
56
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

An Adaptive FLV Steganography Approach Using

Simulated Annealing

Mohammed J. Bawaneh
1
, Atef Ahmed Obeidat

1
, Majd M.Al-kofahi

1

1Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Salt, Jordan

Abstract: Steganography is not only the art of hiding secret

messages in cover media but also a process of communication and

secure data transfer. Secret messages can be sent over the Internet

with security by using several steganography techniques, but all of

them present challenges in steganalysis. This study proposes a new

secure technique called flash video (FLV) file steganography that

keeps the frame video quality and is difficult to detect. The

technique can hide any type of secret message inside a given FLV

file. The secret message is divided into packets of the same length,

reordered packet, and encrypted bytes before being hidden at the

end of a selected video tag. A simulated annealing (SA) approach to

select tags for steganography is presented to reduce or avoid the

challenge of steganalysis. The proposed method uses SA as

supporting framework to deal with the FLV file as a host for

different types of secret messages. The system determines the

minimum path within the host FLV file by using SA and hides the

message bits inside each location in the minimum computed path.

Analysis of the host FLV file cannot be performed without proper

knowledge on the transformation process. Thus, the existence of the

secret message is difficult to detect by steganalysis. Knowledge is

represented by the key of finding the minimum path in the host

FLV file, key of secret message length, key of additional bytes, key

of message packets reordering and key of message extension.

Experimental results show that the proposed technique satisfies the

main requirements of steganography with regard to visual

appearance, capacity, undetectability, and robustness against

extraction.

Keywords: Steganography, FLV, LCG, Video tags, Simulated

Annealing, Optimization.

1. Introduction

With the development and popularization of the Internet, the

need for the exchange of secret data among users,

particularly in commercial operations, has increased. This

exchange requires that the data be kept confidential during

the transfer process. Many methods, such as steganography,

cryptography, and watermarking, have been developed to

achieve this goal. All of these methods have the same goal of

transferring data safely but in different ways and techniques.

Steganography is an old science; the term was derived from

the Greek word “steganos,” which means covered or secret,

and “graphy,” which means writing or drawing[1]. In simple

words, steganography refers to the process of hiding writing

inside a communication channel. The hidden message may

consist of invisible ink on a paper or copyright information

on digital media.

Different types of cover files, such as text, image, audio, or

video steganography, or manipulation procedures in the

embedding process, such as injection, substitution, distortion,

or generation steganography, can be employed to classify

steganography techniques[2].

This study proposed a robust steganography system that

merges the simulated annealing (SA) algorithm with FLV

file structure. SA is a common random search method that

can be applied to several types of linear and nonlinear

problems [3]. SA bases on the idea of metal heating and

cooling. Thus, the algorithm starts with a high temperature

(worst case) until the minimum temperature (best case) is

reached. Furthermore, SA utilizes a random searching

process for maximization or minimization of the solution.

Thus, SA does not accept changes that will modify the

solution to become poor. The merit of SA is its capability to

manipulate nonlinear models, noisy data, and different

constraints, whereas the demerit of SA is the large number of

options in the random manipulation process that needs to be

processed.

Here, the cover object, where the message is to be hidden, is

a flash video (FLV) file. FLV is a good hosting cover in the

steganography process because of its simple structure,

capability to maintain picture and sound quality, and

popularity on Internet websites.

The method consists of encoding and extracting secret byte

stream algorithms, which will be discussed in the subsequent

sections. In contrast to recent video steganography methods,

the proposed method characterizes by the following features.

First, the method selects substation locations through SA.

Thus, the proposed technique is novel. Second, the method

reaches the maximum capacity for hiding a secret message

with a low modification rate. Although the capacity of the

video used to hide data is high, the proposed method exhibits

satisfactory robustness against modification, and the visual

appearance of the stego FLV file is identical to that of the

cover FLV file without attracting attention.

 Today, some of the digital media hosts give an opportunity

to change the inner content without leaving any evidence in

outer information about modification or injection of data.

FLV file is one of those hosts that grant a chance for

transferring data securely. The main motivation of proposed

approach is the prominence, simplicity of structure and

capability of FLV file to carry a huge amount of data. It

makes the eyes turn to utilize the inner structure as

transporters for secure data. Furthermore, the robustness of

SA parameters or keys against extraction played a role in

motivation area of system. The simplicity of FLV file and

robustness of SA provide us with a well and excellent

framework that has a low modification rate.

The main challenges that encounter the proposed system are

summarized by preventing sniffing, message extraction and

errors or modifications in data transferring channel. To solve

the dilemma of detection, a number of keys were used in

extraction and hiding process make the mission close to

impossibility. The various numbers of keys inspire a problem

for authenticated user about remembering and insertion. One

solution for such problem was to use a master key that will

be utilized to find out the other keys of SA procedure and

57
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

message segmentation. The problem of channel errors or

modifications is out of scope in this work because it is a

network challenge and requires additional techniques for

manipulating it.

