
279
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

A New Multi-threaded and Interleaving Approach to

Enhance String Matching for Intrusion Detection

Systems

Ali Shatnawi, Bushra AlHajouj and Moath Jarrah

Department of Computer Engineering, College of Computer and Information Technology

Jordan University of Science and Technology, Irbid, 22110, Jordan

Abstract: String matching algorithms are computationally

intensive operations in computer science. The algorithms find the

occurrences of one or more strings patterns in a larger string or text.

String matching algorithms are important for network security,

biomedical applications, Web search, and social networks.

Nowadays, the high network speeds and large storage capacity put a

high requirement on string matching methods to perform the task in

a short time. Traditionally, Aho-Corasick algorithm, which is used

to find the string matches, is executed sequentially. In this paper, a

new multi-threaded and interleaving approach of Aho-Corasick

using graphics processing units (GPUs) is designed and

implemented to achieve high-speed string matching. Compute

Unified Device Architecture (CUDA) programming language is

used to implement the proposed parallel version. Experimental

results show that our approach achieves more than 5X speedup over

the sequential and other parallel implementations. Hence, a wide

range of applications can benefit from our solution to perform string

matching faster than ever before.

 Keywords: network intrusion detection systems, string

matching, pattern matching, Aho-Corasick, GPUs/CUDA.

1. Introduction

String matching algorithms form an important class of

algorithms in computer science. They are critical in

applications such as network intrusion detection systems [1,

2, 3, 4], information retrieval [5], text editing applications

[6], searching for records with state values in database

systems [7, 8], spell-checkers [9], DNA sequence mapping

[10], virus scanning [11], IP (Internet Protocol) lookup [12],

and protocol parsers [13]. Applications use either exact or

approximate string matching. In exact string matching, the

exact pattern must be found in the text; whereas approximate

string matching allows some maximum number of

mismatches, and this number of allowed mismatches

depends on the nature of application. In network intrusion

detection systems (IDS), patterns of known network attacks

are saved in a database (signatures) [14]. The IDS examines

the network traffic streams to find if any pattern match is

detected which alarms for an attack or a threat. Spell-

checkers and DNA sequence mapping are examples of

applications that use approximate string matching [15, 16].

Hence, string matching is an important problem for many

applications, and researchers are still proposing new

algorithms and mechanisms to enhance its speed and

accuracy [17].

The algorithms of string matching can be classified into three

classes depending on the number of patterns that are used.

The classes are: single pattern algorithms, finite set of pattern

algorithms, and infinite number of pattern algorithms. This

paper investigates the Aho-Corasick (AC) string matching

algorithm which belongs to the class of finite set of pattern

algorithms. The AC algorithm is a string searching algorithm

invented by Alfred V. Aho and Margaret J. Corasick [18]. It

is an extension of the Knuth-Morris-Pratt algorithm for a set

of patterns to match all patterns simultaneously.

The AC algorithm has several advantages over others

because of the following reasons. First, it finds a match for

multiple patterns by examining every text character only

once during the searching process [18]. Hence, AC has a

linear time complexity. It is a linear function of the sum of

the lengths of patterns in the construction of finite-state

pattern-matching machine stage; and the total length of the

text strings to be processed in the matching stage [19].

Second, AC algorithm is not affected by the number of

patterns, the size of the shortest, or the size of longest pattern

in a group [20]. The major disadvantage of the AC algorithm

is the high memory cost needed to store the transition rules

of the underlying deterministic finite automaton [21].

However, modern computers come with large enough

memory that can easily fulfill the algorithm memory cost.

The era of big data has put a challenge on string matching

where the execution time can reach to an undesirable value.

In order to overcome this challenge, graphics processing

units (GPU) can be used to speedup intensive computational

tasks. A typical GPU has hundreds or thousands of processor

cores with specialized pipelines for graphics processing.

Nowadays, because of the highly parallel capabilities of

GPUs, the notion of General Purpose Graphics Processing

Units (GPGPU) is emerging. GPUs are used in literature to

improve the execution of many different applications such as

medical application [22], image segmentation [23], and

video processing [24]. The authors in [25] have utilized the

computational power of GPUs to generate very large random

numbers per second. Because a GPU has massively parallel

computing capabilities, and since AC algorithm is scalable,

GPUs can be efficiently utilized to perform the string

matching problem. In this paper, we have designed and

implemented a GPU-based AC algorithm using CUDA. The

proposed approach achieved a speedup of more than 5X over

other existing methods.

