
196
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

Link Expiration Time and Minimum Distance
Spanning Trees based Distributed Data Gathering
Algorithms for Wireless Mobile Sensor Networks

Natarajan Meghanathan

Department of Computer Science, Jackson State University,

Mailbox 18839, 1400 John R. Lynch Street, Jackson, MS 39217, USA
natarajan.meghanathan@jsums.edu

Abstract: The high-level contributions of this paper are the design
and development of two distributed spanning tree-based data
gathering algorithms for wireless mobile sensor networks and their
exhaustive simulation study to investigate a complex stability vs.
node-network lifetime tradeoff that has been hitherto not explored
in the literature. The topology of the mobile sensor networks
changes dynamically with time due to random movement of the
sensor nodes. Our first data gathering algorithm is stability-oriented
and it is based on the idea of finding a maximum spanning tree on a
network graph whose edge weights are predicted link expiration
times (LET). Referred to as the LET-DG tree, the data gathering
tree has been observed to be more stable in the presence of node
mobility. However, stability-based data gathering coupled with
more leaf nodes has been observed to result in unfair use of certain
nodes (the intermediate nodes spend more energy compared to leaf
nodes), triggering pre-mature node failures eventually leading to
network failure (disconnection of the network of live nodes). As an
alternative, we propose an algorithm to determine a minimum-
distance spanning tree (MST) based data gathering tree that is more
energy-efficient and prolongs the node and network lifetimes, at the
cost frequent tree reconfigurations.

Keywords: Stability, Node Lifetime, Network Lifetime,
Tradeoff, Sensor Networks, Data Gathering Algorithms, Link
Expiration Time, Spanning Trees, Simulations

1. Introduction

A wireless sensor network comprises of several smart sensor
nodes that can gather data about the surrounding environment
as well as process them before propagating to a control
center called the sink, from which the end user typically
operates to administer the network and access the nodes.
Wireless sensor networks have been considered to give
unprecedented levels of access to real-time information about
the physical world, and the benefits of deploying such
networks are widely seen these days. However, in almost all
cases, the sensor networks are statically deployed and
evaluated, wherein the mobility of the sensor nodes, the users
and the monitored phenomenon are all totally ignored.
Wireless mobile sensor networks (WMSNs) are the next
logical evolutionary step for sensor networks in which
mobility needs to be handled in all its forms. A motivating
example could be a network of environmental monitoring
sensors, mounted on vehicles, used to monitor pollution
levels in a city. In this example, all the entities involved (i.e.
the sensors, the users, and the sensed phenomenon as well)
are moving. Likewise, one can conceptualize many such real-
time scenarios to deploy sensor networks in which one or
more of the participating entities move.

Like their static counterparts, the mobile sensor nodes are
likely to be constrained with limited battery charge, memory
and processing capability as well as operate under a limited
transmission range. Two sensor nodes that are outside the
transmission range of each other cannot communicate
directly. The bandwidth of a WMSN is also expected to be as
constrained as that of a static sensor network. Due to all of
the above resource and operating constraints, it will not be a
viable solution to require every sensor node to directly
transmit their data to the sink over a longer distance. Also, if
several signals are transmitted at the same time over a longer
distance, it could lead to lot of interference and collisions.
Thus, there is a need for employing energy-efficient data
gathering algorithms that can effectively combine the data
collected at these sensor nodes and send only the aggregated
data (that is a representative of the entire network) to the
sink.

Tree-based data gathering is considered to be the most
energy-efficient [23] in terms of the number of link
transmissions; however, almost all of the tree-based data
gathering algorithms have been proposed for static sensor
networks without taking the mobility of the sensor nodes into
consideration. In the presence of node mobility, the network
topology changes dynamically with time – leading to
frequent tree reconfigurations. Thus, mobility brings in an
extra dimension of constraint to a WMSN and we need
algorithms that can determine stable long-living data
gathering trees that do not require frequent reconfigurations.
To the best of our knowledge, we have not come across any
work on stable data gathering trees for mobile sensor
networks. The only tree-based data gathering algorithm we
have come across for WMSNs is a shortest path-based
spanning tree algorithm [9] wherein each sensor node is
constrained to have at most a certain number of child nodes.
Based on the results from the literature of mobile ad hoc
networks (e.g., [10][11]), minimum hop shortest paths and
trees in mobile network topologies are quite unstable and
need to be frequently reconfigured. We could not find any
other related work on tree-based data gathering for WMSNs.

Most of the work on data gathering algorithms for
WMSNs is focused around the use of clusters wherein
researchers have tried to extend the classical LEACH (Low
Energy Adaptive Clustering Hierarchy) [3] algorithm for
dynamically changing network topologies. Variants of
LEACH for WMSNs that have been proposed in the
literature include those that take into consideration the
available energy level [12] and the mobility-level [2] of the

197
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

nodes to decide on the choice of cluster heads; stability of the
links between a regular node and its cluster head [4]; as well
as set up a panel of cluster heads to facilitate cluster
reconfiguration in the presence of node mobility [1]. Another
category of research in WMSNs is to employ a mobile data
collecting agent (e.g., [5][6][8]) that goes around the network
in the shortest possible path towards the location from which
the desired data is perceived to originate.

In this research, we propose two distributed spanning tree-
based data gathering algorithms for WMSNs. One of these
data gathering algorithms is based on the notion of link
expiration time (LET) that is predicted according to a model
used for the highly successful Flow-Oriented Routing
Protocol (FORP) [13], a stable unicast routing protocol for
mobile ad hoc networks. The LET-DG tree is a rooted
directed spanning tree determined in a distributed fashion on
a network graph comprising of links whose weights are the
predicted expiration time. The LET-DG tree has been
observed to yield long-living stable trees that exist for a
longer time. As observed in the simulation studies of this
paper, the drawback of using stable trees is that they tend to
overuse certain nodes (especially the intermediate nodes of
the data gathering tree) and lead to their premature failure.
As sensor networks are often deployed with higher density,
one or more node failures do not immediately bring the
network to a halt. The live sensor nodes (the nodes that still
have a positive available energy) maintain the coverage and
connectivity of the underlying network for a longer time.
Nevertheless, the unfairness of node usage persists with
stable data gathering trees. As an alternative, we propose a
second data gathering algorithm that is based on a distributed
implementation of the minimum-distance spanning tree
(MST) algorithm run on a network graph comprising of links
whose weights are the Euclidean distance between the
constituent end nodes. The MST-DG trees have been
observed to yield a much longer node and network lifetimes,
at the cost of frequent tree reconfigurations.

