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Abstract: String matching algorithms are computationally 

intensive operations in computer science. The algorithms find the 

occurrences of one or more strings patterns in a larger string or text. 

String matching algorithms are important for network security, 

biomedical applications, Web search, and social networks. 

Nowadays, the high network speeds and large storage capacity put a 

high requirement on string matching methods to perform the task in 

a short time. Traditionally, Aho-Corasick algorithm, which is used 

to find the string matches, is executed sequentially. In this paper, a 

new multi-threaded and interleaving approach of Aho-Corasick 

using graphics processing units (GPUs) is designed and 

implemented to achieve high-speed string matching. Compute 

Unified Device Architecture (CUDA) programming language is 

used to implement the proposed parallel version. Experimental 

results show that our approach achieves more than 5X speedup over 

the sequential and other parallel implementations. Hence, a wide 

range of applications can benefit from our solution to perform string 

matching faster than ever before. 

 Keywords: network intrusion detection systems, string 

matching, pattern matching, Aho-Corasick, GPUs/CUDA. 

1. Introduction 
 

String matching algorithms form an important class of 

algorithms in computer science. They are critical in 

applications such as network intrusion detection systems [1, 

2, 3, 4], information retrieval [5], text editing applications 

[6], searching for records with state values in database 

systems [7, 8], spell-checkers [9], DNA sequence mapping 

[10], virus scanning [11], IP (Internet Protocol) lookup [12], 

and protocol parsers [13]. Applications use either exact or 

approximate string matching. In exact string matching, the 

exact pattern must be found in the text; whereas approximate 

string matching allows some maximum number of 

mismatches, and this number of allowed mismatches 

depends on the nature of application. In network intrusion 

detection systems (IDS), patterns of known network attacks 

are saved in a database (signatures) [14]. The IDS examines 

the network traffic streams to find if any pattern match is 

detected which alarms for an attack or a threat. Spell-

checkers and DNA sequence mapping are examples of 

applications that use approximate string matching [15, 16]. 

Hence, string matching is an important problem for many 

applications, and researchers are still proposing new 

algorithms and mechanisms to enhance its speed and 

accuracy [17].  

The algorithms of string matching can be classified into three 

classes depending on the number of patterns that are used. 

The classes are: single pattern algorithms, finite set of pattern 

algorithms, and infinite number of pattern algorithms. This 

paper investigates the Aho-Corasick (AC) string matching 

algorithm which belongs to the class of finite set of pattern 

algorithms. The AC algorithm is a string searching algorithm 

invented by Alfred V. Aho and Margaret J. Corasick [18]. It 

is an extension of the Knuth-Morris-Pratt algorithm for a set 

of patterns to match all patterns simultaneously. 

The AC algorithm has several advantages over others 

because of the following reasons. First, it finds a match for 

multiple patterns by examining every text character only 

once during the searching process [18]. Hence, AC has a 

linear time complexity. It is a linear function of the sum of 

the lengths of patterns in the construction of finite-state 

pattern-matching machine stage; and the total length of the 

text strings to be processed in the matching stage [19]. 

Second, AC algorithm is not affected by the number of 

patterns, the size of the shortest, or the size of longest pattern 

in a group [20]. The major disadvantage of the AC algorithm 

is the high memory cost needed to store the transition rules 

of the underlying deterministic finite automaton [21]. 

However, modern computers come with large enough 

memory that can easily fulfill the algorithm memory cost. 

The era of big data has put a challenge on string matching 

where the execution time can reach to an undesirable value. 

In order to overcome this challenge, graphics processing 

units (GPU) can be used to speedup intensive computational 

tasks. A typical GPU has hundreds or thousands of processor 

cores with specialized pipelines for graphics processing. 

Nowadays, because of the highly parallel capabilities of 

GPUs, the notion of General Purpose Graphics Processing 

Units (GPGPU) is emerging. GPUs are used in literature to 

improve the execution of many different applications such as 

medical application [22], image segmentation [23], and 

video processing [24]. The authors in [25] have utilized the 

computational power of GPUs to generate very large random 

numbers per second. Because a GPU has massively parallel 

computing capabilities, and since AC algorithm is scalable, 

GPUs can be efficiently utilized to perform the string 

matching problem. In this paper, we have designed and 

implemented a GPU-based AC algorithm using CUDA. The 

proposed approach achieved a speedup of more than 5X over 

other existing methods. 