The rest of the paper is organized as follows. Section 2

presents related work. Section 3 describes the structure of

FLV file. Section 4 describes the materials and methods. The

experimental result is shown in Section 5. Section 6

concludes this paper and presents the directions for future

work. Finally, Acknowledgment is given in section 7.

2. Literature review

The ancient Greeks utilized steganography to pass secret

messages from one area to another. They employed several

cover hosts, such as the heads of slaves or the wooden part of

wax, to write secret messages. Messages were inscribed on

the heads or the wood and sent to the receiver area [1].

Today, the opportunity for generating new steganography

techniques that host secret messages has unfolded because of

the availability of different types of files, such as images,

audio, videos, and documents. This work focuses on FLV

file steganography. Thus, the investigation presents several

published studies in this field.

Atiea et al. [4] proposed a novel flash video (FLV) file

information-embedding scheme. They used a weak point in

the header information of the host FLV file to evaluate the

robustness of compression process. The secret message, as

they mentioned, could be reconstructed without knowing the

original host FLV file. The method was robust against

lossless and lossy compression.

Cruz et al. [5] presented a study about the design,

implementation, and automatic tools for analyzing FLV files.

They proposed several methods for hiding data inside the

different parts of FLV files and discussed the merits and

demerits of each method. The methods were tested using

auditory–visual test video tag histogram and red–green–blue

(RGB) average analysis.

Bawaneh [6] proposed a random least significant bit (LSB)

to embed secret messages inside RGB color images. The

LSB used a linear congruent generator to determine the

location of random pixel in the cover image. The secret key

was a combination of four parameters (seed, multiplier, non-

common factor, and cycle length). The method utilized red,

green, or blue channel to hide the message bit. The selection

of channel to be used for hiding was based on the

modification rate (MR) for each channel. The minimum

modified rate was employed to embed secret messages. The

random LSB was better than the sequential LSB in terms of

visual appearance and satisfied sufficient security to secret

messages.

Arraziqi and Ferdinandus [7] proposed a new technique to

add compressed data using Huffman coding at the end of

video tags. The data were compressed and distributed evenly

within all video tags. Some data, however, could not be

compressed. The success level of the compression method

reached 80%, and the method could compress up to 57% of

data.

Dasgupta et al. [8] proposed a video steganography

technique based on a hashing function for LSB. Data were

embedded in cover frames using LSB. Eight bits of each byte

from a secret message were divided into 3,3,2 and embedded

into the RGB pixel values of the cover frames. The hashing

function was used to select the insertion position in LSB bits.

The data were analyzed in terms of noise ratio, mean squared

error, and image fidelity. They found an encouraging result

in terms of capacity in test video files.

Alwan [9] proposed a modified or dynamic-based LSB

technique to hide movies in movies. The method used the

least significant pixels from one image (frame) from the

cover movie to hide the most significant pixels of the second

frame in the hidden movie. The data of stego and cover

movies were compared in terms of noise ratio and mean

squared error.

Kaur et al. [10] proposed a technique for video

steganography that was called hash–LSB combined with the

Rivest–Shamir–Adleman algorithm. The proposed method

generated a mask pattern for data bits by using a hashing

function. Secret message bytes were encrypted before hiding

them in cover video frames. The method was secure against

intruders due to different security levels.

Shinde et al. [11] proposed a novel approach to video

steganography that dealt with multiple types of cover format

(MOV, MTS, FLV, and MPEG). Secret messages might be

any type of data, such as text, audio, video, and image.

Encryption, compression, and embedding techniques were

combined in a protection technique. Existing video

steganography techniques work only on Audio Video

Interleaved files and secret messages of text or image type.

Jókay [12] proposed a technique that uses the internal

structure of the MPEG-4 standard GOP encoder to hide a

secret message. Although the method does not assume

decoding of the video stream included in the MP4 file, its

suitability depends on the video encoder used and on the type

of video scenes. Varying numbers of adjacent P and B

frames in the individual GOPs (variable number of video

frames in the MP4 chunk structures) are used to decode the

hidden data. However, the proposed method increases the

size of the cover file and considers only the file with

dynamic GOP length.

In [13], multiple bits of pixels were used to embed secret

information. Thus, multiple-bit steganalysis could not be

easily implemented on the stego video file for the extraction

of secret information. This study included text and video data

hidden in a single video file component (audio and video).

In [14], a method for hiding and extracting secret data using

high-resolution MP4 videos was proposed. Discrete cosine

transform (DCT; 8 × 8 block) was performed on any channel

(e.g., R channel) of the frames, and the secret information

bits were embedded in selected high-order coefficients. Each

frame was processed by 8 × 8 inverse DCT block processing

and combined to obtain an MP4 video with the hidden

message.