The rest of the paper is organized as follows: Section 2
presents the system model, including the models for the link
expiration time and energy consumption, as well as states the
assumptions. Section 3 describes the proposed algorithm to
determine the LET-DG trees in a distributed fashion. Section
4 presents a variation of the LET-DG algorithm to determine
minimum-distance based MST-DG trees. Section 5 presents
an exhaustive simulation-based comparison of the LET-DG
and MST-DG trees with respect to performance metrics such
as the tree lifetime and the node and network lifetimes (due
to disconnection) along with a distribution of the probability
of node failures. Section 6 concludes the paper. Note that
most of the performance comparison studies in the sensor
network literature stop their simulations with the first node
failure. In this paper, we continue beyond the first node
failure and keep track of the time and distribution of the
subsequent node failures. Throughout the paper, the terms
‘data aggregation’ and ‘data gathering’, ‘edge’ and ‘link’ are
used interchangeably. They mean the same.

2. System Model, Energy Consumption Model
and Assumptions

The system model adopted for the data gathering algorithms
presented in this paper can be summarized as follows:

(i) The underlying network graph considered in the
construction of the communication topology used for
data gathering is a unit disk graph [20] constructed
assuming each sensor node has a fixed transmission
range, R. There exists a link between any two nodes in a
unit disk graph if and only if the physical distance
between the two end nodes of the link is ≤ the
transmission range, R.

(ii) The data gathering algorithms operate in several rounds,
and during each round, data from the sensor nodes are
collected, aggregated and forwarded to the sink through
the data gathering tree (LET-DG or MST-DG tree)
rooted at a leader node.

(iii) The leader node of a data gathering tree remains the
same as long as the tree exists and is randomly chosen by
the sink every time a new tree needs to be determined.

(iv) LET-DG Tree: The predicted link expiration time (LET)
of a link i – j between two nodes i and j, currently at (Xi,
Yi) and (Xj, Yj), and moving with velocities vi and vj in
directions θi and θj (with respect to the positive X-axis)
is computed using the formula proposed in [3]:

22

2222)()()(
),(

ca

bcadRcacdab
jiLET

+
−−+++−

= ...(1)

where a = vi*cosθi – vj*cosθj; b = Xi – Xj; c = vi*sinθi –
vj*sinθj; d = Yi – Yj

(v) MST-DG Tree: The Euclidean distance for a link i – j
between two nodes i and j, currently at (Xi, Yi) and (Xj,

Yj) is given by: 22)()(jiji YYXX −+− ………….. (2)

The energy consumption model used is a first order radio

model [15] that has been also used in several of the well-
known previous work (e.g., [3][16]) in the literature.
According to this model, the energy expended by a radio to
run the transmitter or receiver circuitry is Eelec = 50 nJ/bit and

∈amp= 100 pJ/bit/m2 for the transmitter amplifier. The

radios are turned off when a node wants to avoid receiving
unintended transmissions.
(i) The energy lost in transmitting a k-bit message over a

distance d is: ETX (k, d) = Eelec* k +∈amp*k* d2.

(ii) The energy lost in receiving a k-bit message is given by:
ERX (k) = Eelec* k.

(iii) During a network-wide flooding of a control message
(for example, the tree establishment messages as
described in Sections 3 and 4), each node is assumed to
lose energy corresponding to transmission over the entire
transmission range of the node and to receive the
message from each of its neighbors. In networks of high
density, the sum of the energy lost at a node due to
reception of the broadcast message from all of its
neighbors is often more than the energy lost due to
transmitting the message.

The key assumptions behind the two data gathering

algorithms are as follows:
(i) A sensor node is able to obtain its current location,

velocity and direction of motion (with respect to the
positive X-axis) at any point of time and also includes

198
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

the same as a Location Update Vector (LUV) in the
TREE-CONSTRUCT message broadcast to its
neighborhood at the time of constructing the data
gathering trees (refer Sections 3 and 4). With the
inclusion of a LUV in the TREE-CONSTRUCT
message, we avoid the need to periodically exchange
beacons in the neighborhood.

(ii) For the LET-DG trees, a sensor node maintains a LET-
table comprising of the estimates of the LET values to
each of its neighbor nodes based on the latest TREE-
CONSTRUCT messages received from them. For the
MST-DG trees, a sensor node maintains a Distance-table
comprising of estimates of the Euclidean distance with
the neighbor nodes that sent it the TREE-CONSTRUCT
message.

(iii) Sensor nodes are assumed to be both TDMA (Time
Division Multiple Access) and CDMA (Code Division
Multiple Access)-enabled [14]. Every upstream node
broadcasts a time schedule (for data gathering) to its
immediate downstream nodes; a downstream node
transmits its data to the upstream node according to this
schedule. Such a TDMA-based communication between
every upstream node and its immediate downstream
child nodes can occur in parallel, with each upstream
node using a unique CDMA code.

(iv) We assume the size of the aggregated data packet to be
the same as the size of the individual data packets sent
by the sensor nodes. In other words, aggregation at any
node does not result in increase in the size of the data
packets transmitted from the sensor nodes towards the
sink.

3. Link Expiration Time-based Data
Gathering (LET-DG) Algorithm

The LET-DG algorithm is a distributed implementation of
the maximum spanning tree algorithm [21] on a weighted
network graph with the edge weights modeled as the
predicted link expiration time (LET) of the constituent end
nodes. The objective of a maximum spanning tree algorithm
is to determine a spanning tree such that the sum of the edge
weights is the maximum. Our aim is to determine a
maximum-LET spanning tree for mobile sensor networks
such that the sum of the LETs of the constituent links of the
spanning tree is the maximum. The LET-DG tree is a rooted
maximum-LET spanning tree with the root being the leader
node chosen by the sink (as explained in Section 3.2).