This paper is organized as follows. The first section provides 

a background and related work. The second section discusses 

the Aho Corasick (AC) algorithm and its deterministic finite 

state pattern matching machine (tire). A subsection is 

dedicated to discuss our GPU approach of the AC 

implementation. The evaluation and experimental results are 

discussed in the third section. Finally, we conclude our 

paper.  
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2. Background and Related work 
 

Many important applications require that the execution time 

of string matching to be short. Hence, GPU accelerators are 

used to achieve this goal. The researchers in [26] developed 

a GPU based parallel implementation of the AC algorithm. 

Their solution carefully places and caches the input data and 

the pattern in the on-chip shared memories of the GPU. They 

implemented the AC algorithm as a Deterministic Finite 

Automata (DFA). The DFA represents all possible states of 

the machine along with information about the acceptable 

state transitions of the system. Input data is copied to the 

global memory and the state transition table is copied to the 

texture memory. The effective texture memory latencies for 

the random access of the state transition table are reduced 

because of the texture cache. Their approach suffers from the 

problem that patterns occurring at the boundaries of adjacent 

segments cannot be detected, as depicted in Figure 1. To 

overcome this problem, our approach uses overlapping as 

shown in Figure 2. This solution uses portions of the state 

machine on different threads. In [10], Tumeo and Villa used 

a technique that is similar to the one used in [26] with 

addition of GPU and message passing (MP) features. In this 

technique, they divided the state machine among a number of 

GPUs and then compared the performance with a system that 

uses a cluster of homogeneous processors.                                                                

 
Figure 1. The boundary problem: pattern NU cannot be 

identified by Thread 3 or 4 
 

 
Figure 2. Thread overlapping: thread 4 can identify NU 

Zha and Sahni in [27] have developed a GPU-based 

implementation of Aho-Corasick algorithm. They used DFA 

and divided the output array into blocks. A lockstep 

execution was used by all threads that are working on a 

single block. This is possible because there is no divergence 

in the execution paths of these threads. Each thread processes 

16 characters at a time and writes the output results to the 

device memory. Asynchronous data transfer allows 

overlapping the time spent in data movements while the 

GPUs perform the computing tasks assigned to them. 

Kouzinopoulos, Assael, and Pyrgiotis in [28], presented a 

parallel implementation of the Aho Corasick and Wu Manber 

algorithms using NVIDIA CUDA and MPI on a hybrid GPU 

cluster. Their implementation was evaluated using a 

biological sequence dataset. A preprocessing phase is done 

on the host CPU and then the input string is split into chunks, 

where each chunk is assigned to a different node of the 

cluster. The input string and all preprocessing arrays in each 

node are copied to the global memory of the device. The 

input string is subsequently partitioned into chunks and then 

assigned to GPU threads. The utilization of the global 

memory bandwidth is increased by starting threads to read 

16-byte words instead of a single character for each memory 

transaction. The researchers in [29] developed a GPU-based 

Parallel Failureless Aho-Corasick (PFAC) where they 

removed the failure function. Each byte in the input data is 

assigned to an individual thread that looks up into the state 

machine to find any match starting from that byte. A thread 

terminates when it does not find any valid next state 

transition. A MapReduce approach to speedup Myers 

algorithm for pattern matching was proposed in [30]. The 

researchers have integrated the MapReduce method in 

signature-based IDS. Oke and Vaidya in [31] used CPU and 

GPU to speed up Network Intrusion Detection Systems. 

They introduced an optimized PFAC that reduces the 

memory usage, time, and cost compared to the serial Aho-

Corasick algorithm on a CPU. To reduce the latency of the 

global memory, they store the data in the texture memory. In 

addition, because the GPU cannot access data directly from a 

pageable memory of the CPU, CUDA must first allocate a 

temporary space for a page-locked memory and then copy 

the host data to the pinned memory array. A new model for 

IDS in a cloud environment has been proposed by the 

authors of [32]. The goal is to identify and detect attacks that 

occur in cloud computing environments. The work in [33] 

developed a CPU/GPU heterogeneous method for PFAC 

algorithm that was used for computational molecular biology 

applications. It uses a shared memory to store the transition 

table and to provide a segment of communication for the 

threads of each streaming processor. Hence, if a thread finds 

its next transition, it informs the next thread of the 

appropriate value so that the next thread continues its search. 