In [15], an algorithm for data hiding that utilizes the Round-

LSB technique to hide secret data in a cover video was

proposed. In the algorithm, secret data are hidden in selected

frames of the cover video, which are known as key frames,

to improve system security. Key frames are selected using

two methods. First, statistical features, such as kurtosis,

skewness, standard deviation, and mean, are utilized for key

frame extraction. Second, a fixed threshold is used. Hiding

secret data in the key frames achieved through these methods

58
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

enhances the security of the algorithm by creating increased

confusion for hackers.

In [16], secret data were compressed, encrypted, and

embedded into cover frames in such a manner that 8 bits of

the secret data were divided into 2, 2, 2, and 2 and embedded

into the red, green, and blue pixel values of the cover frames;

the remaining 2 bits were inserted into the subsequent pixel

of the cover frame.

In [17], a new secure technique flash video file (FLV)

steganography that keeps the frame video quality and

statistical undetectability. It looks to hide a secret message of

any type inside a given FLV file. The secret message is

divided into packets of the same length, reordered the packet

bytes and then encrypted the bytes before hiding them at the

end of a random selected video tags. The proposed method

analyses the cover FLV file in order to find out the number

and location of each video tag and then the data of secret

message will be distributed randomly inside the random

video tags through the Linear Congruent Generator (LCG)

random generator. The existence of secret message is hard to

be detected by the intruders or steganalysis due to the correct

pre-knowledge that must be available for the receiver about

the manipulation process, those knowledge are: the packets

number, the packet length, the key of reordering secret

message bytes, the key of video tag selection, the key

agreement of decrypting method, the secret message length

and the message extension.

In [18], a video was used as a cover medium to hide secret

data by using the random encoding/decoding process.

However, the message size was difficult to estimate, and the

message was detectable by using varying sizes of windows

and localized histogram analysis.

In [19], an approach is proposed by combining both video,

audio and text signals into a single architecture and securing

it before the process of transmission. The approach is worked

by embedding the color components of each pixel of the

video signal in a quaternion number. The fourth component

of the quaternion number is taken with either an audio

sample or a textual data. The array of quaternion numbers

corresponding to a video frame is converted to the frequency

domain, using quaternion Fourier transform, and then

multiplied by the quaternion Fourier transform of a digital

image. The advantages of the approach, the first is the

selected digital image which is used as a complicated secret.

The yielded signal is transmitted and when received, both of

video, audio and text signals are extracted using simple

quaternion mathematics applied to the received signal and a

copy of the digital image. The second is increased its

complexity by applying one of the well-known cryptographic

techniques to the samples of the transmitted signal.

In [20], a novel method is introduced for

encrypting/decrypting audio signal using a selected digital

image as a complicated key and cover for audio signal. Each

sample of the audio signal is combined with the values of the

three color components of a pixel fetched from the cover

image yielding a quaternion number. The absolute value of

this quaternion number is then transmitted and when

received, the original value of the audio sample can be

extracted using simple quaternion mathematics.

In addition to increase the level of the complexity, the

approach can be applied one of the well-known

cryptographic techniques (symmetric or asymmetric).

In [21], a novel approach of data security using video

steganography, Huffman code compression, and asymmetric

cryptography was proposed. In the proposed system,

messages are encrypted with the Rivest–Shamir–Adleman

(RSA) algorithm, and encrypted messages are compressed

using the Huffman code algorithm. The compressed

encrypted messages are hidden using the LSB algorithm.

This research brings to light the concept of effectively

combining steganography, compression, and asymmetric

cryptographic algorithm. The preference for RSA over any

other cryptographic algorithm is due to its capability to

provide improved security for large file sizes, thereby

reducing computational complexity.

3. FLV File Structure

FLV files can be divided into two basic parts: FLV header

and stream. FLV header is a record with a length of nine

bytes that stores the FLV file type, version, flow information

(has audio and video), and header length[22]. Each FLV file

consists of a stream of different tags. A tag holds information

about the length of a previous tag, the type of the current tag,

time stamp, stream ID, and data size. The back pointer in

each data tag is constructed from four bytes to determine the

size of a previous tag. Each tag in an FLV file also consists

of two parts: header and data. Tag header determines the

type, length, and other information of a tag. Data area can be

divided into three types according to tag type: audio data,

video data, and metadata. Audio data contain information

about the used audio in a tag, such as format, sampling rate,

length, and audio. Video tag contains data to determine the

frame type of videos, the starting position of tags, tag size,

and coded ID. Metadata tag stores general data about FLV

files, such as the information about storage, duration, audio

data rate, creator or owner, width, player, and creation date.

Fig. 1 shows the structure and components of FLV files.

4. Materials and Methods

FLV files are good hosts for hiding secret messages into

them. However, an assistant algorithm for distribution or

encoding should be utilized to improve the robustness and

performance of hiding and extraction processes against

sniffing or steganalysis. The main goal in this work is to

build an FLV steganography system with simulated

annealing (SA) support. The proposed method constructs the

minimum path of byte positions at the end of video tags

inside cover FLV files by using the SA algorithm. The

selected path stores the bytes of secret messages by

substituting a byte from the messages with a byte inside

FLVs according to corresponding retrieval positions. Several

steps are conducted to achieve the objective of this work.

