scale classification on feature's robustness based 
on sign of diminishing accuracy. Our experimental results 
consolidate the needs for unsupervised feature learning to address 
the dynamism of mobile application behavioural traits for accurate 
classification on rapidly growing mobile traffics.  
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1. Introduction 
 

Traffic classification is a machine learning technique for 
autonomous identification of traffic classes using correlated 
network parameters. It is an important domain in machine 
learning for services discovery [1], selective QoS treatment 
and network management. Traffic classification is gaining 
momentum in the avenue of network monitoring and traffic 
management driven by the needs for pervasive network 
management. In addition, the proliferation of mobile 
applications has induced diversification of traffic classes and 
subsequently adds to the complexity of traffic classification 
[2]. Existing approaches are designed for small-scale 
classification [3] on standard protocols and small numbers of 
some randomly selected user applications. Thus, the 
resulting classifier models are only optimized for local scope 
and become less effective for non-homogenous use. 
Meanwhile, the traffic composition on modern networks are 
more diverse and less predictable due to increased 
populations of user applications. As the result, classification 
accuracy is adversely affected if existing classifier models 
are adopted directly without contextual optimization [4].  
Traffic classes are discriminated based on some observable 
communication traits in network metrics known as features 
[5, 6]. The popular features in the literature of traffic 
classification include flow statistics, payload signature and 
heuristics features. Feature attributes evaluator such as CFS 
select features that are highly correlated to traffic class to be 
paired with classifier of synergy for optimal classification [7, 
8, 9]. Then, classifiers evaluate flow instances by the 
principle of correlations of attributes to the trained feature 
vectors. Traffic classification is accurate when the vector 

space of features is highly unique; while vector conflicts is 
likely to result in high numbers of false positive.   
Currently, classification methods are lacking in the features 
department in terms of feature quality and quantity towards 
high diversity traffic classification. The discriminative 
properties for flow features such as packet size, flow duration 
and inter-arrival times statistics are diminishing in increased 
traffic classes’ diversity especially for categorically 
homogenous applications [1]. They are more susceptible to 
network conditions rather than application behaviors in a 
congested network. Existing payload signature is not 
calibrated for mobile traffic space due to some previously 
negligible signature noise [10]. For example, the variance of 
payload feature that uses dictionary word such as ‘flv’, 
‘mp3’, ‘get’ and so on are diminishing as these words 
become more common across payload bytes in multiple 
classes. Besides, payload signature using trivial terms 
inevitably leads to higher false positive in mobile traffic 
classification [6]. For example, the keyword ‘facebook´ are 
found in abundance in payload of applications (like eBay, 
Spotify, iFlix) that are inheriting Facebook API services.  
Lastly, protocol traits decoding also become infeasible as 
heuristics feature extraction becomes more time consuming 
given the enormous classification scope; despite being the 
highly accurate [5].  
In this paper, we evaluate the performance of existing 
classification works on mobile traffic in high diversity in the 
context features efficacy. The main section of this paper is 
dedicated to address new criterions emerged in feature 
engineering towards transitioning traffic classification 
techniques for large scale and less-deterministic 
classification.  The first half of the paper implement and 
discusses on the aforementioned evaluations. Then, some 
potential future works on feature learning are discussed in 
the remaining section. 
 

2. Feature Engineering in Traffic 
Classification 

 

Feature engineering is a process to discover useful 
discriminators using domain specific knowledge to empower 
machine learning classification [7]. A feature is an individual 
measurable property of a phenomenon being observed [9]. 
Features are the basic discriminant unit for traffic 
classifications. The role of features is to discriminate domain 
specific entities based on their respective properties as 
presented in feature vectors. Features are used in nearest 
neighbor, neural networks [11], and Bayesian classification 
approaches [12]. There are multiple types of features; some 
domain specific and some generic. Features are domain 
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sensitive; for example, features are histograms in character 
recognition, phonemes in speech recognition, structural 
properties in spam detection, edges and objects in computer 
vision [13]. Feature can be represented in multiple datatypes, 
including integer, double, float, string or complex data 
structure. Features types include binary, categorical, 
ordinal, integer value, real value and composite types. A set 
of numerical features can be conveniently described by a 
feature vector [7]. Any attribute useful to the model could be 
a feature, but not all attributes are feature worthy.  Features 
are evaluated based on how correlated they are towards 
target traffic classes; based on Pearson’s-Correlations 
Coefficient.  Due to the inequality among features, only 
useful features are selected for classifications. The relevancy 
of feature attribute on a specific classification problems can 
be expressed by attribute evaluator such as CFS, given by: 
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We discuss the types of features used in the domain of traffic 
classification in the next section. 