This paper is organized as follows. The first section provides

a background and related work. The second section discusses

the Aho Corasick (AC) algorithm and its deterministic finite

state pattern matching machine (tire). A subsection is

dedicated to discuss our GPU approach of the AC

implementation. The evaluation and experimental results are

discussed in the third section. Finally, we conclude our

paper.

280
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

2. Background and Related work

Many important applications require that the execution time

of string matching to be short. Hence, GPU accelerators are

used to achieve this goal. The researchers in [26] developed

a GPU based parallel implementation of the AC algorithm.

Their solution carefully places and caches the input data and

the pattern in the on-chip shared memories of the GPU. They

implemented the AC algorithm as a Deterministic Finite

Automata (DFA). The DFA represents all possible states of

the machine along with information about the acceptable

state transitions of the system. Input data is copied to the

global memory and the state transition table is copied to the

texture memory. The effective texture memory latencies for

the random access of the state transition table are reduced

because of the texture cache. Their approach suffers from the

problem that patterns occurring at the boundaries of adjacent

segments cannot be detected, as depicted in Figure 1. To

overcome this problem, our approach uses overlapping as

shown in Figure 2. This solution uses portions of the state

machine on different threads. In [10], Tumeo and Villa used

a technique that is similar to the one used in [26] with

addition of GPU and message passing (MP) features. In this

technique, they divided the state machine among a number of

GPUs and then compared the performance with a system that

uses a cluster of homogeneous processors.

Figure 1. The boundary problem: pattern NU cannot be

identified by Thread 3 or 4

Figure 2. Thread overlapping: thread 4 can identify NU

Zha and Sahni in [27] have developed a GPU-based

implementation of Aho-Corasick algorithm. They used DFA

and divided the output array into blocks. A lockstep

execution was used by all threads that are working on a

single block. This is possible because there is no divergence

in the execution paths of these threads. Each thread processes

16 characters at a time and writes the output results to the

device memory. Asynchronous data transfer allows

overlapping the time spent in data movements while the

GPUs perform the computing tasks assigned to them.

Kouzinopoulos, Assael, and Pyrgiotis in [28], presented a

parallel implementation of the Aho Corasick and Wu Manber

algorithms using NVIDIA CUDA and MPI on a hybrid GPU

cluster. Their implementation was evaluated using a

biological sequence dataset. A preprocessing phase is done

on the host CPU and then the input string is split into chunks,

where each chunk is assigned to a different node of the

cluster. The input string and all preprocessing arrays in each

node are copied to the global memory of the device. The

input string is subsequently partitioned into chunks and then

assigned to GPU threads. The utilization of the global

memory bandwidth is increased by starting threads to read

16-byte words instead of a single character for each memory

transaction. The researchers in [29] developed a GPU-based

Parallel Failureless Aho-Corasick (PFAC) where they

removed the failure function. Each byte in the input data is

assigned to an individual thread that looks up into the state

machine to find any match starting from that byte. A thread

terminates when it does not find any valid next state

transition. A MapReduce approach to speedup Myers

algorithm for pattern matching was proposed in [30]. The

researchers have integrated the MapReduce method in

signature-based IDS. Oke and Vaidya in [31] used CPU and

GPU to speed up Network Intrusion Detection Systems.

They introduced an optimized PFAC that reduces the

memory usage, time, and cost compared to the serial Aho-

Corasick algorithm on a CPU. To reduce the latency of the

global memory, they store the data in the texture memory. In

addition, because the GPU cannot access data directly from a

pageable memory of the CPU, CUDA must first allocate a

temporary space for a page-locked memory and then copy

the host data to the pinned memory array. A new model for

IDS in a cloud environment has been proposed by the

authors of [32]. The goal is to identify and detect attacks that

occur in cloud computing environments. The work in [33]

developed a CPU/GPU heterogeneous method for PFAC

algorithm that was used for computational molecular biology

applications. It uses a shared memory to store the transition

table and to provide a segment of communication for the

threads of each streaming processor. Hence, if a thread finds

its next transition, it informs the next thread of the

appropriate value so that the next thread continues its search.