The main stages of our system can be summarized through

embedding and extraction processes. Each stage has inputs,

processing, and outputs; thus, it can be considered a state

machine, as shown in Table 1. The next subsections show

how embedding and extraction processes utilize multiple

supporting algorithms to fulfil the system target.

59
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure1. Shows the structure and components of FLV files

Table 1. Input, Processing, and Outputs of Embedding and

Extraction processes

Stage Embedding process Extraction process

In
p
u

ts

 FLV file as a host for
message (Cover FLV)

 Secret message to be
embedded

 Key for SA to select
minimum path

 Key for additional bytes

 FLV stego file (Stego-FLV)

 Length and extension of secret
message

 SA Key for path constructing

algorithm

 Length of used bytes in

constructing path

P
ro

ce
ss

in
g

 Find out the positions of
video tags

 Find out the length of
secret message

 Build a list of bytes from
FLV file

 Build the minimum path
from FLV list by using SA

 Split the secret message

bytes

 Embed the message bits

inside the FLV file vector

 Build the path from Stego-
FLV using path constructing

algorithm

 Create the secret file

 Retrieve bytes from the FLV
file

 Combine the bytes with each
other’s to build the secret

message file

O
u

tp
u
ts

 Stego FLV file

 SA key to be used in

extraction process

 Secret message file

4.1 Hidden Process

The task of hidden process is needed for numerous phases to

accomplish their goals. Fig. 2 shows the framework of the

hidden process and how different tasks are distributed among

stages. The process starts by fetching FLV files and secret

messages to determine the number of FLV video tags and

check the size of messages with the number of available tags.

After the checking process, a list of bytes that can be used to

store message bytes is constructed. The SA procedure

determines the suitable vector for embedding the message

bytes. Each byte from a message will replace a byte from an

FLV file. The complete details of the embedding process will

be explained in the next subsections.

4.1.1 Preparing Secret Messages

The system deals with any type of secret messages because it

manipulates data as binary one. The secret messages can be

text, image, PDF, audio, or video. Secret messages contain

important information, such as length and extension, which

should be kept by the system user to utilize it in the

extraction process.

4.1.2 Video Tag Determination

The cover file employed to hide a secret message must be an

FLV file. The system determines the compatibility of a

fetching file by checking the header of an input file. FLV file

header stores information about the type, version, audio, and

video of a file. After proving the file compatibility, the

system sends it to the FLV header unit to identify the

locations of video tags. The FLV unit returns a result that

consists of tag index, starting position, end position, and size

of video tag in a form of linked list to the system, as shown

in Fig.3.

4.1.3 Hosting List Construction

In this stage, the system computes the required bytes for

embedding the secret message by dividing the message

length (ML) over the number of video tags and taking the

ceiling value for result, as shown in Equation (1).

The system allows users to increase the number of bytes to

be employed in selecting the best vector through the SA

procedure; thus, the fetching number of bytes from each

video tag is determined by adding required bytes to

additional ones. The system then determines the number of

video tags to construct the hosting list and return it back to

the next solving unit, as shown in the procedure in Fig. 4.

The structure of the hosting list is shown in Fig. 5.

4.1.4 Minimum Path Construction

After the subprocess of hosting list construction is

completed, the execution is translated to the SA procedure. A

set of parameters is required to complete the task. The

procedure needs two parameter types: essential and

supplementary ones. Essential parameters refer to the basic

ones that are required for the SA algorithm, such as

maximum starting temperature (Max_Temperature),

minimum terminating temperature (Absolute_Temperature),

and cooling rate (CoolingRate). Supplementary ones are

represented by FLV file location, seed key for selecting

locations from an FLV list, and length (L) of secret message.

After the required values are inserted correctly, the SA

procedure initializes linear congruential generator (LCG)

seed to utilize it in building the first vector and constructing

the next vectors that will be used in computation and

Tag
Index

Starting
Position

End
Position

Tag
 Size

Next
Pointer

Figure3: Return Linked List of Video tags

60
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

comparison stages. The SA procedure passes through several

steps to compute the minimum hidden path (best path) and

extraction keys (EKeys), as shown in Fig. 6. First, SA

conducts parameter initialization by setting LCG seed,

distance, and delta distance. Second, SA builds the current

vector, sets it as the best vector, and computes the distance

for it from secret messages. Third, several iterations are

conducted to compute the best path by comparing the current

one with the next computed one according to a fitness

function. Finally, SA constructs and returns the final solution

with future EKey to the embedding unit. EKey keeps the last

values of the LCG seed that is the best solution vector, and it

must be retuned back to the user interface to be utilized in

the decoding or extraction process. Each stage comprises

numerous abstraction levels that will be explained in the

following subsections.