 

3. Flow Statistic 
 

Statistical classification approaches use flow features 
statistics inferencing to deduce traffic classes. Flow statistics 
features are some correlated per-class attributes 
discriminators that are conveyed in network metric [5]  s. 
Statistical features can be interpreted at packet level, flow 
level, multi-flows level and connections level [14, 15]. In 
flow statistics processing (FSP), network parameters in TCP 
headers and IP headers that are highly correlated to unique 
traits of respective traffic classes are extracted as flow 
features. Flows-based classification discriminate at headers 
level; thus, they are effective for encrypted traffic 
classification [5, 16]. Besides, flow features are suitable for 
unsupervised feature learning given their universal properties 
in all TCP/IP based traffic classes. FSP is a common feature 
extraction method in this domain; that explains the highly 
similar feature sets used in majority of existing classification 
works. Some common flow statistics features are shown in 
table 1. 

 
 

Table 1. Common flow statistics features 

Features Description 

Packet length The size of IP packets given by IP HDR_LEN and IP Total_LEN 

Packet length statistics Min, max, mean, median, SD of packet length 

Inter-arrival time (IAT) The differences of arrival time/delta time/timestamp among packets 

IAT statistics Min, max, mean, median, SD of IAT 

Packet counts Number of packets in a defined period/interval/quartile/sample size 

Bytes counts Numbers of bytes in a defined period/interval/quartile/sample size 

Flow counts Numbers of flows in a defined period/interval/quartile/sample size 

Timing intervals Idle time, keepalive time, arrival time, connection time statistics 

Flow size The number of packets in a flow (average) 

Flow duration Length of flows in average per session/interval 

TCP port The port number as read by network monitor (as identifier) 

TCP window size The advertised TCP sliding window size 

Burst size The burst intensity of packet in a defined interval 

TCP count with PUSH Number of TCP packets with PUSH set to 1 

Packet arrival order The pattern of packets arrival based on sequence number 

Effective bandwidth (entropy) Network utilization parameters 

Bytes flow Number of bytes transferred from client to server; server to client 

IP header parameters statistics The aggregation of IP header attributes values 

TCP header parameters statistics TCP usage characteristics as conveyed in TCP header parameters such as flags (SYN, PUSH, FIN, ACK) and 
window size etc. 

Feature vector for flow features are commonly represented in 
numerical space [17]. For example, packet size statistics are 
represented in decimal value in terms of bytes; such as 1 
bytes, 10 bytes or 65,548 bytes. The range of minimum (0) to 

maximum packet size (65,548) defines the feature space 
boundary. For example, we can say that SMTP with average 
packet size of 300bytes can be discriminated from DNS with 
average of 500bytes. Similarly, IAT is used to isolate 
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applications based on packet arrival time disparity among 
some applications set (based on respective packet 
timestamp). However, it is less effective since IAT’s vectors 
are susceptible to network noise [18, 19, 20]. 

4. Statistical Classification Approaches 
 

Statistical approaches are developed to address the 
challenges in encrypted traffics classification. One of the 
early work in statistical classification proposed by [21]  
looks at packet & flow vectors based on Vector Space Model 
(VSM). The algorithm computes the associations among 
flows based on Root-Mean-Square (RMS) distance, 
Euclidean distance and the angle between the vectors and it 
achieves true positive of 90% with 7% false positives. 
Multivariate Gaussian Fitting of Multi-Scale Traffic 
Characteristics [22] technique is developed to account for 
real time traffic analysis using highly correlated features. 
The author defines classification scope into legitimate and 
illicit traffics and evaluating the work using attack 
simulations gives 91% of accuracy.  
A semi-supervised algorithm proposed by [23]  is a good 
show case of the capability of statistical ML classification. It 
employs 6 parameters to describe flows including flow start 
and stop timestamp, total number of bytes, total number of 
packets, average packet size, average packet/byte rate and 
cumulative TCP flags for each flow. The author defines the 
classification scope to 8 protocol types; that includes Web, 
FTP, P2P, Streaming, Data base, Mail, Instant Messaging, 
VPN and VoIP traffic. The classification result achieved best 
case of 90% accuracy for the five of the targets, but result is 
less desirable for the rest of the traffics classes. The scope 
the work is among some of the most complete, as it supports 
both standard protocols and user application traffic classes.  
There are methods that work at sub-flow levels that claims to 
improve existing statistical flow based methods in real time 
environments. Such classifications methods  [24, 25, 26, 27] 
marginally improved accuracy in a bounded classification 
scope. These works are published sequentially; thus, they use 
the same output traffic classes to evaluate incremental 
improvements. Generic attributes [24] are used to identify 
Skype application; it is limited to version 2, 3 & 4 and there 
has been no discussion on scalability towards application 
update. Refinements are made in WEKA using J48 algorithm 
coupled with new parameters including mean packet length, 