A thread terminates when that value is the same as its own

starting position or when no valid next state transition is

found. Other string matching methods and algorithms were

proposed in the literature such as the work in [34], where the

Smith-Waterman (SW) algorithm was implemented using a

CPU/GPU heterogeneous system. The score matrix cells are

computed in the coprocessor core. Then, the score matrix is

divided into sub-matrices and each sub-matrix is stored in a

memory space. A thread iteratively computes all cells that

belong to a sub-matrix. The authors of [35] proposed a

matching algorithm that works at the bit level to detect any

anomaly in the network traffic. In addition, index-based

searching algorithms such as suffix arrays and suffix trees

are considered in research using GPUs to achieve higher

performance [36]. For example, the suffix arrays technique

outperforms the suffix trees technique, because it requires

less number of memory accesses [37]. In [38] and [39],

researchers used GPUs to produce seed generation for the

FM-index. The search process is assigned to multiple

processing units where each portion of the FM-index is

allocated to one processing unit based on the input string size

and the number of available GPUs.

3. Preliminary

3.1 Basic Aho-Corasick

The Aho Corasick algorithm constructs a deterministic finite

state pattern matching machine . An extra link between

nodes is created to allow fast transitions between failed

string matches without the need for backtracking. For

example, a search for the word "door" in the tire that does

281
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

not contain it, but contains the word "down", would fail at

the node prefixed by the word "do". Given that the input

string with size is 0 1 n-1, the finite set of

patterns with size is 0 1 k-1 , and each pattern

is a string with size , that is, 0 1 m-1. The

alphabet size is denoted as ∑ and the size of all patterns is

. The problem is to find all occurrences of a pattern in the

input string.

The AC algorithm consists of two phases: a preprocessing

phase and a searching phase. The preprocessing phase

constructs a trie data structure of pattern with a goto

function, a failure function, and an output function. The goto

function allows for the transition to the next state. The state

in the trie is labeled as a prefix of a specific pattern

. denotes the level of the path between the

initial state and the state . Hence, is also a prefix of

one of the patterns. Each pattern has a state where is

equal to the pattern and the state is marked as a terminal

state. An exact match is true when the search phase arrives at

a terminal state. The failure function is used to visit a

previous state when the goto function cannot find a transition

from the current state to a next (child) state. The goto

function is built during the construction of the trie. The trie is

a depth-first traverse structure and uses a character of the

patterns from the pattern set P for extension. For each

extended process, the outgoing transitions are created in each

state. The failure link is built for each state q when the

longest suffix of is also a prefix of any pattern in P. The

start state usually is a state. Figure 3 shows an example

with 10 states from 0 to 9. The goto function g is responsible

for mapping a pair of state and input symbol to another state

or to the failure function . The edge from state 0 to state 1

indicates that , and the absence of an edge

between states indicates that (0, Tc) ; which means

that each input symbol that is not b or e is a fail. At every

machine cycle, one input symbol is processed by the

machine. When the goto function reports a fail, the failure

function f is consulted to map a state into another state.

Specific states are designated as output states when patterns

have been found and the output function formalized by using

a set of patterns for each state. If is a current state and is

the current character, then the pattern matching machine

works as follows:

1. If , then a goto transition is done. It

enters state and puts the next character of as the

current input character. If is not empty

and the operating cycle is not complete, the

machine sends the set with a position of

the current input character.

2. If , the machine checks the failure

function f to make a failure transition. If ,

the cycle is repeated and is considered as the

current state. The character is marked as the

current character.

 The initial phase of the pattern matching machine is to set

the current state of the machine as the start state, and the first

character of the input text string as the current input

character. Each character of the input text string is processed

by making one operating cycle.