 Index Position Data in Byte

Figure 5. Hosting List Structure

4.1.4.1 Initial Vector Construction

In this stage, the solver takes the hosting list, LCG seed,

hosting file, and ML to build the initial vector. SA path is

represented as a vector of random positions, such that all of

them are taken from the hosting list. Each location consists

of an index, position, and data of selected position, as shown

in Fig. 5. Thus, the constructed vector is considered a subset

from the hosting list. The LCG method is employed for

generating random values to guarantee no redundancy in the

selected position. LCG has a set of preconditions that must

be satisfied to carry out M random numbers (RDs) in the

range of [0, M-1] without any repetition, as will be shown

later on. The construction procedure must keep and return

the last value for LCG seed to avoid the use of the same seed

in another time, which may corrupt or decelerate the

embedding process. Each location in the selected path is

utilized to hide one byte from a secret message; hence, the

path length must be equal to the secret message length. The

LCG function builds a random vector that consists of ML

RDs in the range of [0, ML-1]. The values inside the random

vector represent the index of the selected location from the

hosting list. After constructing the current vector, the

procedure sets it as the best one and returns it with seed to

the SA procedure. The main steps of initial vector

construction from the hosting list using LCG are shown in

Fig. 7.

4.1.4.2 Fitness Function

The distance between the constructed vector and secret

message is computed by comparing each byte with the facing

byte in the vector, as shown in Fig. 8. The total distance for

each path is utilized in the fitness function used to compare

between current and subsequently generated vectors. The

minimum total distance vector is considered the best one

every time. The new distance is subtracted from the old one

(deltaDistance) to compare between next and current vectors.

Thus, if the result if less than zero, then the solver must

replace the current vector with the next vector and SAKey by

OldSeed. Otherwise, the solver generates RD, such that RD ϵ

[0,1]. The solver then compares the value of e
-deltaDistance /

Max_Temperature
with the RD value. If the former is larger than

the latter, then the solver must update the current vector and

key, as shown in Fig. 9.

Input

Parameters

Construct initial current vector

Compute Total Distance

Max_temp.>

absolute_temp.

Construct next vector

Compute Total Distance

Set Best Vector
Current Vector

Max_temp*=Coding Rate

Update current by next

and key by last old seed

Next Vector is Better
Than Current Vector

yes

Return back

best path and

extraction key

No

Yes

No

Figure 6. SA Process Framework

Figure 7. Initial Vector Construction

4.1.4.3 Best Vector Construction

After the input and vector initialization, the SA procedure

sets the initial vector as the best one and keeps the

constructed seed as retrieved EKey. The solver then

constructs new vectors and compares them with the current

one to determine the best one. The selection process is

accomplished through a loop that starts from

Max_Temperature and terminates at Absolute_Temperature.

Several steps are conducted inside the loop. Such steps begin

by creating the next vector and computing the distance for

each location with other neighborhood pixels. Before

creating the new vector, our system must keep the old seed

inside OldSeed to use it as the new EKey if the next vector is

better than the current one. The next vector is constructed in

a way similar to the initial vector construction, as shown in

Fig. 10.

Procedure 2. Initial Vector Construction (IVC)

Step1: CurrentVector = new VectorList

Step2: For i = 0 To ML-1

 Seed =LCG(Hosting_List.Size, Seed)

 CurrentVector.AddNode(Hosting_List[Seed])

 Next For

Step3: Return CurrentVector, Seed

61
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Procedure DC
Step1: Set Distance =0

Step2: For i = 0 To ML-1

 If Message[i].DataByte <> Vector[i].DataByte Then

 Distance= Distance +1

 End If

 Next For

Step3: Return Distance

Figure 8. Distance Computation

Figure 9. Current Vector Replacement

4.1.4.4 Final Solution Construction

The final solution requires a special structure to store the

key, total distance, and best vector. The solver accordingly

builds a composite structure called StegoList that consists of

SAKey, total distance, and a type pointer vector list. After

storing data, the SA procedure returns back the result to the

hidden procedure to complete their tasks according to the

StegoList path, as shown in Fig. 11.

Figure 11. Final Solution Construction

4.1.5 LCG Formula and Conditions

LCG is a common random generator that can generate a

sequence of RDs over the interval of [0, M-1] without any

repetition until completing the cycle M. This random

generator has a set of preconditions that must be satisfied to

complete a task [15]. The conditions are as follows: C and M

have no common factors other than the value 1, (A-1) is

multiple of every prime number that divides M, and (A-1) is

multiple of 4 if M multiple is 4. The general formula of LCG

is shown in Fig. 12.

Figure 12. LCG Formula

4.1.6 FLV Byte Substitution

The method used to hide a secret message in a cover image is

the random substitution technique using SA procedure. This

method bases on the principle of updating one byte from the

secret message by another byte from a hosting or cover file

according to SA-constructed path. The method is fast and

simple. However, the distortion in the host file, where data

are to be embedded, is noticeable when the number of

modified bytes becomes large in the same video tag.