A thread terminates when that value is the same as its own 

starting position or when no valid next state transition is 

found. Other string matching methods and algorithms were 

proposed in the literature such as the work in [34], where the 

Smith-Waterman (SW) algorithm was implemented using a 

CPU/GPU heterogeneous system. The score matrix cells are 

computed in the coprocessor core. Then, the score matrix is 

divided into sub-matrices and each sub-matrix is stored in a 

memory space. A thread iteratively computes all cells that 

belong to a sub-matrix. The authors of [35] proposed a 

matching algorithm that works at the bit level to detect any 

anomaly in the network traffic. In addition, index-based 

searching algorithms such as suffix arrays and suffix trees 

are considered in research using GPUs to achieve higher 

performance [36]. For example, the suffix arrays technique 

outperforms the suffix trees technique, because it requires 

less number of memory accesses [37]. In [38] and [39], 

researchers used GPUs to produce seed generation for the 

FM-index. The search process is assigned to multiple 

processing units where each portion of the FM-index is 

allocated to one processing unit based on the input string size 

and the number of available GPUs.  
 

3. Preliminary 
 

3.1  Basic Aho-Corasick 
 

The Aho Corasick algorithm constructs a deterministic finite 

state pattern matching machine . An extra link between 

nodes is created to allow fast transitions between failed 

string matches without the need for backtracking. For 

example, a search for the word "door" in the tire that does 



281 
International Journal of Communication Networks and Information Security (IJCNIS)                                        Vol. 10, No. 2, August 2018 

 

 

 

not contain it, but contains the word "down", would fail at 

the node prefixed by the word "do". Given that the input 

string with size  is 0 1 n-1, the finite set of 

patterns with size  is 0 1 k-1 , and each pattern 

is a string with size , that is,  0 1 m-1. The 

alphabet size is denoted as ∑ and the size of all patterns is 

. The problem is to find all occurrences of a pattern in the 

input string. 

The AC algorithm consists of two phases: a preprocessing 

phase and a searching phase. The preprocessing phase 

constructs a trie data structure of pattern with a goto 

function, a failure function, and an output function. The goto 

function allows for the transition to the next state. The state 

in the trie is labeled as a prefix of a specific pattern 

.   denotes the level of the path between the 

initial state and the state . Hence,  is also a prefix of 

one of the patterns. Each pattern has a state  where  is 

equal to the pattern  and the state is marked as a terminal 

state. An exact match is true when the search phase arrives at 

a terminal state. The failure function is used to visit a 

previous state when the goto function cannot find a transition 

from the current state to a next (child) state. The goto 

function is built during the construction of the trie. The trie is 

a depth-first traverse structure and uses a character of the 

patterns from the pattern set P for extension. For each 

extended process, the outgoing transitions are created in each 

state. The failure link is built for each state q when the 

longest suffix of  is also a prefix of any pattern in P. The 

start state usually is a  state. Figure 3 shows an example 

with 10 states from 0 to 9. The goto function g is responsible 

for mapping a pair of state and input symbol to another state 

or to the failure function . The edge from state 0 to state 1 

indicates that  , and the absence of an edge 

between states indicates that (0, Tc) ; which means 

that each input symbol that is not b or e is a fail. At every 

machine cycle, one input symbol is processed by the 

machine. When the goto function reports a fail, the failure 

function f is consulted to map a state into another state. 

Specific states are designated as output states when patterns 

have been found and the output function formalized by using 

a set of patterns for each state. If  is a current state and  is 

the current character, then the pattern matching machine 

works as follows: 
 

1. If  , then a goto transition is done. It 

enters state  and puts the next character of  as the 

current input character. If  is not empty 

and the operating cycle is not complete, the 

machine sends the set  with a position of 

the current input character. 

2. If , the machine checks the failure 

function f to make a failure transition. If , 

the cycle is repeated and  is considered as the 

current state. The character  is marked as the 

current character. 
 

 The initial phase of the pattern matching machine is to set 

the current state of the machine as the start state, and the first 

character of the input text string as the current input 

character. Each character of the input text string is processed 

by making one operating cycle. 