3.1 Initializations of State Information on Data
Gathering Tree-Configuration

Each sensor node locally maintains its best known state
information regarding the data gathering tree-configuration,
containing the following fields: estimated node weight,
upstream node id, tree level, LEADER node id, and sequence
number. The LEADER node id corresponds to the id of the
root node of the data gathering tree. The sequence number
field is the latest known sequence number for a data
gathering tree involving the sensor node. The sequence
number of a data gathering tree is set during the tree
construction process (as explained in Section 3.2). The
upstream node id is the id of the immediate parent node for
the sensor node in the tree. If a sensor node is the LEADER

node (i.e., the root), then its upstream node id is set to
NULL. The estimated node weight is the best known weight
corresponding to the position of the sensor node in the tree.
The tree level field is a measure of the distance of the sensor
node from the root node of the tree. When a new data
gathering tree needs to be configured (either initially at
network startup or when the last known tree is broken), the
values to the fields of the tree-configuration state information
are set as follows, indicated in parenthesis next to the field
name:
� At the LEADER node: estimated node weight (+∞),

upstream node id (NULL), tree level (0), LEADER node
id (self) and sequence number (the latest sequence
number informed by the sink node through the TREE-
INITIATE message for the new tree to be configured).

� At a regular sensor node (i.e., a non-LEADER node):
estimated node weight (-∞), upstream node id (NULL),
tree level (+∞), LEADER node id (NULL) and sequence
number (the sequence number of the last known tree if
one existed; otherwise, set to -1).

In the simulations, the Positive Infinity (+∞) and Negative
Infinity (-∞) will be represented respectively as very large
positive and very small negative values that fall outside the
range of the possible values for the link weight.

3.2 Sink – Selection of the Leader Node

Whenever a sink node fails to receive aggregated data from
the leader node of the LET-DG tree, the sink randomly
chooses a new leader node from the list of available nodes
currently perceived to exist with a positive residual energy,
and sends it a TREE-INITIATE message to start constructing
a tree rooted at the chosen leader node (LEADER). The sink
includes a sequence number (a monotonically increasing
value maintained at the sink, starting from 0) for the tree
construction process in the TREE-INITIATE message, and
the leader node includes it in its tree construction message
(see Section 3.3) to avoid replay errors involving outdated
links. If the leader node is alive (i.e., it has positive available
energy), then it responds back with a TREE-INITIATE-ACK
message acknowledging that it will start the flooding-based
tree discovery. If the TREE-INITIATE-ACK message is not
received within a certain time, the sink considers the chosen
sensor node to be not alive, removes it from the list of
available nodes, and sends the TREE-INITIATE message
(with a higher sequence number, to avoid any parallel tree
construction occurring in the network) to another randomly
chosen sensor node from the list of available nodes. The
above procedure is repeated until the sink successfully finds
a leader node that accepts to initiate the tree construction
process.

3.3 Initiation of the TREE-CONSTRUCT Message

The leader node broadcasts a TREE-CONSTRUCT message
containing a 6-element Tree-Configuration tuple <sequence
number, LEADER node id, sender node id, tree level,
sender’s estimated weight, upstream node id> as well as a
location update vector (LUV) comprising of the 4-element
tuple <X-coordinate, Y-coordinate, Velocity, Direction of
motion - Angle with respect to the positive X-axis> to its
neighbor nodes. The sequence number is the value sent by
the sink to the leader node for the specific tree construction
process. If the sender node is the LEADER, it sets the

199
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

upstream node id to its own id; while the other nodes set the
upstream node id to be the id of the node that they perceive
to be their best choice for the upstream node that can connect
them to the tree. In the TREE-CONSTRUCT message, the
leader node sets the sender’s estimated weight value to +∞
and the value of the tree level field to 0.

3.4 Propagation of the TREE-CONSTRUCT
Message and Tree Establishment

When a node receives the TREE-CONSTRUCT message
with a higher sequence number for the first time, it treats it as
a sign of tree reconfiguration and resets, if it has not already
done so, the different fields of the local tree-configuration
state information to their initial values as listed in Section
3.2. The receiving node then calculates the weight of the link
to the neighbor node from which the message was received.
A TREE-CONSTRUCT message is accepted at a node for a
weight/tree configuration update and rebroadcast (in the
neighborhood of the node) if the following conditions are
met:
(i) The upstream node id is not equal to the id of the node

itself.
(ii) The value of the tree level field in the message is lower

than or equal to the current tree level field value at the
node.

(iii) The estimated weight at the node is lower than the
sender’s estimated weight.

(iv) The estimated weight at the node is lower than the
predicted expiration time of the link (LET, calculated
according to equation 1) on which the TREE-
CONSTRUCT message was received.

If all the above conditions are true, then a node receiving
the TREE-CONSTRUCT message accepts the message to
update its position in the tree. Note that conditions (i) and (ii)
are included to ensure there is no looping. The receiver node
selects the sender node as its upstream node for
joining/connecting to the tree, sets its estimated weight in the
tree as the minimum of the sender node’s estimated weight
for the tree and LET of the link through which the TREE-
CONSTRUCT message was received, and also sets the value
of its tree level local state information to one more than the
value of the tree level field in the TREE-CONSTRUCT
message. If its weight is updated, the receiver node sends a
TREE-JOIN-CHILD message to the upstream sender node
indicating the decision to connect to the tree by becoming its
child node. The receiver node also decides to further
broadcast the TREE-CONSTRUCT message to its neighbors
by replacing the LUV of the sender node with its own LUV,
the sender node id with its own id, the sender’s estimated
weight with its recently updated weight in the tree, the
upstream node id set to the id of the node through which it
has decided to join/connect to the tree, and the tree level
value in the message incremented by one (matching to the
updated value of the tree level local state information at the
node). The LEADER node id and the sequence number fields
are retained as it is in the TREE-CONSTRUCT message.