In this work, each byte in the selected position hides a byte

for a secret message. Thus, the secret message of length L

requires L from a cover FLV file. The target position for

hiding secret message bits is selected sequentially from the

solution vector that is returned from the SA procedure.

Position locations are selected sequentially, but secret

message bytes are scattered randomly inside the FLV file.

The substitution process begins by loading the cover file into

a buffer (host) to set or capture bytes from it. The secret

message is then opened as a binary file (FS) to read the data

byte by byte. The process of embedding secret data is

accomplished through a loop that starts from position zero

and terminates at the end of binary stream file. Inside the

loop, the procedure reads the position from the solution path,

reads bytes from the secret message, and replaces it within

the FLV file. The embedding process remains working until

all bytes of the secret message are hidden in the FLV file

buffer, as shown in Fig. 13.

Figure 13. Embedding Process

4.2 Extraction Process

The extractor should be aware of numerous important things

that represent EKeys to retrieve the secret message from a

stego-FLV file. The keys are the number of bytes that are

hidden (length of secret message), SAKey for building

solution path, and extension of secret message (type of

message). Once the earlier keys are available, the extraction

process can accomplish and distribute its tasks, as shown in

Fig. 14.

SAKey, stego-FLV, and ML play important roles in

generating the path where data are hidden. ML represents the

cycle of LCG function, and it is used to compute the required

values of random generator. SAKey is used as seed for LCG

function that generates the vector of SA, where the data are

embedded in a stego-FLV file. The length of solution path

equals the length of secret message L, as mentioned earlier.

Extracted bytes require combination to build the secret

message. The extracted bytes are stored in a binary stream

file with user-predefined extension to construct the secret

message that is hidden. Fig. 15 shows how the extraction

process executes and distributes its phases.

Xi+1= (AXi+C) Mod M, such that

 Xi+1 repsents the next random number

 Xi represents the current random number

 A represents the multiplier

 C represents the non-common factor

 M represents the cycle of generator

Procedure. FSC

Step1: StegoList SV=new StegoList

Step2: SV.SAKey = SAKey

 SV.Solution= CurrentVector

Step3: Return SV

Procedure Embedding Process
Step1:Host = FileStream(FLV, File.Write)

Step2:FS = FileStream(SecretMessage , File.Read)

Step3: SV= BuildSASolutionVector()

Step4:BestPath = SV.Solution.Head

Step5: Counter=1

Step6:While Counter <= FS.Length Do

 W = FS.ReadByte()

 Host.Postion=BestPath.Position

 Host.Write(W)

 BestPath=BestPath.Next

 Counter=Counter+1

 End While

Step7:Host.Save(StegoFile)

62
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure 15. Extraction Process

5. Results and Analysis

The proposed system is tested using a data set of FLV files

and secret messages that have different sizes, as shown in

Table 2. The maximum size of secret message is computed

according to the number of video tags in a cover file. The

maximum number of bytes that can be employed to hide

message bytes is determined by a visual appearance flicker,

which may result from overload bytes at the end of video

tags.

Table 2. Evaluation Data Set

The visual appearance of a stego-FLV file is compared with

that of the cover one. MR, capacity of cover FLV file,

robustness against modification, detecting capability, and

security are the main issues that are taken in evaluating the

proposed system.

Human eyes and magnifying glasses are used to evaluate the

visual appearance of stego-FLV file. The result file is

compared with the original one to determine noise, flicker,

and irregularity in the final form of the file. The files of

secret1, secret2, and secret3 are embedded in cover1 and

cover2 at different sizes for hosting list to test the system.

The visual appearance of the result stego-FLV file at

different cases is similar to that of the cover one without any

noise or flicker. The selection of best path by SA, the

random distribution of bytes within selected video tags, and

the large size of video tags compared with the size of

distributed bytes are the main reasons for reducing or

eliminating the noise and flicker in the result stego-FLV file.

MR is computed by determining the number of modified

bytes, subtracting them from the secret message length and

then dividing the result by the total number of bytes from the

cover FLV file as shown in Equation 2.

Modification Rate (MR) = (Secret Message Length- Modified

Bytes) / Host FLV file Length (2)

The MR value is based on the length of user-selected secret

message, length of the cover FLV file, and type of data to be

hidden; thus, a short message with a long FLV file provides a

low MR. Our system offers a converging MR for different

secret messages in the same cover file, as shown in Table 3.

Variation in MR results from random and different

distributions of bytes within video tags. Fig 16 and Fig. 17

show how the additional bytes provide an improvement to

the MR value, because it increases the size of selection

random list which improves the randomness selection

process and decreases the distance between bytes of secret

message and FLV file bytes.

The maximum capacity of a cover FLV file is determined by

the number of video tags multiplied by the value of 30.

Therefore, the maximum size of secret message that can be

embedded in cover2 without any notification is 5100 bytes,

which represents 4% of the original file.