 
Figure 3. The pattern matching machine: goto function 

 
Figure 4. The pattern matching machine: failure function 

 
Figure 5. The pattern matching machine: output function 

Algorithm 1 shows the behavior of a pattern matching 

machine, where each iteration of the for-loop represents one 

cycle. The goto, failure and output functions are constructed 

in two phases (lines 5-8). In the first phase, the states and the 

goto function are constructed using a goto graph that consists 

of one vertex representing state 0. In the second phase the 

failure function is computed, while the output function spans 

both the first and second phases. The patterns expand the 

graph by adding directed edges starting from the initial state, 

and adding new vertices to the graph. Each path in the graph 

represents a pattern. A pattern is added to the output function 

of the state at which the path terminates (line 10, 11). 

The failure function is constructed from the goto function. 

The depth of each state is defined as the length of the 

shortest path from the start state to that state. For example, in 

Figure 3 the depth of start state is 0, state 3 is 1, and so on. 

The failure function is computed for all states sequentially 

starting from all states with depth 1, then all states with depth 

2. Computing the failure function starts by assigning 

, where  is any state of depth 1. After computing f 

for all states of depth less than , it is computed for the states 

of depth d. The states of depth  can be determined from the 

non-fail values of the goto function of the states of depth  

. The failure function for the states of depth  is 

calculated as follows: 
 

1. If , for all , and is a state of depth 

, stop. 

a. If , where  is a state of depth 

,  set  . 

b.   Execute for loop ( ) until 

. 

c.  Set  . 
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Algorithm 1 Pattern matching machine 

input: S, g, f, out /* A text string 0 1 n-1  is an 

input character for the pattern matching machine M, g is the 

goto function, f is the failure function, and out is the output 

function */ 

output: Locations at which patterns occur in . 

begin 

       

      for  

      do 

           while   

               do  

                       

               end 

              

                if   then 

                       
               end 

      end 

end  
 

As an example, in Figure 3, ; since the 

depth of these states is 1. To compute  of depth equal to 

2, set ; and  because 

. Then,  which has a depth of 2, set 

; and , because . 

This procedure is repeated for all states to obtain the failure 

function as shown in Figure 4. While computing the failure 

function, the output function gets updated. When , 

the outputs of state  is merged with the output of state '. 

For example, in     Figure 3, . Hence, the output set 

of state 2 which is {“ab”} is combined with the output set of 

state 5 producing a new output set which is {“ab”, “dab”}. 

Figure 5 shows the output function. 
 

3.2 The proposed GPU Methodology  
 

We have designed a highly optimized implementation of 

parallel AC (PAC) pattern matching kernel using CUDA. By 

using various optimization strategies, we were able to 

increase the throughput of the string matching machine and 

overcome the boundary problem without the need for 

overlapping. In addition, the lifetime of threads is much 

shorter than the time needed for the straightforward 

implementation. Our implementation consists of two phases. 

The first phase is a preprocessing phase that is done by the 

CPU. The second phase is a stretching phase that is deployed 

on the GPU device. Algorithm 2 summarizes the CPU phase 

which is a data preparation step.  

The function buildmatchingmachine (line 5) in Algorithm 2 

reads the input patterns and constructs the goto, failure, and 

output functions. Algorithms 3 and 4 show the steps of 

generating the aforementioned three functions. Experimental 

results show that a chunk size of  gives the best 

performance (Algorithm 2, line 6). All data are exported to 

the GPU memory along with the results of execution of the 

function buildmatchingmachine (Algorithm 2, line 10-15). 

Three arrays are computed that represent the following: a 

two dimensional array ( ) which represents the goto 

function, a one dimensional array ( ) that represents  

 

 

the failure function, and a one dimensional array ( ) that 

represents the output function. In order to transfer the three 

arrays and the input string to the GPU, GPU buffers are 

allocated using the CUDA-specific APIs cudaMalloc() and 

cudaMemcpy(). After that, the second phase starts by 

executing a parallel search on the GPU. One kernel thread 

searches for each keyword/pattern. 
 