Figure 3. The pattern matching machine: goto function

Figure 4. The pattern matching machine: failure function

Figure 5. The pattern matching machine: output function

Algorithm 1 shows the behavior of a pattern matching

machine, where each iteration of the for-loop represents one

cycle. The goto, failure and output functions are constructed

in two phases (lines 5-8). In the first phase, the states and the

goto function are constructed using a goto graph that consists

of one vertex representing state 0. In the second phase the

failure function is computed, while the output function spans

both the first and second phases. The patterns expand the

graph by adding directed edges starting from the initial state,

and adding new vertices to the graph. Each path in the graph

represents a pattern. A pattern is added to the output function

of the state at which the path terminates (line 10, 11).

The failure function is constructed from the goto function.

The depth of each state is defined as the length of the

shortest path from the start state to that state. For example, in

Figure 3 the depth of start state is 0, state 3 is 1, and so on.

The failure function is computed for all states sequentially

starting from all states with depth 1, then all states with depth

2. Computing the failure function starts by assigning

, where is any state of depth 1. After computing f

for all states of depth less than , it is computed for the states

of depth d. The states of depth can be determined from the

non-fail values of the goto function of the states of depth

. The failure function for the states of depth is

calculated as follows:

1. If , for all , and is a state of depth

, stop.

a. If , where is a state of depth

, set .

b. Execute for loop () until

.

c. Set .

282
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Algorithm 1 Pattern matching machine

input: S, g, f, out /* A text string 0 1 n-1 is an

input character for the pattern matching machine M, g is the

goto function, f is the failure function, and out is the output

function */

output: Locations at which patterns occur in .

begin

 for

 do

 while

 do

 end

 if then

 end

 end

end

As an example, in Figure 3, ; since the

depth of these states is 1. To compute of depth equal to

2, set ; and because

. Then, which has a depth of 2, set

; and , because .

This procedure is repeated for all states to obtain the failure

function as shown in Figure 4. While computing the failure

function, the output function gets updated. When ,

the outputs of state is merged with the output of state '.

For example, in Figure 3, . Hence, the output set

of state 2 which is {“ab”} is combined with the output set of

state 5 producing a new output set which is {“ab”, “dab”}.

Figure 5 shows the output function.

3.2 The proposed GPU Methodology

We have designed a highly optimized implementation of

parallel AC (PAC) pattern matching kernel using CUDA. By

using various optimization strategies, we were able to

increase the throughput of the string matching machine and

overcome the boundary problem without the need for

overlapping. In addition, the lifetime of threads is much

shorter than the time needed for the straightforward

implementation. Our implementation consists of two phases.

The first phase is a preprocessing phase that is done by the

CPU. The second phase is a stretching phase that is deployed

on the GPU device. Algorithm 2 summarizes the CPU phase

which is a data preparation step.

The function buildmatchingmachine (line 5) in Algorithm 2

reads the input patterns and constructs the goto, failure, and

output functions. Algorithms 3 and 4 show the steps of

generating the aforementioned three functions. Experimental

results show that a chunk size of gives the best

performance (Algorithm 2, line 6). All data are exported to

the GPU memory along with the results of execution of the

function buildmatchingmachine (Algorithm 2, line 10-15).

Three arrays are computed that represent the following: a

two dimensional array () which represents the goto

function, a one dimensional array () that represents

the failure function, and a one dimensional array () that

represents the output function. In order to transfer the three

arrays and the input string to the GPU, GPU buffers are

allocated using the CUDA-specific APIs cudaMalloc() and

cudaMemcpy(). After that, the second phase starts by

executing a parallel search on the GPU. One kernel thread

searches for each keyword/pattern.

Algorithm 2 CPU version

input: file, keywords/* An input string (file), set of patterns */

output: string buffer (), goto table (), failure table (),

out table ().

begin

 for

 do
 enter(Keyword)

 for

 do

 end

 end

end

Algorithm 3 goto function construction.

input: /* Set of patterns 0 1 k-1 */

output: partially computation of the output function

begin

 for

 do

 enter()

 end

 for all s such that do

 end

 procedure enter():

 state  0

 j 1

 while do

 end

 for

 do

 end

 1 2 m

 end

283
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

Algorithm 4 failure function construction

input: the output from Algorithm 2 (g function and output

function).

output: failure function (f) and output function (output).

begin

 if do

 then

 end

 while

 do

 if il

 then

 while

 do

 end

 end

 end

end

Algorithm 5 GPU version

input: , , , /*An

input chunk (), the arrays (),()(

), pattern size () */

output: Locations at which patterns occur in str.

begin

 for

 do

 for do

 if

 then

 break

 end

 else if 0

 then

 end

 end

 end

end

3.3 Thread assignment methodology

In order to improve the string matching performance, we

have parallelized the searching phase of the algorithm by

allocating each character of an input stream to a CUDA

thread. This is feasible because the used GPU hardware is

powerful and the lifetime of the threads in our

implementation is very short.