A node follows the same procedure as explained above
when it receives a TREE-CONSTRUCT message with the
highest known sequence number from any other neighbor
node. In other words, a TREE-CONSTRUCT message
corresponding to the latest broadcast process (decided using
the sequence number) is accepted for an update and re-

broadcast only if it can increase the estimated weight of the
node to connect to the tree without introducing any looping.
The algorithm executes as the TREE-CONSTRUCT message
propagates around the sensor network reaching every sensor
node. As part of this flooding process, each sensor node is
guaranteed to accept the TREE-CONSTRUCT message for a
weight/tree-configuration update at least once and broadcast
the message in its neighborhood. This is because, the initial
estimated weight of a sensor node to join the tree is –∞, and
the leader node starts with a positive ∞ value and the LET
values for the links are always positive. The objective of the
LET-DG algorithm is to connect each node with the largest
possible weight value in the tree – a measure of the estimated
lifetime of the tree.

3.5 Propagation of the TREE-LINK-FAILURE
Message

When an upstream sensor node finds out that a link to one of
its downstream child nodes is broken due to failure to receive
aggregated data packets, the upstream node initiates a TREE-
LINK-FAILURE message and includes in it the sequence
number that was used in the TREE-CONSTRUCT message
corresponding to the most recently used flooding process.
The TREE-LINK-FAILURE message is essentially reverse
broadcast along the edges of the sub tree proceeding towards
the leader node, starting from the upstream node of the
broken link. Similarly, the downstream node detects the link
failure when it fails to receive a TDMA-schedule from its
upstream node for the next round of data aggregation and
initiates a TREE-LINK-FAILURE message to inform about
the tree failure to the nodes in the sub tree rooted at it. If an
intermediate node and/or leaf node does not receive the
TREE-LINK-FAILURE message, it continues to wait for the
aggregated data packets from its perceived downstream
nodes or the TDMA-schedule from its upstream node until it
learns about the tree failure through the broadcast of a new
TREE-CONSTRUCT message with a sequence number
greater than that of the most recently used tree.

4. Minimum-distance Spanning Tree-based
Data Gathering (MST-DG) Algorithm

The MST-DG algorithm is a distributed implementation of
the minimum spanning tree algorithm [21] on a weighted
network graph with the edge weights modeled as the
Euclidean distance between the constituent end nodes. Our
aim is to determine a minimum-distance spanning tree for
wireless mobile sensor networks, such that the sum of the
distances of the constituent links of the spanning tree is the
minimum. Since a sensor node loses more energy to transmit
over a larger distance, we reduce the transmission energy loss
across the whole spanning tree by setting the edge weight to
be the Euclidean distance between the constituent end nodes.
The MST-DG tree is a rooted minimum-distance spanning
tree with the root being the leader node chosen by the sink
(as explained in Section 3.2). The overall procedure to
construct the MST-DG tree is the same as that of the LET-
DG tree, except the differences in the criteria used for
selecting the links that form part of the tree. In this section,
we only highlight these differences in detail and provide a
brief outline of the entire algorithm for the sake of
completeness.

200
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

The constituent fields of the MST data gathering tree-

configuration state information are the same as those
mentioned in Section 3.1. The initial values for the upstream
node id, sequence number, LEADER node id and the tree
level fields at the LEADER node and the regular sensor
nodes are the same as those listed for these nodes in Section
3.1. To begin the process of constructing the MST-DG tree,
the sink node randomly chooses a leader node (as is done in
the case of LET-DG tree, see Section 3.2) and sends it a
unique sequence number, greater than the value used for the
previous tree. The initial estimates of the weight at a node to
connect to the tree are rather different though for the MST-
DG tree. The weight estimate at the LEADER node is 0 and
the estimate at every other node is +∞. The LEADER node
broadcasts a TREE-CONSTRUCT message in its
neighborhood; the message contains the same 6-element
Tree-Configuration tuple and a 4-element LUV as indicated
in Section 3.3. A node only processes TREE-CONSTRUCT
messages that are received with the largest known sequence
number so far or higher. The criteria used at a receiving node
to accept the message for a weight/ tree configuration update
is as detailed below:
(iv) The upstream node id is not equal to the id of the node

itself (same as in Section 3.4)
(v) The value of the tree level field in the message is lower

than or equal to the current tree level field value at the
node (same as in Section 3.4).

(vi) The estimated weight at the node is greater than the
sender’s estimated weight.

(vii) The estimated weight at the node is greater than the
predicted Euclidean distance of the link (calculated
according to equation 2) on which the TREE-
CONSTRUCT message was received.

If all the above four conditions are met, then a receiving

node decides to join or update its connection to the tree by
becoming a child node of the node that sent the TREE-
CONSTRUCT message, and sends to it the TREE-JOIN-
CHILD message. It sets its estimated weight in the tree to be
the maximum of the sender’s estimated weight and the
Euclidean distance of the link on which the TREE-
CONSTRCT message was received and sets its tree level
value to one more than the value in the TREE-CONSTRUCT
message. The receiving node also rebroadcasts the TREE-
CONSTRUCT message in its neighborhood by replacing the
LUV of the sender node with its own LUV, the tree-level
value to one more than the current value in the message, the
sender node id with its own id, the estimated sender’s weight
with its own recently updated weight in the tree, and the
upstream node id with the id of the node to which it sent the
TREE-JOIN-CHILD message. Any subsequently received
TREE-CONSTRUCT message is accepted at a node for an
update and rebroadcast only if it can decrease the estimated
weight of the node in the tree. The rest of the procedure in
the propagation of the TREE-CONSTRUCT message is the
same as that explained in Section 3.4.

Note that every sensor node is expected to update its
estimated weight in the tree at least once because the initial
estimated weight at a sensor node is +∞, and the values for
the sender’s weight in the TREE-CONSTRUCT message
broadcast by the LEADER node is 0, and the Euclidean
distance values are always greater than 0. The objective of

the MST-DG algorithm is to connect each node with the
lowest possible weight value in the tree – a measure of the
energy consumption and fairness of node usage. The
procedure to detect a link failure and propagate the TREE-
LINK-FAILURE messages initiated by the upstream and
downstream nodes of the broken link is the same as
explained in Section 3.5.