packet length dispersion, two packet difference and inter-
arrival time to attain some commendable results at 97% 
precision and 86% recall. To account for cost efficacy, 
Sinusoidal Voice Over Packet Coder (SVOPC) [28] presents 
the algorithm that minimize Skype data requirement to 5 
seconds of sampling duration while manage to achieve 
higher precision at 98%. Enhanced SVOPC [29] extend and 
implement SVOPC on wider scale, where the classification 
scope grows beyond VoIP traffics. An innovative method 
[30] proposed using Chi-Square to distinguish Skype from 
web traffic as workaround for traffic encryption; but at the 
tradeoff of classification granularity. Other related works like 
rapid identification [31] employs unique features to classify 
non-VoIP traffic, in particular Bit Torrent on this case using 
the characteristics Packet Ratio, Small Packet Ratio, Large 
Packet Ratio and Smaller Standard Deviation were used with 
the C4.5 classifiers. Recall of 98.2% and precision of 96.5% 
is remarkable, however the classification is again at 
extremely coarse level which is only between P2P and non-
P2P traffics classes.  
Statistical approaches have grown to accommodate more 
diversity of traffic classes in recent times. The first 20 
packets statistics are integrated with Markov-model [3] in 
small-scale mobile applications classification and achieved 
up to 100% of accuracy.  Similarly, [32]  HMM is used on 
packet size and IAT sequences to classify BitTorrent, FTP, 
POP3, QQ, DNS and SSL with best case precision of 100%. 
ClassifyDroid [33] extends the traffic scope in [3] to 200 
instances; using some API level features that is more 
difficult in training data construction. Youtube and some 
other streaming services are the next popular single class 
traffic classification after Skype. Notable works on these 
include Youtube QoE Estimation [34] and online video flows 
classification [35] which use throughput, packet size and IAT 
statistics and achieved up to 83.8% of detection. 
Despite the observed accuracy improvement in sub-flow 
discipline, it remains an open question on the impact of 
growing traffic classes diversity on the performance and 
scalability of these aforementioned methods using flow 
statistics features. We summarize some of prominent 
statistical approaches not discussed in table 2 due to space 
limitation. Note that the reported accuracy is empirical to 
respective scopes.

Table 2 Traffic classification approaches using flows statistics features 

Methods Features Scope Accuracy 

Bayesian Analysis [18] Flow duration, TCP Port, IAT, payload size, 
bandwidth entropy, Fourier transform on IAT 

By Application Category: Bulk, Database, 
Interactive, Mail, Services, WWW, P2P, 
Attack, Games, Multimedia 

>95% 

Class-Of-Service Mapping [12] Variance, RMS, size of packet, flow duration, 
mean data per flow, connection level info, IAT 
variance, multi-flows correlations 

By Class: Interactive (Telnet), Bulk (FTP, 
Kazaa), Streaming (Realmedia), 
Transactional (DNS, HTTPS) 

>90% 

Statistical Machine Learning 
Approach [36] 

Sequential forward selection (SFS) product, 
packet length mean and variance, flow size & 
duration  

FTP, Telnet, SMTP, DNS, HTTP, AOL, 
Napster, Half-Life 

86.5% 

Flow Clustering With ML [37] IAT, byte counts, connection duraction, 
number of transition, idle time, packet size 
statistics  

Statistical Induced Clusters – Not At Per 
Application Level  

relative 

Traffic Classification With 
Clustering [19] 

Number of packets, mean packet size, mean 
payload size, transferred data size, IAT mean 

Dns, Ftp, Http, Irc, Limewire, Nntp, Pop3, 
Socks 

relative 
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Backbone Internet Traffic 
Profiling [38] 

Port connection behaviors (srcIP, dstIP, srcPrt, 
or dstPrt) 

Web, Dns, Email, NAT Box, Web Proxies, 
Crawlsers, Scanners, Exploits Traffic 

87% 

Bulk Data Statistics [39] TCP bidirectional flags, packet size Voip, Video, P2P relative 

Voip Classification [40] IAT G711, G723, G729 Codec relative 

Early Traffic Detection [41] First-4 packets size statistics  Nntp, Pop3, Smtp, Ssh, Https, Pop3s, Htp, 
Ftp, Edonkey, Kazaa, Bittorrent, Imap, Irc, 
Ldap, Msn, Mysql 

67%-98.9% 

Cellular Traffic Classification [21] Average packet size in the uplink downlink 
and direction 

Browsing, Data, Voip, Video 78% 

Online Streaming Traffic 
Detection [35] 

Packet size average, IAT for uplink and 
downlink, stream distributions statistics 

Online, Vod relative 

Mobile Traffic Classification [3] Packet size, iat, flow volume, flow duration Line, Whats’app, Youtube, Spotify, Tunein 
Radion, Heartstone 

97%-100% 

Youtube Traffic Detection With 
ML [34] 

Packet length statistics, size of transferred data 
in 5s intervals, packet count statistics, 
interarrival time statistics, throughput, 
statistics, and TCP flags count 

Youtube 90.87%-83.94% 

TCP/IP Services Detection [42] Time(s), number of packets (S), number of 
packets (c), number of data from S, number of 
data from C, port, IP 

Ftp, Telnet <95% 

   
   
5. Payload Signature 
 

Payload features are some highly accurate traffic 
discriminators based on payload content inferencing. 
Signature extraction is time consuming; but the problem can 
be addressed with automated feature learning.  Payload 
features can be interpreted in numerous representations, 
including raw bytes, resolved string data and hexadecimal 
values. Classification techniques that discriminates with 
unique payload patterns are based  

on the principle that traffic classes exchange some sets of 
unique payload data in data communication. The structure of 
payload is analyzed to identify some deterministic traits 
correlated to traffic class behaviors. Some of these 
correlations properties includes bytes-to-bytes sequences, 
bytes distribution and frequency, dictionary words detection, 
and pattern matching using k-bytes encoding. Some typical 
payload signatures are shown in table 3. 