Algorithm 2 CPU version 

input: file, keywords/* An input string (file), set of patterns */ 

output: string buffer ( ), goto table ( ), failure table ( ), 

out table ( ). 

begin 

     for   

       do  
          enter(Keyword ) 

            
            
            
           for   

            do  
                 

                  
                 

                  

                              

 

            end 

       end 

end 
 

 

Algorithm 3 goto function construction. 

input:  /* Set of patterns 0 1 k-1 */ 

output: partially computation of the output function 

begin 

    
   for   

       do  

           enter( ) 

       end 

       for all s such that  do 

             

       end 

       procedure enter( ): 

       state  0 

        j 1 

        while  do 

             

             

        end 

        for   

         do 

                
             

 
         end 

          1 2 m  

 end 
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Algorithm 4 failure function construction 

input: the output from Algorithm 2 (g function and output 

function). 

output: failure function (f) and output function (output). 

begin 

         
        if  do 

            then 

                      
                      

            end 

          while   

            do 
                   
                   

                  if  il  

                       then 

                               
                               

                              while   

                                do 
                                      
                                      

 
                                end 

                     end 

             end 

end 

 

 

Algorithm 5 GPU version 

input: , ,   ,  /*An 

input chunk ( ), the arrays ( ),( )( 

), pattern size ( ) */ 

output: Locations at which patterns occur in str. 

begin 

         
         

        for   

          do 

                 

                for  do 

                     if   

                     then 

                            break 

                     end 

                    else if 0  

                      then 

                            

                     end 

                end  

          end 

end 
 

3.3 Thread assignment methodology 
 

In order to improve the string matching performance, we 

have parallelized the searching phase of the algorithm by 

allocating each character of an input stream to a CUDA 

thread. This is feasible because the used GPU hardware is 

powerful and the lifetime of the threads in our 

implementation is very short. 

The threads searching tasks are as follows. Figure 6 shows 

the AC state machine that identifies the patterns 

“ab”, “abcd”, “dab”, and “aed”. If the input stream contains 

the substring “dabcd”, the thread " n" is assigned to the input 

 and traverses the AC state machine. When processing the 

input “dab”, thread " n" reaches state 5 which indicates that 

the pattern “dab” is found. Since there is no valid transition 

for c in state 5, thread n terminates at state 5. Similarly, 

thread n+1 is assigned to the input . When processing the 

input “abcd”, thread n+1 reaches state 9 which indicates that 

the pattern “abcd” is found. As shown in Figure 6, all threads 

( 0 1 n+2 n+3 n+5) terminate early at state 0 

because there are no valid transitions for x, b, and c in state 

0. Thread n+4 terminates early at state 3 without a valid 

transition for x in state 3. 
 

 
Figure 6. Parallel AC algorithm allocation 

 

3.4 Optimization of Data Transfers  
 

The GPU threads cannot directly access the data in a 

pageable host memory. Hence, it must first allocate a pinned 

host array to copy the data. Subsequently, the data is 

transferred from the pinned array to the device memory as 

shown in Figure 7 (left). In order to improve data transfers, 

our implementation allocates the host arrays into a pinned 

memory to avoid the cost of the transfer between pageable 

and pinned host arrays, as shown in Figure 7. Using pinned 

data transfers allows us to exploit the high computing 

capability of the GPU device using the overlap feature. In 

order to interleave the data transfers and the computations on 

the device, we used the CUDA asynchronous function 

cudaMemcpyAsync() instead of the synchronous function 

cudaMemcpy(). 
 

 
Figure 7. Pageable and pinned data transfers  

 

3.5  Threads in a Group  
 

Our implementation divides the input data into chunks of size 
10

 characters. A choice of having 
10

 threads to 

process each chunk in parallel seems to be preferable so that 

each thread works on one character. However, our 

experimental results and other research efforts such as in [39] 

show that a high performance is achieved by setting the 
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number of threads on each block to be 256 threads. This is 

because managing many threads could result in performance 

degradation in terms of the overall execution time. The 

threads of a block are identified using a two-dimensional 

structure.  The GPU architecture is a 32 bit-wide SIMT 

(Single Instruction Multiple Threads). Hence, the number of 

threads in a block must be a multiple of 32. These threads are 

organized as 32 in the  and 8 in the . Thus, 

the number of blocks is calculated by dividing the chunk size 

by 256. 
 

3.6  Kernel Overlaps Execution 
 

The concurrent transfer and execution capability of the GPU 

drive us to dispatch more than one kernel concurrently in 

order to achieve high performance improvement. Hence, two 

kernels are dispatched and overlapped in execution for 

multiple input chunks as shown in Figure 8. Both kernels 

perform asynchronous data transfer and execution for each 

chunk on the GPU. 