5. Simulations

In this section, we present the results from simulation studies
evaluating the performance of the LET-DG and MST-DG
data gathering trees under diverse conditions of network
density and mobility. The simulations were conducted in ns-2
(version 2.31) [18]. The Medium Access Control (MAC)
layer model is the IEEE 802.11 [19] model. The network
dimension is 100m x 100m. The number of nodes in the
network is 100 and the nodes are uniform-randomly
distributed throughout the network. The sink is located at
(50, 50), the center of the network field. The transmission
range per sensor node is varied from 20m to 50m, in
increments of 5m. For brevity, we present only results
obtained for transmission ranges of 25m, 30m (representative
of moderate density, with connectivity of 96% and above)
and 40 m (high density, with 100% connectivity).

Simulations are conducted for two kinds of energy
scenarios: One scenario wherein each node is supplied with
abundant supply of energy (50 J per node) and there are no
node failures due to exhaustion of battery charge; the
simulations in these sufficient energy scenarios are
conducted for 1000 seconds. The second scenario is an
energy-constrained scenario in which each node is supplied
with a limited initial energy (2 J per node) and the
simulations are conducted until the network of live sensor
nodes gets disconnected due to the failures of one or more
nodes. We conduct constant-bit rate data gathering at the rate
of 4 rounds per second (one round for every 0.25 seconds).
The size of the data packet is 2000 bits; the size of the
control messages used in the tree formation phase is assumed
to be 400 bits, which is sufficiently large enough to
accommodate the 6-element Tree-Configuration tuple and the
4-element Location Update Vector (LUV) tuple of the
TREE-CONSTRUCT message, allocated as follows:

• Tree-Configuration tuple: sequence number (int, 2
bytes); LEADER node id (int, 2 bytes); sender node
id (int, 2 bytes); tree level (int, 2 bytes); sender’s
estimated weight (double, 8 bytes); upstream node
id (int, 2 bytes)

• LUV tuple: X-coordinate (double, 8 bytes); Y-
coordinate (double, 8 bytes); Velocity (double, 8
bytes); Direction of motion – Angle with respect to
the positive X-axis (double, 8 bytes)

The node mobility model used is the well-known Random
Waypoint mobility model [17] with the maximum node
velocity being 3 m/s (for low mobility scenarios) and 10 m/s
(for high mobility scenarios). According to this model, each
node chooses a random target location to move with a
velocity uniform-randomly chosen from [0,…, vmax], and
after moving to the chosen destination location, the node
continues to move by randomly choosing another new
location and a new velocity. Each node continues to move
like this, independent of the other nodes and also

201
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

independent of its mobility history, until the end of the
simulation. For a given value of vmax, we also vary the
dynamicity of the network by conducting the simulations
with a variable number of static nodes (out of the 100 nodes)
in the network. The values for the number of static nodes
used are: 0 (all nodes are mobile), 20, 50 and 80.

5.1 Performance Metrics

We generated 200 mobility profiles of the network for a total
duration of 6000 seconds, for every combination of the
maximum node velocity and the number of static nodes.
Every data point in the results presented in Figures 1 through
6 is averaged over these 200 mobility profiles. While the tree
lifetime is measured for both the sufficient energy and
energy-constrained (appropriately prefixed as ‘EC’ next to
the algorithm names) scenarios, the node and network
lifetimes are measured only for the energy-constrained
scenarios.

The performance metrics measured in the simulations are:
(i) Tree Lifetime – the duration for which a data gathering

tree existed, averaged over the entire simulation time
period.

(ii) Node Lifetime – measured as the time of first node
failure due to exhaustion of battery charge.

(iii) Network Lifetime – measured as the time of
disconnection of the network of live sensor nodes (i.e.,
the sensor nodes that have positive available battery
charge).

To obtain the distribution of node failure times, we
counted the frequency of the number of node failures,
ranging from 1 to 100, in each of the 200 mobility
profile files for every combination of transmission range,
maximum node velocity and number of static nodes. The
probability for ‘x’ number of node failures (x from
ranging from 1 to 100 as we have a total of 100 nodes in
our network for all the simulations) for a given
combination of the operating conditions is measured as
the number of mobility profile files that reported x
number of node failures divided by 200, which is the
total number of mobility profiles used for every
combination of maximum node velocity and number of
static nodes. Similarly, we keep track of the time at
which ‘x’ (x ranging from 1 to 100) number of node
failures occurred in each of the 200 mobility profiles for
a given combination of operating conditions and the
values for the time of node failures reported in Figures 5
and 6 is an average of these data collected over all the
mobility profile files. We discuss the results for
distribution of the time and probability of node failures
along with the node and network failure times in Section
5.3.

5.2 Tree Lifetime

We measure the tree lifetime for both the sufficient energy
scenarios (to capture the impact of network dynamicity – i.e.,
variations in node velocity and the number of static nodes)
and the energy-constrained scenarios (to capture the impact
of tree reconfigurations induced by node failures, in addition
to network dynamicity). We say a tree exists topologically if
the physical Euclidean distance between the end nodes of the
links constituting the tree is within the transmission range of

the nodes. In the energy-constrained scenarios, even though a
data gathering tree may topologically exist, the tree would
require reconfiguration (i.e., a new discovery through
network-wide flooding of the TREE-CONSTRUCT
messages) if one or more nodes in the tree fail due to
exhaustion of battery charge. This has an impact on the
lifetime of the data gathering trees observed in the
simulations, and this is what we capture by measuring the
tree lifetime under energy-constrained scenarios. Since a tree
also needs to be reconfigured due to node mobility, the
lifetime of the data gathering trees observed for energy-
constrained scenarios is always less than or equal to that
observed for sufficient energy scenarios. This statement
holds true for both the LET-DG and MST-DG trees.