Information is considered robust when it is embedded inside

a cover file and encounters any modifications. However, the

proposed method is considered a robust one because secret

data are embedded as a part of encoding information for an

FLV file; hence, the secret data are corrupted only when the

host FLV file is damaged.

Table 3. MR for Cover1 and Cover 2 with Different Secret

Messages

Cover Message
MR With Required

Bytes

MR With Additional

Bytes

Cover 1 Secret 1 0.0011689 0.00105436

Cover 1 Secret 2 0.0024789 0.00223661

Cover 1 Secret 3 0.003354 0.00304949

Cover 2 Secret 1 0.0060103 0.00500259

Cover 2 Secret 2 0.0169932 0.01079317

Cover 2 Secret 3 0.1733568 0.14327956

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Secret 1 Secret 2 Secret 3

Cover 1 Cover 1 Cover 1

MR With Requried

MR With Additional

Figure 16. MR for required and additional bytes in Cover1

Secret

Message
Size

Cover

FLV
Size

Number

Of Video

Tags

Max Size

of Secret

Message

Secret 1 782B Cover1 669036B 424 12720B

Secret 2 1667Bs Cover2 129444B 170 5100B

Secret 3 2257 B

Procedure . Extraction Process

Step1:Stego = FileStream(FLV, File.Read)

Step2:FS = FileStream(Message_Path , File.Create)

Step3: SV= BuildSASolutionVector(Stego, Ekey,L)

Step4: BestPath = SV.Solution.Head

Step5: Counter=1

Step6:While Counter <= FS.Length Do

 Begin

 Stego.Postion=BestPath.Position

 W = Stego.ReadByte()

 FS.Write(W)

 BestPath=BestPath.Next

 Counter=Counter+1

 End While

Step7:FS.Save(Message_File)

63
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure 17. MR for required and additional bytes in Cover2

Undetectability, as a feature, is applied in the proposed

method because secret data bytes are distributed randomly

within random video tags according to SA best path. Thus,

the host FLV files are not doubtable or suspicious for

steganalysis.

Complete knowledge about keys is required for attackers to

extract hidden messages. The proposed method is therefore

considered a secure one because different keys are utilized.

The extraction process requires EKey, ML, additional key,

and message extension to extract secret messages. The

previous description indicates that the extraction process is

difficult, complex, and secure.

6. Conclusions and future work

This paper presents a secure video-FLV file stenographic

method for information security. The approach bases on the

idea of distributing a secret message bytes according to the

SA minimum path within a host FLV file. The main goal of

this study is to construct a solution that is robust against

attacks, is effective in generating stego-FLV files, cannot be

predicted through visual appearance, and robust against the

sniffing of secret messages. The proposed method satisfies

most of the security requirements (visual appearance,

security, and undetectability) and exhibits adaptability to

FLV files as hosts to hide secret messages.

In near future will determine the minimum path for hiding

secret messages in FLV files by using intelligent water drop

algorithm and will compare the result with the current

approach. The adaptability of other FLV file tags for hiding

secret data will also be checked.

7. Acknowledgment

This research is supported by Dept. of Information

Technology, Al-huson University College, Al- Balqa

Applied University.

References

[1] Bansod, S. and G. Bhure, Data encryption by image

steganography. Int. J. Inform. Comput. Technol. Int.

Res. Publ. House, Vol. 4, No. p. 453-458, 2014.

[2] Abdelwahab, A.A. and L.A. Hassaan. A discrete

wavelet transform based technique for image data

hiding. in Radio Science Conference, 2008. NRSC

2008. National. IEEE,pp. 1-9, 2008.

[3] Bertsimas, D. and J. Tsitsiklis, Simulated annealing.

Statistical science, Vol. 8, No. 1, p. 10-15, 1993.

[4] Atiea, M.A., Y.B. Mahdy, and A.-R. Hedar, Hiding

Data in FLV Video File, in Advances in Computer

Science, Engineering & Applications. 2012,

Springer. p. 919-925,2012.

[5] Cruz, J.P., N.J. Libatique, and G. Tangonan.

Steganography and data hiding in flash video

(FLV). in TENCON 2012-2012 IEEE Region 10

Conference. IEEE,pp. 1-6, 2012.

[6] Bawaneh, M.J., A Novel Approach for Image

Steganography Using LCG. International Journal of

Computer Applications, Vol. 102, No. 10, 2014.

[7] Arraziqi, D. and F. Ferdinandus. Optimalisasi

Steganografi Pada File Flv Memanfaatkan Metode

Injected At End Of All Video Tag Dengan

Penambahan Kompresi. Seminar Nasional Inovasi

dalam Desain dan Teknologi,(IDeaTech 2015),pp.

2015.

[8] Dasgupta, K., J. Mandal, and P. Dutta, Hash based

least significant bit technique for video

steganography (HLSB). International Journal of

Security, Privacy and Trust Management (IJSPTM),

Vol. 1, No. 2, p. 1-11, 2012.