 

Table 3 Common examples of payload signatures 

Payload signature  Signature content 

Common substring http/1.1, 200, GET, POST, content-type, client-hello 

Common MIME types .xml, .jpeg, .png, .swf, .zip, .bz 

Long string from=’xiaomi.com’; Set_cookie:userID=40061929; Host: static.home.mi.com 

Dictionary word Image, data, music, album, server, stream 

Raw bytes <K|0d||0a|Server:>, <s|0a|ebaystatic|03|com>, < <200> <|01||00||00||01|> <s|0a|ebaystatic|03|com> >, RqbBbwc9otuoW 

We summarize the payload types of some prominent deep 
packet inspection classification methods in table 4. 

 

Table 4 Deep-packet inspection based traffic classification 

Methods Features Algorithms (Profiling) Scope Accuracy (local) 

Static application signature 
[43] 

P2P specific signatures Manual signature 
identification & annotation 

5 types of P2P applications up to 99.99% 

ACAS [44] TCP/UDP header 
information 

Naïve Bayes, AdaBoost, 
SLI-Max classifier 

FTP, SMTP, POP3, IMAP, HTTPS, 
HTTP, SSH 

up to 100% 

Autograph [45] Heuristics Content based signature 
creation (COPP) 

HTTP worms Not specified 
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Hamsa [46] Content based signatures Simple greedy signature 
generation 

Worms: Code-red II, Apache-
knacker, ATPhttpd, CLET, TAPiON 

up to 100% 

StriD2FA [47] String-matching Length-based regex 
matching (LBM) 

not explicitly stated Not specified 

VS-DFA [48] Snort & ClamAV pattern Variable stride block 
matching 

Snort & ClamAV supported attacks 
scope 

Not specified 

LW-DPI [49] Number of packets, payload 
length 

Light-weight simplified 
string matching 

60 supported applications in L7-
filter: P2P, web, chat. NM, 
streaming, mail, VoIP  

up to 99.95% for 
P2P 

SLTC [50]  Time Correlational Metrics 
+ LASER [50] 

Least common 
subsequence (LCS)  

P2P application: Gnutella, E-
Donkey, BitTorrent, Skype, Kazaa 

up to 99.61% for 
P2P 

LASER [51] Packet count, minimum 
substring length, packet size 

Least common 
subsequence (LCS) 

Limewire, BitTorrent, Fileguri, 
Others 

up to 90% 

Bernaille Early Application 
Identification [41, 52] 

Signature from Traffic 
Designer + statistical stream 
properties 

K-mean, Gaussian Mixture 
Model, Euclidean space 
and spectral clustering on 
HMM 

NNTP, POP3, SMTP, SSH, HTTPS, 
POP3S, HTTP, FTP, Edonkey, 
Kazaa 

up to 99.9% 

BLINC [6] Graphlets behavior signature 
+ heuristics  

Dedicated string pattern 
matching 

Web, p2p, data, network 
management, mail, news, chat, 
streaming, gaming, non-payload 

up to 99.9% 

SVM [53] Not specified Distributed Support Vector 
Machines 

40 unspecified applications Not specified 

Content Matching [54] Layer 4 header data Edit Distance Not specified Not specified 

HMM sequence [32] Payload bytes’ sequences Hidden-Markov Model Bittorrent, eDonkey, QQ, SSL, FTP, 
DNS, POP3, Skype 

up to 100% 

‘Elaborative’ Payload [11] Payload bytes’  Not specified Youtube, Facebook up to 100% 

API Discrimination [33]  Android API string 
matching 

Multinomial Naïve-Bayes 200 Androids Applications Not specified 

  

6. Deep Packet Inspection Approaches 
 

There are four distinct branch under DPI methods in regards 
to the type of pattern matching implementation, namely 
automaton based, heuristics based, hashing based and bit-
parallelism based. Payload approaches are concerned with 
performance optimization and accurate classification. 
Variable-Stride Multi-Pattern Matching Algorithm (VS-
DFA) is classify using string matching using block oriented 
pattern scheme over conventional byte oriented pattern [55] 
to optimize memory usage. It fares better due to the variable 
number of byte scanned in one pass using Winnowing 
algorithm. Next, the author uses a FA construction approach, 
a derivative of Aho-Corasick DFA algorithm for pattern 
extraction. The algorithm is benchmarked with Snort & 
ClamAV pattern sets and pro-claimed less memory usage for 
every 3 bytes of character pattern. A two-stage self-learning 
traffic classifier (SLTC) is proposed to classify P2P traffic 
based on flow timing correlations [51]. The first stage use 
Time Corrélation Matrix (TCM) to distinguish P2P flows 
from mass traffic; High-Speed Monitors (HSM) is deployed 
to speed up payload signature based classification. The 
second stage infers on connection patterns and direction to 
deduce P2P application for remaining unclassified flows. 
Classified Rabin-Karp with Binary search and Two-level 
hashing (CRKBT) [56] is another string matching algorithm 
that emphasis on computational performance optimization, 
while preserving classification accuracy and completeness. 