As the LET-DG trees are inherently more topologically
stable than the MST-DG trees, we observe the difference in
the absolute magnitudes of the tree lifetimes for the sufficient
energy and energy-constrained scenarios to be relatively
larger in the case of the LET-DG trees, especially for
moderate transmission range per node. However, at larger
transmission ranges per node, the LET-DG trees sustain
premature node failures due to continued use of certain
intermediate nodes for stable data gathering; as a result, the
MST-DG trees – with their tendency to more fairly use the
nodes – show a relatively larger difference in the tree lifetime
at sufficient energy scenarios compared to energy-
constrained scenarios.

Figure 1(a). Transmission Range = 25 m

Figure 1(b). Transmission Range = 30 m

Figure 1(c). Transmission Range = 40 m

Figure 1. Average Tree Lifetime
(Low Node Mobility, vmax = 3 m/s)

202
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

For fixed node mobility, the magnitude difference in the

tree lifetime between the sufficient energy and energy-
constrained scenarios for both the data gathering trees
increases with increase in the transmission range per node.
This can be attributed to the increased energy expenditure
incurred at the nodes at larger transmission ranges, leading to
certain premature node failures, as well as to a relatively
longer link lifetime (i.e., the trees tend to topologically exist
for a longer time at larger transmission ranges). At larger
transmission ranges, the constituent end nodes of a link have
more degrees of freedom to move around and still be within
the transmission range of each other for a longer time. On the
other hand, for fixed transmission range per node, the
difference in the tree lifetime between the sufficient and
energy-constrained scenarios decreases with increase in vmax.
This is as expected because the trees have a relatively lower
topological lifetime at high node velocities. For a given vmax
and transmission range per node, the difference in the
magnitude for the lifetime of the data gathering trees for the
sufficient energy and energy-constrained scenarios increases
with increase in the number of static nodes. This can be
attributed to increase in the topological lifetime of the trees
as the number of static nodes increases.

Figure 2(a). Transmission Range = 25 m

Figure 2(b). Transmission Range = 30 m

Figure 2(c). Transmission Range = 40 m

Figure 2. Average Tree Lifetime
(Moderate-High Node Mobility, vmax = 10 m/s)

While comparing the magnitude difference between the
lifetime of the LET-DG and MST-DG trees, we observe that
the difference in magnitude decreases with increase in the
transmission range per node as well as with increase in
network dynamicity (i.e. as more nodes are mobile). For a
given maximum node velocity, the LET-DG trees incur a
much longer lifetime compared to the MST-DG trees when
operated at moderate transmission ranges per node and a
larger proportion of static nodes. In the sufficient energy
scenarios, when operated under moderate transmission ranges
per node, the difference in the tree lifetime can be as large as
25% when all the 100 nodes are mobile and as large as 55-
60% when operated with 80 static and 20 mobile nodes.
Under energy-constrained scenarios, especially at larger node
mobility, as we increase the transmission range per node, the
lifetime of the LET-DG trees converge to that of the MST-
DG trees. This can be attributed to the premature node
failures in the LET-DG trees. For a given maximum node
velocity and transmission range per node, as we increase the
number of static nodes from 0 to 80 (out of a total of 100
nodes) the LET-DG trees incur about 60-90% larger lifetime
and the MST-DG trees incur about 50-60% larger lifetime.

For both the sufficient energy and energy-constrained
scenarios, for each data gathering tree, for a fixed
transmission range per node, as we increase the maximum
node velocity by more than 3 times (i.e., from 3 m/s to 10
m/s), we observe a more or less proportional decrease in the
tree lifetime (i.e., the lifetime of the trees decreases by about
1/3rd). For a fixed maximum node velocity, as we increase the
transmission range per node from 25m to 40m, we observe
more than a proportional increase in the lifetime for both data
gathering trees. This can be attributed to the significantly
high network connectivity (more than a linear increase)
obtained at larger transmission ranges per node.

5.3 Node Lifetime and Network Lifetime

We observe a stability-node/network lifetime tradeoff
between the LET-DG and MST-DG trees. While the LET-
DG trees have been credited for higher stability, they are
unfair with respect to node usage. An intermediate node that
lies on a stable tree tends to get used for a longer time and
ends up spending more energy to receive data from all of its
child nodes, aggregate them and transmit to an upstream
node; whereas, the leaf node of a data gathering tree only
spends energy to transmit its data to the upstream node.

Figure 3(a). Transmission Range = 25 m

203
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

Figure 3(b). Transmission Range = 30 m

Figure 3(c). Transmission Range = 40 m

Figure 3. Average Node Lifetime and Network Lifetime
(Low Node Mobility, vmax = 3 m/s)

With a shallow structure and more leaf nodes, the LET-
DG trees are vulnerable for premature node failures, as
observed in Figures 3 – 6. However, the LET-DG trees have
been observed to significantly offset the early node failures
with a much better network lifetime, attributed to the lower
energy spent to reconfigure the trees and the possibility of the
energy-rich leaf nodes (that were lightly used before and
during the first few node failures) becoming intermediate
nodes in the subsequently reconfigured trees after the initial
set of node failures. The impact of the latter factor could be
especially observed in Figures 5 and 6 wherein we show the
distribution of the node failure times and the probability of
node failures.

Figure 4(a). Transmission Range = 25 m

Figure 4(b). Transmission Range = 30 m

Figure 4(c). Transmission Range = 40 m

Figure 4. Average Node Lifetime and Network Lifetime
(Moderate-High Node Mobility, vmax = 10 m/s)

After the initial set of node failures, attributed to the
excessive use of certain nodes as part of the stable trees, we
observe the LET-DG trees to have a much lower probability
of node failure for much of the network’s lifetime compared
to the MST-DG trees. This could be attributed to the
relatively equal expenditure of energy across all the nodes of
a MST-DG tree. With fewer leaf nodes and relatively more
frequent tree reconfigurations, we expect almost all of the
nodes in a MST-DG tree to lose about the same amount of
energy during the network lifetime. This could be confirmed
by observing a much flatter curve for the probability of node
failure (closer to 1) for a sufficiently larger number of node
failures. From figures 3 and 4, we observe the network
lifetime incurred for the MST-DG trees to be mostly about
15-30% more than that of the node lifetime (and at best, 70%
larger when operated with 80 static nodes at vmax of 10 m/s
and transmission range per node of 40m); whereas, the
network lifetime for the LET-DG trees to be mostly 50-125%
more than that of the node lifetime (and at best, can be as
large as 200% more when operated with 80 static nodes at
vmax of 10 m/s and transmission range per node of 40m).