 
Figure 8. Synchronous and asynchronous kernel execution 

 

The main disadvantage of the AC is the high memory cost. It 

requires a large space to store the tables when the patterns and 

the input text contain human-readable alphabets, numbers, 

and signs. In order to overcome this problem, we have 

converted the patterns and the input data into hexadecimal 

representation. 
 

The main disadvantage of the AC is the high memory cost. It 

requires a large space to store the tables when the patterns and 

the input text contain human-readable alphabets, numbers, 

and signs. In order to overcome this problem, we have 

converted the patterns and the input data into Hexadecimal 

representation. 
 

4. Evaluation and Experimental Results 
 

This section compares and evaluates the performance of our 

proposed method against the traditional sequential CPU 

approach and the hybrid parallel implementation of the Aho-

Corasick proposed in [28]. All experiments were performed 

on a system with the following specifications: 

 Host machine: Intel Core2 i5-4460 CPU, four CPU 

cores at 3.20GHz, 6 MB Cache, main memory is 8 GB 

DDR3. 

 GPU device machine: 5.2 NVIDIA GeForce GTX 960 

1279 MHz with 1024 CUDA cores and 2GB GDDR5 

memory. 

 Patterns: Snort v2.9 [40]. 

Different trace files were used in the experiments as in the 

work by Aldwairi and Alansari [41]. The files contain 

different numbers of intrusions. Wireshark Network Protocol 

Analyzer is used to extract packet traces as in [42]. We used a 

C++ code to extract the contents from the database of Snort 

rules. 

CUDA version 7.5 was used to implement the parallel version 

of the algorithm. The following two metrics were used to 

evaluate the performance of the three methods: 

1- Execution time: This represents the kernel searching 

process. The preprocessing phase is excluded from the 

execution time because it is computed only once. The three 

implementations share the I/O operations and hence it is also 

excluded from the execution time.  

2- Speedup: This represents the amount of improvement of 

one method compared to another. The speedup of our parallel 

implementation is compared with the CPU version using: 

  

 
 

Figure 9 shows the execution time of the three methods which 

are: our GPU implementation, the CPU serial, and the parallel 

hybrid version. The experiments were performed using the 

good (av, gd, hm, lc), the bad (1, 22) and the ugly (51, 58) 

traces. Ugly traces are the worst-case scenario in terms of 

intrusions while the good traces are the best or the norm 

scenario. The results show that our implementation 

outperforms the other two methods for all trace files. The 

hybrid parallel implementation of [28] has the worst 

performance. The reason for that is that intrusion detection 

systems (IDSs) work on small input data especially those that 

process the data on-the-fly as they receive data (stream 

traffic). In order to prove that, we have varied the data chunk 

size and calculated the execution time as shown in Figure 10. 

In the figure, the hybrid method outperforms the CPU method 

when the size becomes more than . However, it was 

shown that it is slower than our method in all cases. Figure 11 

shows the speedup for the GPU implementations over the 

CPU and hybrid implementations using the six trace files. 

The speedup is always greater than one.  
 

5. Conclusion 
 

String matching problem is an important step for the success 

of many applications in areas such as network intrusion 

detection systems, information retrieval, text editing 

applications, searching in database systems, spell-checkers, 

DNA sequence mapping, virus scanning, IP (Internet 

Protocol), and protocol parsers. This paper has addressed the 

Aho-Corasick (AC) string matching algorithm. The AC 

algorithm has several advantages over other algorithms in 

terms of the time complexity. Also, it finds the match for 

multiple patterns with one pass over the text. In addition, the 

AC algorithm is not affected by the number of patterns, the 

size of the shortest, or the size of longest pattern in a group. 

The aforementioned advantages make the AC a preferred 

choice by different applications. The paper has proposed a 

new GPU-based parallel implementation to improve the 

execution time of the AC algorithm. GPU hardware has been 

used to execute the parallel implementation and compared 

against the sequential CPU.  

In addition, a comparison of the proposed GPU method 

against other parallel implementations is given. We have used 
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patterns from snort and network traffic in conducting our 

experiments. Experimental results show that our method 

outperformed the CPU and the other parallel 

implementations. We have achieved a speedup of up to 5X. 

Finally, we have presented different optimization steps in 

order to enhance the execution time of the AC algorithm. 
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