The author evaluates the enhanced RKBT algorithm and 
evaluates the improvement on ClamAV, DansGuardian and 
Snort package and claimed noticeable speed enhancement 
across different packages.  
Length-Based Matching (LBM) with accelerating scheme for 
RegEx matching, a variation of RegEx matching that use 
enhanced Dual-Finite Automata (DFA) called Stride-DFA 

(StriD2FA) is proposed to speed up pattern matching [47]. 
The algorithm takes cues from data compression techniques, 
it first converts byte stream into integer stream in form of 

Stride-Length (SL) before feeding it to StriD2FA. The 
novelty is mainly observed in improved computation speed 
and reduce memory consumption. However, the compression 
is a lossy process and some wrongly discarded data may 
result in erroneous classification. A lightweight DPI [49] is 
proposed with the objective to minimize DPI induced 
performance bottleneck. The algorithm selectively processes 
random payload unit among all flows, and randomly read 
partial segments of individual payload to reduce operational 
cost. The author uses readily available signature from L7-
filter [51] that covers for 60 applications definition. The 
author claims that computation overhead is significantly 
reduced without any accuracy tradeoff. A simple pattern 
matching using first 2 Bytes of payload [57] with some 
inferred statistical vector is proposed for user-centric 
application classification. The algorithm works by checking 
on the similarity index of some baseline vectors against the 
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extracted vector from unknown sequential flows to 
distinguish application classes. The scope of classification 
includes BitTorrent, Emule, YouTube, Fileguri and Afreeca. 
The author claims 98% accuracy can be achieved using just 2 
bytes of data in small-scale classification; although the 
stability towards bigger scope and unknown flows are not 
accounted for. A generic content matching algorithm based 
on edit distance is proposed to evaluate payload structure 
effectively. Content-based pattern matching [54]  introduces 
the concept of sliding windows to adaptively shift the k-bytes 
length of payload data based on distance calculations to 
minimize signature size. APSC system  [32, 10] argues that 
temporal cues are useful for discriminating traffic class; it 
proposes using the sequence correlations of payload bytes 
instead of payload itself for signatures construction. Multi-
level signature [11] solve the trivial problems in payload 
inference methods such as dictionary words and common 
strings using 3-level interpretation; on packet, flow and 
connection level respectively. Lastly, ClassifyDroid [33] is 
statistics-payload hybrid method developed for large-scale 
Android applications classification. The author claims that 

modern applications invoke multiple functions call and these 
behaviors are observable in android_sdk or API call patterns.    

7. Dataset Description 
 

Client networks in modern days contains of traffic classes 
multiple diversity. We collect mobile (iOS) applications 
traffics data in large-scale to evaluate the robustness of 
existing traffic classification methods in context of increased 
diversity. The data collection period span over 1 hours of 
capture per traffic classes for 50 applications on MYREN 
network with expectation-maximization (EM). Application 
instances are selected based on regional (MY) Apple’s 
Appstore top 50 popularity. Training data are annotated with 
per-class label manually. The dataset does not include 
standard protocols; all members in the scope runs on 
ephemeral ports. Each traffic class correspond to a unique 
entity at application level, rather than categorical. The 
exhaustive compositions of supported traffic classes are 
shown in table 5. 

Table 5 Datasets compositions of considered traffic classes 

Exhaustive Compositions of Supported Traffic Classes 

Facebook Facetime Audio Waze Clash of Clan Steam 

Appstore Facetime Video Groupon Mudah.my Ebay 

Lazada Skype Google Drive 11street Google Maps 

Amazon Wechat Hulu Shopee Uber 

miHome Whatapp Pokemon Go Carousell Pandora 

Spotify Messenger Soundcloud Zalora Pinterest 

Youtube Line Minecraft Taobao Gmail 

iFlix Snapchat Wish Lelong.my Super Mario  

Netflix Instagram Tinder AliExpress Ikea 

Apple Music Twitter Go Shop Gemfive Tripadvisor 

 
8. Evaluation Methodology 
 

We use Naïve-Bayes (NB) classifier on default 
hyperparameters to evaluate the robustness of existing 
feature sets in large-scale classifications. Naïve-Bayes is used 
throughout all evaluations to place result’s emphasis on 
features attributes rather than on classifiers attributes. 
Packets data are reassembled to flows to satisfy flow features 
pre-exquisite. Training data are constructed based on flow 
and payload features using Tshark. Traffic classification is 
performed on 10-fold cross validation method. We use CFS 
attribute selector based on Pearson-Correlation for feature 
attributes evaluation. First, we evaluate and rank individual 
features performance for the 50 applications of interest. 
Features ranking is useful to estimate the extent of 
diminishing feature’s performance against increased traffic 
classes and behavioral dynamism. Next, we evaluate 
classification performance of features set in some prominent 
classification methods in the new problem space. In this test, 
we are interested to determine does existing features have 

sufficient feature vectors to accommodate classes diversity 
growth. Then, we identify the most optimal feature currently 
available in respect to individual traffic classes using NB. 
The derived findings are useful for targeted feature selection 
corresponding to application classes of interest. All of these 
evaluations are implemented in WEKA; we use true positive 
(TP) as the accuracy metric. 