[9] Alwan, W., Dynamic least significant bit technique

for video steganography. Journal of Kerbala

University, Vol. 11, No. 4, p. 7-16, 2013.

[10] Kaur, M. and A. Kaur, Improved Security

Mechanism of Text in Video using Steganographic

Technique. International Journal, Vol. 2, No. 10,

2014.

[11] Shinde, P. and T.B. Rehman, A Novel Video

Steganography Technique. International Journal,

Vol. 5, No. 12, 2015.

[12] Jókay, M., The design of a steganographic system

based on the internal MP4 file structures.

development, Vol. 17, No. p. 18, 2011.

[13] Singla, N. and R.B. Kaur, A Modified Data Hiding

Approach for Audio and Video Data. International

Journal of Advanced Research in Computer

Science, Vol. 7, No. 6, 2016.

[14] Sangareswari, S. and M.V. Aruna, Application of

image hiding in mp4-video using steganography

technique. International Journal of Electrical,

Computing Engineering and Communication

(IJECC) Vol, Vol. 1, No., 2015.

[15] Danti, A. and G. Manjula, AN INNOVATIVE

APPROACH FOR VIDEO STEGANOGRAPHY

USING STATISTICAL FEATURES IN ROUND-

LSB. International Journal of Engineering Applied

Sciences and Technology, Vol. 1, No. 8, p. 194-199,

2016.

[16] Basha, T.G. and S.H. Zabeen, DESIGN AND

EVOLUTION OF PERFORMANCE OF SPREAD

SPECTRUM TECHNQIUES FOR IMAGE

STEGANOGRAPHY USING MIGLS.

INTERNATIONAL JOURNAL OF INNOVATIVE

RESEARCH IN ELECTRICAL, ELECTRONICS,

INSTRUMENTATION AND CONTROL

ENGINEERING, Vol. 2, No. 9, 2014.

[17] Obeidat, A.A. and M.J. Bawaneh, A novel FLV

steganography approach using secret message

segmentation and packets reordering. Int. J. Res.

Comput. Applic. Robot, Vol. 4, No. p. 44-54, 2016.

64
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

[18] YADAV, V., A SECURE VIDEO

STEGANOGRAPHY USING RANDOM

ENCODING/DECODING. International Journal of

Advance Engineering and Research Development,

Vol. 2, No. 7, p. 273-281, 2015.

[19] ElSharkawy, M.I., Integrating and Securing Video,

Audio and Text Using Quaternion Fourier

Transform. International Journal of Communication

Networks and Information Security (IJCNIS), Vol.

9, No. 3, 2017.

[20] Khalil, M., Quaternion-based encryption/decryption

of audio signal using digital image as a variable

key. International Journal of Communication

Networks and Information Security (IJCNIS), Vol.

9, No. 2, p. 216, 2017.

[21] Apau, R., J. Hayfron-Acquah, and F. Twum,

Enhancing Data Security using Video

Steganography, RSA and Huffman Code

Algorithms with LSB Insertion. International

Journal of Computer Applications, Vol. 143, No. 4,

2016.

[22] Adobe. ADOBE FLASH VIDEO FILE FORMAT

SPECIFICATION, VERSION 10.1 2010 [cited

2017; Available from: Published August 2010,

(http://download.macromedia.com/f4v/video_file_f

ormat_spec_v10_1.pdf). 2010.

http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf
http://download.macromedia.com/f4v/video_file_format_spec_v10_1.pdf

65
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure2: Hidden Process Frame Work

Procedure . HCP

Step1: Set Fetching_Bytes= Required_Bytes+ Additional_Bytes

Step2: Set Temp_Tags_Pointer= Head_Tag_Video

Step3: Set Tags_Counter= GetVideoTagsNumber()

Step4: For i = 1 To Tags_Counter

 Set Cover.Position=Temp_Tags_Pointer.Position

 Set Cover.Position= Cover.Position - Fetching_Bytes

 For j=1 To Fetching_Bytes

 P= Cover.Position

 Byte W =Cover.ReadByte()

 Hosting_List.Add(P, W)

 Next For

 Next For

Step5: Hosting_List
Figure 4. Hosting List Construction Procedure(HCP)

66
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 1, April 2018

Figure 10. Best Vector Construction

Figure 14. Extraction Process Framework

Procedure BVC

While Max_Temperature > Absolute_Temperature Do

 OldSeed = Seed

 NextVector= GetNextSAVector()

 NewDistance = GetTotalDistance(NextVector)

 Fitness= e
-deltaDistance / Max_Temperature

 deltaDistance = NewDistance - Distance

 If deltaDistance < 0 Then

 CurrentVector=NextVector
 Distance = deltaDistance + Distance

 SA key = OldSeed

 ElseIf Distance ≥ 0 and Fitness> RD Then

 CurrentVector=NextVector
 Distance = deltaDistance + Distance

 SA key = OldSeed

 End IF
 Max_Temperature *= Cooling_Rate

End While