Figure 5(a). Transmission Range = 30 m, 0 Static Nodes

204
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

Figure 5(b). Transmission Range = 30 m, 80 Static Nodes

Figure 5(c). Transmission Range = 40 m, 0 Static Nodes

Figure 5(d). Transmission Range = 40 m, 80 Static Nodes

Figure 5. Distribution of Node Failure Times and Probability
of Node Failures [vmax = 3 m/s]

Figure 6(a). Transmission Range = 30 m, 0 Static Nodes

Figure 6(b). Transmission Range = 30 m, 80 Static Nodes

Figure 6(c). Transmission Range = 40 m, 0 Static Nodes

Figure 6(d). Transmission Range = 40 m, 80 Static Nodes

Figure 6. Distribution of Node Failure Times and Probability
of Node Failures [vmax = 10 m/s]

The impact of the difference in the node usage policies of

the two data gathering trees can be observed in the difference
in the magnitudes for the node lifetimes (the time of first
node failure) and the network lifetimes (the time by which
the network of live nodes, nodes with positive available
energy, getting disconnected due to failure of peer nodes) for
the two data gathering trees. We observe the MST-DG trees
to incur about 85-150% larger node lifetime than the LET-
DG trees for different combinations of node mobility, # static
nodes and transmission ranges per node. On the other hand,
the network lifetime sustained for the MST-DG trees is
hardly 10-15% more than that of the LET-DG trees and is
only at most 25% larger.

In the case of LET-DG trees, one can observe from
Figures 3 and 4 that for a given level of network dynamicity
(vmax and the number of static nodes), the node lifetime
substantially decreases (as large as by 25%) with increase in
the transmission range per node, whereas the network
lifetime decreases only marginally (by at most 10%) with
increase in the transmission range per node. The decrease in
the node lifetime with increase in transmission range can be
attributed to the increase in the transmission energy loss and
receipt of data from several downstream nodes when
operated at higher transmission range. However, when
operated at a higher transmission range, LET-DG trees
discover more stable routes as well as balance the
distribution of the role of the intermediate nodes and leaf
nodes more evenly, resulting in a significant increase in the
time of node failures, beyond the first node failure. In the
case of MST-DG trees, we observe a very slight decrease in
node lifetime (at most 5%) with increase in transmission
range per node. For the network lifetime, we observe a
decrease of at most 15% at vmax = 3 m/s and an increase of at
most 15% at vmax = 10 m/s. We attribute the better
performance of MST-DG trees with respect to network
lifetime at higher node velocities and transmission range per
node to the increase in the fairness of node usage, and the

205
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

possibility of the role of “intermediate node” to be rotated
among the nodes with regular reconfiguration of the data
gathering tree at high node mobility. The energy-efficiency
associated with lower Euclidean distance of the links also
helps to contain the transmission energy loss and aid in
increasing the network lifetime.

Both the LET-DG and MST-DG trees are observed to
demonstrate larger node and network lifetimes when operated
in networks that have a mix of both static and mobile nodes
vis-à-vis a network comprising of only mobile nodes. For a
given value of vmax and transmission range per node, both the
data gathering trees have been observed to sustain about 20-
25% larger node lifetime when operated in a network that is a
mix of 80 static and 20 mobile nodes compared to operating
in a network of 100 mobile nodes. Under similar conditions,
the network lifetimes incurred with both the data gathering
trees have been observed to be about 50-70% larger. The
MST-DG trees, with their vulnerability to break quickly with
time in a network replete with mobile nodes, are observed to
be the most benefitted with respect to node and network
lifetimes when operated in networks that are a mix of static
and mobile nodes.

6. Conclusions

We have proposed two distributed algorithms to construct (i)
stable predicted link expiration time-based data gathering
(LET-DG) trees and (ii) energy-efficient minimum-distance
spanning tree based data gathering (MST-DG) trees that
incur larger node and network lifetimes. The two algorithms
do not require any periodic beacon exchange in the
neighborhood of the sensor nodes. Performance comparison
studies of the two data gathering trees under diverse
simulation conditions of network dynamicity (variable node
velocity and number of static nodes) and density (variable
transmission range per node) illustrate a complex stability vs.
node-network lifetime tradeoff that has not been explored so
far in the context of data gathering in wireless mobile sensor
networks. The LET-DG trees sustain for a longer time;
however due to repeated use of certain nodes as part of stable
data gathering, the LET-DG trees suffer from pre-mature
node failures. Still, the network lifetime observed with the
LET-DG trees is only at most 25% less than that observed
with the MST-DG trees. The MST-DG trees incur a
significantly longer node lifetime (time of first node failure)
than that of the LET-DG trees by as large as 85-150%;
however, due to frequent tree reconfigurations and larger
depth of the tree, almost all the nodes in a MST-DG tree lose
about the same amount of energy. As a result, even though
the first node failure occurs after a prolonged time, the
subsequent node failures occur more quickly, within a short
span of time, contributing to only about 15-30% additional
network lifetime beyond the time of first node failure.