9. Single-feature Attribute Evaluation 
 

In this section, we evaluate the impact of increased traffic 
classes on classification accuracy using flow statistics 
features and payload signature. The features of interests are 
derived from table 1 and 3. We summarize the attained 
accuracy (TP) in table 6. 
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Table 6 Classification accuracy of respective flow statistics features against increasing diversity 

Feature Diversity Count (n) 

n=10 n=20 n=30 n=40 n=50 

Packet Size  38.85 37.78% 33.29% 31.33% 30.19 

Average Packet Size  47.38 44.07% 30.17% 27.55% 22.11 

Max Packet Size 12.68 12.22% 10.07% 9.54% 7.10 

Packet Size Median 22.83 22.22% 25.88% 23.72% 21.77 

Packet Size Standard Deviation 36.96 32.22% 29.33% 25.78% 22.35 

Average Segment Size 27.55 23.33% 19.86% 15.12% 12.89 

Inter-arrival Time (IAT) 38.96 20.00% 13.36% 12.28% 7.33 

Average Payload Size 28.80 27.16% 27.33% 26.97 % 26.32 

Payload Size SD 43.22 42.36% 43.35% 42.28% 42.70 

Packet Count per Flow 23.36 21.53% 17.22% 14.38% 14.23 

Packet Count with PUSH flags 41.10 38.72% 39.23% 39.18% 29.58 

Flow Duration 32.33 21.11% 23.21% 20.88% 20.17 

First 4 Payload Bytes 71.11 70.63% 70.88% 69.72% 72.19 

First 20 Payload Bytes 72.43 71.55% 70.73% 68.28% 65.12 

P2P signature 0.00% 0.00% 0.00% 0.00% 0.00% 

ACAS signature 0.00% 0.00% 0.00% 0.00% 0.00% 

Autograph signature 0.00% 0.00% 0.00% 0.00% 0.00% 

LASER signature 8.07 8.12 7.33 8.19 7.79 

BLINC signature 38.8 23.1 31.72 23.33 23.10 

Payload HMM signature 72.12% 76.41 77.18 65.53 59.88 

API calls signature 58.38 62.25 44.32 42.96 42.46 

 
 

Based on collective feature specific accuracy, we can imply 
that no single feature is capable to achieve more than 90% 
accuracy. Thus, the needs for feature attributes evaluators 
such as CFS to select some high-synergy features into 
feature sets based on problem context. Payload signature is 
more prone to hit-and-miss; it is observed that classification 
with signatures achieve better accuracy than flow statistics 
counterparts when they are working. However, in some cases 
none of the traffic classes can be classified as in ACAS and 
Autograph. The rationale is that payload signature is hard-
coded to some corresponding class; thus, they are not 
discriminative outside homogenous domain. Implicitly we 
know that signature accurateness come with increased 
computational complexity and are less universal. Besides, 
previously unique payload data patterns (as in LASER) show 
sign of diminishes over time due to application update that 
provoke behaviors changes. HMM payload sequence 
integrates temporal cues to improvise static payload 
deduction has seen significant success is preserving 
classification accuracy. The ramification is that HMM 
sequence exploits on temporal cues; which is a universal 
element to all traffic classes. Specifically, using certain 

generic payload attributes such as first-k bytes that are 
common to all traffic classes rather than identifying some 
class specific payload traits improved signature cross-domain 
scalability. Meanwhile, statistical features are unsparingly 
less accurate in relative terms due to lack of per-class 
specific traits. Despite that, the universal properties of 
statistics enable pervasive classification and we do not 
observe any case of failed classification. Packet size 
achieved comparably better accuracy than IAT, probably 
because the latter is more susceptible to network conditions 
such as congestion, retransmission and delay. Some 
techniques use advance statistics, Fourier-Transform and 
entropy to enhance network metrics discrimination and enjoy 
considerable accuracy improvements. Some flow or 
connection-level features like flow duration are defined to 
interpret traffic behaviors traits at higher abstraction level; on 
the assumptions that flow view are better cues are better 
discriminators than packet level cues. The principle is 
consolidated based on the resulting 32.23% classification 
accuracy achieved on flow duration statistics; for example, 
average packet size discriminates better than primitive 
packet size. Flow features have taken strides in recent works 
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to address the growing amount of encrypted traffic 
classification despite comparably inferior classification 
performance. In summary, the unique advantage of flows 
statistics and signature features made feature selection in 
respect to problem context challenging and interesting at the 
same time.   
We observed that the increased traffic classes diversity is 
directly correlated to classification performance of some 
subset of features. The finding is evident in flows statistics 
features that show consistent decline in TP over diversity 
size increase; despite at some non-deterministic magnitude. 
The diminishing effect extends to some non-hardcoded 
payload features such as in hmm payload sequence signature. 
Apart of this, the rest of payload signatures are immune to 
traffic classes growth and with fairly consistent accuracy 
throughout multi-variate application count test. The rationale 
is explained with Jaccard index (J(A,B)); Jaccard coefficient 
measures similarity between finite sample sets, and is 
defined as the size of the intersection divided by the size of 
the union of the sample sets. We define Jaccard index in 
general notion as 
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The accuracy in traffic classification is given by feature’s 
variance; and these variances become more distinguished 
when Jaccard index is higher. The increased traffic class 
diversity introduces more potential for cross-classes 
behavioral similarity. This results in decreased non-
intersection zone that carries the per-class unique attributes 
traits; and subsequently leads to feature vector collision. In 
summary, further optimization in feature learning department 
is needed to methodologically identify better correlated 
features to accommodate for the increased traffic diversity.   