The threads searching tasks are as follows. Figure 6 shows

the AC state machine that identifies the patterns

“ab”, “abcd”, “dab”, and “aed”. If the input stream contains

the substring “dabcd”, the thread " n" is assigned to the input

 and traverses the AC state machine. When processing the

input “dab”, thread " n" reaches state 5 which indicates that

the pattern “dab” is found. Since there is no valid transition

for c in state 5, thread n terminates at state 5. Similarly,

thread n+1 is assigned to the input . When processing the

input “abcd”, thread n+1 reaches state 9 which indicates that

the pattern “abcd” is found. As shown in Figure 6, all threads

(0 1 n+2 n+3 n+5) terminate early at state 0

because there are no valid transitions for x, b, and c in state

0. Thread n+4 terminates early at state 3 without a valid

transition for x in state 3.

Figure 6. Parallel AC algorithm allocation

3.4 Optimization of Data Transfers

The GPU threads cannot directly access the data in a

pageable host memory. Hence, it must first allocate a pinned

host array to copy the data. Subsequently, the data is

transferred from the pinned array to the device memory as

shown in Figure 7 (left). In order to improve data transfers,

our implementation allocates the host arrays into a pinned

memory to avoid the cost of the transfer between pageable

and pinned host arrays, as shown in Figure 7. Using pinned

data transfers allows us to exploit the high computing

capability of the GPU device using the overlap feature. In

order to interleave the data transfers and the computations on

the device, we used the CUDA asynchronous function

cudaMemcpyAsync() instead of the synchronous function

cudaMemcpy().

Figure 7. Pageable and pinned data transfers

3.5 Threads in a Group

Our implementation divides the input data into chunks of size
10

 characters. A choice of having
10

 threads to

process each chunk in parallel seems to be preferable so that

each thread works on one character. However, our

experimental results and other research efforts such as in [39]

show that a high performance is achieved by setting the

284
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

number of threads on each block to be 256 threads. This is

because managing many threads could result in performance

degradation in terms of the overall execution time. The

threads of a block are identified using a two-dimensional

structure. The GPU architecture is a 32 bit-wide SIMT

(Single Instruction Multiple Threads). Hence, the number of

threads in a block must be a multiple of 32. These threads are

organized as 32 in the and 8 in the . Thus,

the number of blocks is calculated by dividing the chunk size

by 256.

3.6 Kernel Overlaps Execution

The concurrent transfer and execution capability of the GPU

drive us to dispatch more than one kernel concurrently in

order to achieve high performance improvement. Hence, two

kernels are dispatched and overlapped in execution for

multiple input chunks as shown in Figure 8. Both kernels

perform asynchronous data transfer and execution for each

chunk on the GPU.

Figure 8. Synchronous and asynchronous kernel execution

The main disadvantage of the AC is the high memory cost. It

requires a large space to store the tables when the patterns and

the input text contain human-readable alphabets, numbers,

and signs. In order to overcome this problem, we have

converted the patterns and the input data into hexadecimal

representation.

The main disadvantage of the AC is the high memory cost. It

requires a large space to store the tables when the patterns and

the input text contain human-readable alphabets, numbers,

and signs. In order to overcome this problem, we have

converted the patterns and the input data into Hexadecimal

representation.

4. Evaluation and Experimental Results

This section compares and evaluates the performance of our

proposed method against the traditional sequential CPU

approach and the hybrid parallel implementation of the Aho-

Corasick proposed in [28]. All experiments were performed

on a system with the following specifications:

 Host machine: Intel Core2 i5-4460 CPU, four CPU

cores at 3.20GHz, 6 MB Cache, main memory is 8 GB

DDR3.