With respect to the impact of the operating conditions on
the different performance metrics, we observe the lifetime of
the LET-DG trees to be significantly larger than that of the
MST-DG trees at low node mobility and moderate
transmission ranges per node and converge to that of the
MST-DG trees at higher node mobility and large
transmission ranges per node. As we increase the number of
static nodes, we observe the lifetime of LET-DG trees to
increase at a relatively faster rate. The lifetime of both the

LET-DG and MST-DG trees are observed to be lower at
energy-constrained scenarios compared to those incurred at
the sufficient energy scenarios. For each data gathering tree,
the difference in the magnitude of lifetime (in energy-
constrained vs. sufficient energy scenarios) increases with
increase in transmission range per node (for fixed node
mobility) and decreases with increase in node mobility (for a
fixed transmission range per node). For a fixed maximum
node velocity and transmission range, the node and network
lifetimes incurred with both the MST-DG and LET-DG trees
substantially increase with increase in the number of static
nodes.

References

[1] H. K. D. Sarma, A. Kar and R. Mall, “Energy Efficient
and Reliable Routing for Mobile Wireless Sensor
Networks,” Proceedings of the 6th IEEE International
Conference on Distributed Computing in Sensor Systems
Workshops, June 2010.

[2] G. Santhosh Kumar, M. V. Vinu Paul and K. Jacob
Poulose, “Mobility Metric based LEACH-Mobile
Protocol,” Proceedings of the 16th International
Confernece on Advanced Computing and
Communications, pp. 248-253, December 2008.

[3] W. Heinzelman, A. Chandrakasan and H. Balakarishnan,
“Energy-Efficient Communication Protocols for
Wireless Microsensor Networks,” Proceedings of the
Hawaaian International Conference on Systems Science,
January 2000.

[4] S. Deng, J. Li and L. Shen, “Mobility-based Clustering
Protocol for Wireless Sensor Networks with Mobile
Nodes,” IET Wireless Sensor Systems, vol. 1, no. 1, pp.
39-47, 2011.

[5] M. Zhao and Y. Yang, “Bounded Relay Hop Mobile Data
Gathering in Wireless Sensor Networks,” Proceedings of
the 6th IEEE International Conference on Mobile Ad hoc
and Sensor Systems, pp. 373-382, October 2009.

[6] G. Xing, T. Wang, W. Jia and M. Li, “Rendezvous
Design Algorithms for Wireless Sensor Networks with a
Mobile Base Station,” Proceedings of the 9th ACM
International Symposium on Mobile Ad hoc Networking
and Computing, pp. 231-240, 2008.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann
and F. Silva, “Directed Diffusion for Wireless Sensor
Networking,” IEEE/ACM Transactions on Networking,
vol. 11, no. 1, pp. 2-16, February 2003.

[8] W. Wu, H. Beng Lim and K-L. Tan, “Query-driven Data
Collection and Data Forwarding in Intermittently
Connected Mobile Sensor Networks,” Proceedings of
the 7th International Workshop on Data Management for
Sensor Networks, pp. 20-25, 2010.

[9] M. Singh, M. Sethi, N. Lal and S. Poonia, “A Tree Based
Routing Protocol for Mobile Sensor Networks (MSNs),”
International Journal on Computer Science and
Engineering, vol. 2, no. 1S, pp. 55-60, 2010.

[10] N. Meghanathan, “Performance Comparison of
Minimum Hop and Minimum Edge Based Multicast
Routing Under Different Mobility Models for Mobile
Ad Hoc Networks,” International Journal of Wireless
and Mobile Networks, vol. 3, no. 3, pp. 1-14, June 2011.

206
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 4, No. 3, December 2012

[11] N. Meghanathan and A. Farago, “On the Stability of

Paths, Steiner Trees and Connected Dominating Sets in
Mobile Ad Hoc Networks,” Ad Hoc Networks, vol. 6,
no. 5, pp. 744 - 769, July 2008.

[12] T. Banerjee, B. Xie, J. H. Jun, and D. P. Agarwal,
“LIMOC: Enhancing the Lifetime of a Sensor Network
with Mobile Clusterheads,” Proceedings of the Vehicular
Technology Conference Fall, pp. 133-137, 2007.

[13] W. Su and M. Gerla, “IPv6 Flow Handoff in Ad hoc
Wireless Networks using Mobility Prediction,”
Proceedings of the IEEE Global Telecommunications
Conference, pp. 271-275, December 1999.

[14] A. J. Viterbi, “CDMA: Principles of Spread Spectrum
Communication,” 1st edition, Prentice Hall, April 1995.

[15] T. S. Rappaport, “Wireless Communications: Principles
and Practice,” 2nd edition, Prentice Hall, January 2002.

[16] S. Lindsey, C. Raghavendra and K. M. Sivalingam,
“Data Gathering Algorithms in Sensor Networks using
Energy Metrics,” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 9, pp. 924-935,
September 2002.

[17] C. Bettstetter, H. Hartenstein and X. Perez-Costa,
“Stochastic Properties of the Random-Way Point
Mobility Model,” Wireless Networks, pp. 555 – 567,
vol. 10, no. 5, Sept. 2004.

[18] K. Fall and K. Varadhan, ns-2 Notes and
Documentation, The VINT Project at LBL, Xerox
PARC, UCB, and USC/ISI, Retrieved from
http://www.isi.edu/nsnam/ns/, Last accessed: July 15,
2012.

[19] G. Bianchi, “Performance Analysis of the IEEE 802.11
Distributed Coordinated Function,” IEEE Journal on
Selected Areas in Communications, vol. 18, no. 3, pp.
535-547, March 2000.

[20] F. Kuhn, T. Moscibroda and R. Wattenhofer, “Unit Disk
Graph Approximation,” Proceedings of the Workshop
on the Foundations of Mobile Computing (DIALM-
POMC), pp. 17-23, October 2004.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, Introduction to Algorithms, The MIT Press, 3rd
edition, July 2009.

[22] H. Zhang and J. C. Hou, “Maintaining Sensing
Coverage and Connectivity in Large Sensor Networks,”
Wireless Ad hoc and Sensor Networks: An International
Journal, vol. 1, no. 1-2, pp. 89-123, January 2005.

[23] N. Meghanathan, “A Comprehensive Review and
Performance Analysis of Data Gathering Algorithms
for Wireless Sensor Networks,” International Journal of
Interdisciplinary Telecommunications and Networking
(IJITN), vol. 4, no. 2, pp. 1-29, April-June 2012.