10. Evaluating Robustness of Existing Classifier 
Model 

 

The robustness of current classification methods on mobile 
traffic classification is evaluated in this section. Specifically, 
we use the feature sets and classifier algorithm found in 
existing works to construct some new classifier models in 
respect to mobile traffic classes. Robustness in this context 
measures how well is the classification performance when 
being extended to the diversified scope. In this test, the 
relative contribution in accuracy performance is given by 
features and classifiers collectively. Note that the evaluation 
shown is not exhaustive due to features set in certain works 
are not publicly available. Table 7 shows the accuracy 
performance of some prominent classification works on local 
scope compared to mobile traffic scope.

 

Table 7 Comparison of accuracy of existing traffic classification methods in homogenous and heterogenous scope 
Methods Classifiers Features Accuracy 

(homogenous) 
Accuracy 

(heterogenous) 
Weighted Features [58] Autoclass Forward-Pkt-Len-Var, Backward-Pkt-Len-Var, 

Backward-Bytes, Forward-Pkt-Len-Mean, Forward-
Bytes, Backward-Pkt-Len-Mean, Duration, Forward-
IAT-Mean 

0.865 
 

0.627 

ClassifyDroid [33]  Multinomial Naïve-Bayes C-API 0.990 
 

0.595 
 

Auto-Android  [53] Multinomial Naïve-Bayes C-API 0.850 
 

0.795 
 

H-SOM [17] String-matching POP3, SMTP, IMAP, HTTP, Soul-Seek, BitTorrent  1.000 
 

0.000 
 

SLTC [51, 40] Time-Correlation Metric L7 signature 0.950 
 

0.313 
 

Bayesian Technique 
[18] 

Naïve-Bayes Kernel 
Estimation 

Flow duration, TCP port, IAT, payload size statistics, 
Fourier-transform on IAT, bandwidth entropy 

0.950 
 

0.689 
 

Class-of-Services 
Mapping (CSM) [12] 

QDA, LDA Mean packet size, variance, RMS size, flow duration, 
flow size, connection properties, multi-flows statistics 

0.430 
 

0.727 
 

Port-View [14] K-means Payload size/average size of first-forth packets, 
average IAT 

0.989 
 

0.646 
 

Traffic Clustering [19] K-means, Autoclass Total number of packets, mean packet size, mean 
payload size excluding headers, number of bytes 
transferred. mean inter-IAT of packets 

0.935 
 

0.629 
 

TCP/IP Detection [42] Multilayered Feed 
Forward Neural 
Networks 

time(s), number of packets (S), number of packets (c), 
number of data from S, number of data from C, port, 
IP 

0.950 
 

0.000 
 

Nmap [47] Pattern-matching Hardcoded (140) protocols signature  0.990 
 

0.000 
 

Packet Sequences [32] Pattern-matching HMM on payload bytes 1.000 
 

0.819 
 

Multi-level Signature 
[11] 

Pattern-matching Multi-level payload signature 0.910 
 

0.345 
 

Early Detection [41] Naïve-Bayes Source IP:port, destination IP:port 0.900 
 

0.727 
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HMM-Statistics [3] K-means, GMM HMM on packet size statistics 1.000 

 
0.823 

 

Youtube QoE 
Estimation [34] 

OneR, Naïve-Bayes, J48, 
Random Forest 

Packet size and throughput statistics  0.890 
 

0.000 
 

 