 GPU device machine: 5.2 NVIDIA GeForce GTX 960

1279 MHz with 1024 CUDA cores and 2GB GDDR5

memory.

 Patterns: Snort v2.9 [40].

Different trace files were used in the experiments as in the

work by Aldwairi and Alansari [41]. The files contain

different numbers of intrusions. Wireshark Network Protocol

Analyzer is used to extract packet traces as in [42]. We used a

C++ code to extract the contents from the database of Snort

rules.

CUDA version 7.5 was used to implement the parallel version

of the algorithm. The following two metrics were used to

evaluate the performance of the three methods:

1- Execution time: This represents the kernel searching

process. The preprocessing phase is excluded from the

execution time because it is computed only once. The three

implementations share the I/O operations and hence it is also

excluded from the execution time.

2- Speedup: This represents the amount of improvement of

one method compared to another. The speedup of our parallel

implementation is compared with the CPU version using:

Figure 9 shows the execution time of the three methods which

are: our GPU implementation, the CPU serial, and the parallel

hybrid version. The experiments were performed using the

good (av, gd, hm, lc), the bad (1, 22) and the ugly (51, 58)

traces. Ugly traces are the worst-case scenario in terms of

intrusions while the good traces are the best or the norm

scenario. The results show that our implementation

outperforms the other two methods for all trace files. The

hybrid parallel implementation of [28] has the worst

performance. The reason for that is that intrusion detection

systems (IDSs) work on small input data especially those that

process the data on-the-fly as they receive data (stream

traffic). In order to prove that, we have varied the data chunk

size and calculated the execution time as shown in Figure 10.

In the figure, the hybrid method outperforms the CPU method

when the size becomes more than . However, it was

shown that it is slower than our method in all cases. Figure 11

shows the speedup for the GPU implementations over the

CPU and hybrid implementations using the six trace files.

The speedup is always greater than one.

5. Conclusion

String matching problem is an important step for the success

of many applications in areas such as network intrusion

detection systems, information retrieval, text editing

applications, searching in database systems, spell-checkers,

DNA sequence mapping, virus scanning, IP (Internet

Protocol), and protocol parsers. This paper has addressed the

Aho-Corasick (AC) string matching algorithm. The AC

algorithm has several advantages over other algorithms in

terms of the time complexity. Also, it finds the match for

multiple patterns with one pass over the text. In addition, the

AC algorithm is not affected by the number of patterns, the

size of the shortest, or the size of longest pattern in a group.

The aforementioned advantages make the AC a preferred

choice by different applications. The paper has proposed a

new GPU-based parallel implementation to improve the

execution time of the AC algorithm. GPU hardware has been

used to execute the parallel implementation and compared

against the sequential CPU.

In addition, a comparison of the proposed GPU method

against other parallel implementations is given. We have used

285
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

patterns from snort and network traffic in conducting our

experiments. Experimental results show that our method

outperformed the CPU and the other parallel

implementations. We have achieved a speedup of up to 5X.

Finally, we have presented different optimization steps in

order to enhance the execution time of the AC algorithm.

References

[1] Y.H. Kim, W.H. Park, “A study on cyber threat

prediction based on intrusion detection event for apt

attack detection,“ Multimedia Tools and Applications,

Vol. 71, No. 2, pp. 685-698, 2014.

[2] R.T. Liu, N.F. Huang, C.H. Chen, C.N. Kao, “A fast

string-matching algorithm for network processor-based

intrusion detection system,” ACM Transactions on

Embedded Computing Systems, Vol. 3, No. 3, pp. 614-

633, 2004.

[3] N. Wattanapongsakorn, C. Charnsripinyo, “Web-based

monitoring approach for network-based intrusion

detection and prevention,” Multimedia Tools and

Applications, Vol. 74, No. 16, pp. 639-641, 2015.

[4] C. Yin, L. Ma, L. Feng, “Towards accurate intrusion

detection based on improved clonal selection algorithm,”

Multimedia Tools and Applications, Vol. 76, No. 19, pp.

19397-19410, 2017.

[5] J. Zobel, P. Dart, “Phonetic string matching: Lessons

from information retrieval,” The Nineteenth annual

international ACM SIGIR conference on Research and

Development in Information Retrieval, Switzerland, pp.

166-172, 1996.

[6] K. Kukich, “Techniques for automatically correcting

words in text,” ACM Computing Surveys, Vol. 24, No.

4, pp. 377-439, 1992.

[7] W.T. Balke, U. GÜntzer, “Multi-objective query

processing for database systems,” The Thirtieth

International Conference on Very Large Data Bases

VLDB Endowment, Canada, pp. 936-947, 2004.

[8] D. Brown, P. Beckingham, “System and methods for

searching and matching databases,” US Patent no.

6,026,398, 2000.

[9] P.O. Kristensson, S. Zhai, “Relaxing stylus typing

precision by geometric pattern matching,” The Tenth

International Conference on Intelligent User Interfaces,

USA, pp. 151-158, 2005.

[10] A. Tumeo, O. Villa, “Accelerating DNA analysis

applications on GPU clusters,“ The Eighth IEEE

Symposium on Application Specific Processors, USA,

pp. 71-76, 2010.

[11] X. Zhou, B. Xu, Y. Qi, J. Li, “MRSI: A fast pattern

matching algorithm for anti-virus applications,” The

Seventh International Conference on Networking,

Mexico, pp. 256-261, 2008.

[12] B. Lampson, V. Srinivasan, G. Varghese, “IP lookups

using multiway and multicolumn search,” IEEE/ACM

Transactions on Networking (TON), Vol. 7, No. 3, pp.

324-334, 1999.

[13] R.D. Graham, P.C. Johnson, “Finite state machine

parsing for internet protocols: faster than you think,”

Security and Privacy Workshops, USA, pp. 185-190,

2014.

[14] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-

Fernández, E. Vázquez, “Anomaly-based network

intrusion detection: techniques, systems and challenges,”

computers & security, Vol. 28, No. 1, pp. 18-28, 2009.

[15] L.L. Cheng, D.W. Cheung, S.M. Yiu, “Approximate

string matching in DNA sequences,” The Eighth

International Conference on Database Systems for

Advanced Applications, Japan, pp. 303-310, 2003.

[16] D. Gusfield, “Algorithms on strings, trees and sequences:

computer science and computational biology,”

Cambridge University press, 1997.

[17] L. Zhao, K. Zhou, J. Guo, S. Wang, T. Lin, “A universal

string matching approach to screen content coding,”

IEEE Transactions on Multimedia, Vol. 20, No. 4, pp.

796-809, 2018.

[18] A.V. Aho, M.J. Corasick, “Efficient string matching: an

aid to bibliographic search,” Communications of the

ACM, Vol. 18, No. 6, pp. 333-340, 1975.

[19] S. Vidanagamachchi, S. Dewasurendra, R.G. Ragel,

“Hardware software co-design of the Aho-Corasick

algorithm: Scalable for protein identification?,” The

Eighth IEEE International Conference on Industrial and

Information Systems, Sri Lanka, pp. 321-325, 2013.

[20] M. Norton, “Optimizing pattern matching for intrusion

detection,” Sourcefire, Inc., Columbia, 2004.

[21] V. Bhardwaj, V. Garg, “A comparative study of Wu-

Manber string matching algorithm and its variations,”

International Journal of Computer Applications, Vol.

132, No. 17, pp. 34-38, 2015.

[22] Y. Jararweh, M. Jarrah, S. Hariri, “Exploiting GPUs for

compute-intensive medical applications,” International

Conference on Multimedia Computing and Systems,

Morocco, pp. 29-34, 2012.

[23] M. Shehab, M. Al-Ayyoub, Y. Jararweh, M. Jarrah,

“Accelerating compute-intensive image segmentation

algorithms using GPUs,” The Journal of

Supercomputing, Vol. 73, No. 5, pp. 1929-1951, 2017.

[24] L. Deligiannidis, H.R. Arabnia, “Parallel video

processing techniques for surveillance applications,”

International Conference on Computational Science and

Computational Intelligence, USA, pp. 183-189, 2014.

[25] M.A.S. Al-khatib, A.H. Lone, “Acoustic lightweight

pseudo random number generator based on

cryptographically secure LFSR,” International journal of

Communication Networks and Information Security,

Vol. 10, No. 2, pp. 38-45, 2018.