Traffic classification approaches are optimized for specific 
traffic classes composition; that explains the high accuracy 
consistently being attained in classification on local scope.  
We find an average of 0.9-1.0 of accuracy for most methods 
except for CSM [12] at 0.43; regardless of the size of 
supported traffic classes. Implicitly classification is most 
optimal when the classifier model is specifically trained in 
respect to the problem scope. The rationale is that optimal 
features set and classifiers can be selected in respect to per-
class with variable compositions. Based on this finding, we 
are interested to know how well these classifier models 
performed in heterogenous environment. We note that true 
effective accuracy is composite product of features 
correlations to traffic classes and classifier machine 
learning’s efficacy. For simplicity, we assumed classifiers 
attributes impact is to be minimal for the rest of the 
discussions. 
Corresponding to this, we evaluate the classification 
accuracy on our dataset using the features and classifier 
choice of existing methods. We observed deterministic 
accuracy decline between local classes and heterogenous 
classes based on collective performances. Worst case 
accuracy is 0.000 as in [42, 47, 34] while best case is given 
by [3] at 0.823. On examination, we justified the 
performance based on the quality of features used in [3] 
which account for temporal behaviors; in addition to the 
close similarity of signature scope to our dataset 
compositions. We observed that flow statistical methods 
collectively achieved accuracy in the range of 0.60-0.70. 
This imply that flow features are more universal and can be 
easily adopted for multi-classes traffic classification with 
heterogenous compositions. Incidentally the accuracy 
disparity among statistical-based approaches [18, 14] and 
[19] are presumed to be from variable classifiers efficacy. 
We identified a common trait for methods [42, 47] and [17] 
that achieved 0.000 accuracy; that they are all using payload 
signature for traffic discrimination. Our investigation shows 
that payload features are hard-coded for specific classes of 
interest; thus, they are less discriminative for non-
homogenous classification. However, we notice that the 
classifier model built from [33] Android applications 
payload features are capable to classify our iOS classes at 
0.595 accuracy. We examined the features and find some 
common payload traits for some sets of applications at 
categorical level. Thus, we imply that payload features have 
some non-deterministic cross-context value despite not 
having 1-to-1 signature matching of training to testing 
classes. Another example is seen on [11] with 0.345 
accuracy on iOS traffics despite only having payload 
signature for 2 classes. Our investigation shows that both of 
these signatures correspond to a subset of the most dominant 
traffic classes in our dataset; namely Youtube and Facebook. 
Thus, we imply that classification accuracy is partly 
influenced by the classification performance on dominant 
traffic class if the instances of traffic classes are not equally 
distributed. Lastly, we also observed that method with flow 
features performed better than payload counterparts; possibly 
due to encrypted flows in multiple iOS application classes. In 

summary, we conclude that classifier model is most effective 
when they are trained and tested on homogenous data. In 
summary, we conclude that existing traffic classification 
approaches perform averagely for large-scale traffic 
classification regardless of underlying features types. Further 
research in the domain of feature learning and classifier 
optimization is needed to accommodate the diversification of 
traffic classes for accurate classification. 

11. Future Direction 
 

We propose some research prospects to address the growing 
diversity of traffic types as below: 
Context-aware – traffic classification can adaptively select 
optimal features and classifiers to suite problem needs; such 
as swapping CFS for PCM in feature selection, or Naïve-
Bayes for J48 in classification as the algorithm sees fit. 
Machine-learning (ML) – ML techniques have been widely 
used in traffic classification; however, the features used in 
classification are extracted with heuristics and yet to benefit 
from ML. Renewed emphasis of ML in feature-learning for 
unsupervised and scalable signature extraction is important 
to deal with growing amount of traffic classes 
Active traffic classification – Assuming traffic diversity is 
increasing at a rate faster than the identification of new 
features; active traffic classification can ease some of the 
challenges, such as using agent or protocol to request 
application information when they talk on the network. 
Fine-grain – flow statistics and signature can be interpreted 
at application functionalities level instead of at per-
application level to address their diminishing feature space. 
The rationale is that user applications performed a series of 
actions that show behavioral disparity; and this information 
can be exploited to deduce application identity. 
Two-tier classification – traffic classification can use 
existing features to classify application at categorical level 
first; and reuse the feature sets to classify individual 
application among the same category to logically expand 
feature space  
Search space – existing feature extraction techniques source 
for feature in flow of application of interest itself; and do not 
consider neighboring protocols that are highly correlated to 
the applications such as TLS  [59] and HTTP 
Connection-level – the proliferation of IoT  [60] enriched the 
communication patterns of applications that can be exploited 
to discriminate traffic classes; such as push/pull behaviors, 
service discovery patterns and its corresponding access 
sequences. 

12. Conclusions 
 

This paper evaluates the performance of existing flow-
statistics and payload features on large-scale mobile traffic 
classifications. We synthesized some common features in 
traffic classification domains and discussed their respective 
advantage in dealing with diversified and dynamic user 
application’s behavioral traits. First, existing classification 
methods are categorized in terms of respective features set 
and classifiers algorithm. Next, we compare the average 
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accuracy of individual flow features and payload signature in 
large-scale contexts. Our findings show that signatures are 
relatively more accurate than flow-statistics but are 
comparably more expensive and ineffective on encrypted 
data; vice versa. Then, we experiment existing classifier 
model on self-collected iOS dataset containing 50 unique 
traffic classes. We observed diminished classification 
performance review-wide due to the emerging diversity and 
behavioral dynamic challenges. Lastly, we proposed using 
machine learning in feature engineering department in future 
research to identify better correlated features for accurate 
user application traffic classification. 
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