[26] N.P. Tran, M. Lee, S. Hong, J. Choi, “High throughput

parallel implementation of Aho-Corasick algorithm on a

286
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

GPU,” Parallel and Distributed Processing Symposium

Workshops & PhD Forum, USA,pp. 1807-1816, 2013.

[27] X. Zha, S. Sahni, “Multipattern string matching on a

GPU,” IEEE Symposium on Computers and

Communications, Greece, pp. 277-282, 2011.

[28] C.S. Kouzinopoulos, J.A.M. Assael, T.K. Pyrgiotis, K.G.

Margaritis, “A hybrid parallel implementation of the

Aho-Corasick and Wu-Manber algorithms using

NVIDIA CUDA and MPI evaluated on a biological

sequence database,” arXiv:1407.2889, 2014.

[29] C.H. Lin, C.H. Liu, L.S Chien, S.C. Chang,

“Accelerating pattern matching using a novel parallel

algorithm on GPUs,” IEEE Transactions on Computers

Vol. 62, No. 10, pp. 1906-1916, 2013.

[30] M. Aldwairi, A.M. Abu-Dalo, M. Jarrah, “Pattern

matching of signature-based IDS using Myers algorithm

under MapReduce framework,” EURASIP Journal on

Information Security, Vol. 2017, No. 1, pp. 9-19, 2017.

[31] P.S. Oke, A.S. Vaidya, “Optimization of parallel Aho-

Corasick multipattern matching algorithm on GPU,”

Optimization, Vol. 3, No. 6, pp. 5191-5200, 2015.

[32] A. Ahmad, N.B. Idris, M.N. Kama, “CloudIDS: Cloud

intrusion detection model inspired by Dendritic cell

mechanism,” International journal of Communication

Networks and Information Security, Vol. 9, No. 1, pp.

67-75, 2017.

[33] S. Soroushnia, M. Daneshtalab, J. Plosila, T. Pahikkala,

P. Liljeberg, “High performance pattern matching on

heterogeneous platform,” Journal of Integrative

Bioinformatics, Vol. 11, No. 3, pp. 88-98, 2014.

[34] L. Ligowski, W. Rudnicki, “An efficient implementation

of Smith Waterman algorithm on GPU using CUDA for

massively parallel scanning of sequence databases,”

IEEE International Symposium on Parallel & Distributed

Processing, Italy, pp.1-8, 2009.

[35] M. Zeeshan, H. Javed, S. Ullah, “Discrete R-contiguous

bit matching mechanism appropriateness for anomaly

detection in wireless sensor networks,” International

journal of Communication Networks and Information

Security, Vol. 9, No. 2, pp. 157-163, 2017.

[36] G. Encarnação, N. Sebastião, N. Roma, “Advantages and

GPU implementation of high performance indexed DNA

search based on suffix arrays,” International Conference

on High Performance Computing and Simulation,

Turkey, pp. 49-55, 2011.

[37] Y. Liu, B. Schmidt, “Evaluation of GPU-based seed

generation for computational genomics using Burrows-

Wheeler transform,” Parallel and Distributed Processing

Symposium Workshops & PhD Forum, China, pp. 684-

690, 2012.

[38] D. Zhang, Y. Zhang, S. Liu, X. Huang, “Parallelization

of FM-index,” The Tenth IEEE International Conference

on High Performance Computing and Communications,

China, pp. 169-173, 2008.

[39] S. Cook, “CUDA programming: a developer's guide to

parallel computing with GPUs,” Newnes, 2012.

[40] Snort, “Snort rules”, Available in URL

http://www.snort.org, May, 2018.

[41] M. Aldwairi, D. Alansari, “Exscind: Fast pattern

matching for intrusion detection using exclusion and

inclusion filters,” The Seventh International Conference

on Next Generation Web Services Practices (NWeSP),

Spain, pp. 24-30, 2011.

[42] Wireshark, “Wireshark v1.4.4,” Available in URL

http://www.wireshark.org, May, 2018.

http://www.snort.org/
http://www.wireshark.org/

287
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018

