
297
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Load Balancing Using Dynamic Ant Colony System

Based Fault Tolerance in Grid Computing

Saufi Bukhari1, Ku Ruhana Ku-Mahamud1 and Hiroaki Morino2

1School of Computing, UUM College of Arts and Sciences, Universiti Utara Malaysia, Malaysia
2Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan

Abstract: Load balancing is often disregarded when implementing

fault tolerance capability in grid computing. Effective load balancing

ensures that a fair amount of load is assigned to each resource, based

on its fitness rather than assigning a majority of tasks to the most

fitting resources. Proper load balancing in a fault tolerance system

would also reduce the bottleneck at the most fit resources and

increase utilization of other resources. This paper presents a fault

tolerance algorithm based on ant colony system, that considers load

balancing based on resource fitness with resubmission and

checkpoint technique, to improve fault tolerance capability in grid

computing. Experimental results indicated that the proposed fault

tolerance algorithm has better execution time, throughput, makespan,

latency, load balancing and success rate.

Keywords: Load Balancing, Task Scheduling, Task Checkpoint,

Task Resubmission, Ant Colony System

1. Introduction

Grid computing has been in the industry for many years

providing intensive parallel and distributed computing

capabilities to process large tasks. It is also one of the sub-

capabilities in recent distributed systems such as cloud and

cluster computing. Generally, when a system consists of

multiple independent computing resources based in different

locations, it is impossible to prevent failures from happening.

The only solutions are to mitigate the failure when it happens

or prevent it from happening. There are many types of failures

as described in [1] such as network failure (e.g.: packet loss

and corruption), physical failure (e.g.: damaged CPU and

storage drive), user termination, service and protocol failure.

Any disruption in the processing machine would definitely

lead to delay in response time for the users due to submitted

tasks cannot be processed according to expected completion

time and resources cannot be released to process subsequent

tasks in the queue [2]. As a result, stagnation may occur and

the throughput will be greatly degraded due to limited

resources available to process the tasks in the queue. In

addition to that, resource utilization will be reduced because

initial scheduling and resource assignment is affected by the

occurrence of failure.

To minimize this problem, effective fault tolerance should be

implemented to identify occurrence of failures more

accurately during runtime, ensure reliable execution and

preserve the great potential of computational grids [3, 4]. Fault

tolerance is defined as a Nondeterministic Polynomial (NP)-

complete problem [5, 6] which means that there are more than

one suboptimal solutions to solve problems in a polynomial

time [7, 8]. Typically, approximate (heuristic) algorithms such

as Genetic Algorithm (GA) [9], Simulated Annealing (SA)

[10], Tabu Search (TS) [11] and recently Ant Colony

Optimization (ACO) [12] are used to solve these problems.

These algorithms are used to construct the best solution by

moving from one solution to another dynamically. A feasible

and optimal solution could be produced at a time, but it will

not be the optimal solution at another time due to dynamically

changing environment.

ACO is an example of biologically-inspired algorithm that

provides an adaptive concept for solving optimization

problems and designing metaheuristics algorithms [13, 14].

The concept is almost similar to other heuristics algorithms

whereby the best solution is constructed by a group of ants

within the colony. Each ant is responsible to construct

individual solution and all the individual solutions will be

consolidated to build the best or optimal solution. The solution

is represented by the pheromone intensity where the following

ants will refer to its strength to choose the optimal path. ACO

is very effective when it comes to enhancing scheduling and

load balancing in grid computing, but the optimal path finding

capability can be further upgraded to allow new path to

alternative resource to be constructed in the presence of a

failure, as illustrated in Figure 1(a-d) respectively.

(a)

(b)

(c)

(d)

Figure 1(a-d). Illustration of the way ants find an alternative

resource during failure

298
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Figure 1(a) shows that Ant1 constructs a path to resource Ra

and assigns the task. Then, in Figure 1(b), the Resource Ra

fails to complete task execution. In Figure 1(c), Ant1

constructs another path using previous path to alternative

resource Rb to assign failed task. Finally, as in Figure 1(d), the

next Ant2 uses previously constructed path to resource Rb to

assign the next task.

This paper proposes Enhanced Dynamic ACO-based Fault

Tolerance (EDAFT) in grid computing extended from the Ant

Colony System (ACS) scheduling algorithm, that focuses on

load balancing based on resource fitness in addition to

providing fault tolerance. Section 2 covers some of the related

works and followed by details on the proposed algorithm in

the Section 3. All the experimental results are analyzed and

presented in the Section 4, whereas the last section concludes

the paper.

2. Related Works

Load balancing using enhanced ACO was proposed by [15] to

effectively balance task allocation to all available resources in

a grid computing system. In the beginning, the initial

pheromone will be calculated for each combination of tasks

and resources by considering processing capability, size of

task, bandwidth and current load. Once calculated, the initial

pheromone value will be stored in a two-dimensional matrix

and referred to by an ant to select the best resource. For each

task in queue, an ant will be spawned to search for the resource

with the highest pheromone in the matrix. When the resource

is identified, a task will be assigned, and a global pheromone

update will be performed to all entries associated with the

current resource. Once the execution is completed, the

resource will be released to process another task. The results

showed that the proposed algorithm is able to increase

resource utilization and load balancing. Notwithstanding the

results, it is possible to adapt this concept in a fault tolerance

algorithm to improve resource utilization and load balancing

in a faulty grid computing environment.

Trust-based ACO for grid resource scheduling was proposed

by [16] with the goals of balancing the workload and reducing

task completion time. They proposed a mechanism called

‘trust’ to reward the success or penalize the failure and being

applied during the global pheromone update process. Reward

is a positive constant value which will increase the amount of

calculated pheromone while penalty is a negative constant

value that will decrease the amount of calculated pheromone.

This mechanism is claimed to reduce the possibility of failure

during task execution as the task assignment will also consider

the amount of pheromone at each available resource. In terms

of failure handling mechanism, each failed task will be

reinserted into the queue for a reallocation process in addition

to applying the penalty. In the end, the algorithm ensures that

all submitted tasks complete the execution. Despite the

effectiveness of applying the trust mechanism and reallocation

process, due to the lack of checkpoint technique that requires

all the failed tasks to be reprocessed from the beginning, it

may lead to higher latency and makespan.

[17] proposed an algorithm that combines ACO with Genetic

Algorithm (GA) to reduce performance degradation due to the

uncontrolled nature of the metaheuristics of an ACO. The GA

is used to determine whether to increase or decrease the

pheromone update parameters. Before forming subsets, ants

will perform resource selection randomly using ACO. Then,

each subset will be evaluated using the GA algorithm, to spot

the lowest estimated error and will be sorted ascendingly.

Tasks will be assigned to the subset with the lowest estimated

error and followed by the application of the pheromone update

once the execution is completed. Resources within the subset

with the lowest estimated error will have a higher probability

of getting tasks assigned. It is claimed that the proposed

algorithm is suitable to be applied during task scheduling.

Notwithstanding the performance of the proposed algorithm

in reducing the possibility of failure, it could be further

enhanced by incorporating effective recovery techniques

during occurrence of failure.

Fault tolerance ACO using checkpoints was proposed by [18]

to solve fault and load balancing problems by finding the

optimal resource as well as detecting the occurrence of failure

during task execution. A component called fault index

manager is applied to record the failure history that is used as

a reference in the next task assignment. When failure occurs,

failed tasks will be rescheduled to alternative optimal

resources using checkpoint technique from the last saved state

instead of from the beginning. In terms of load balancing

aspect, tasks will have higher possibility to be assigned to the

resources with a low workload. The workload is indicated by

the pheromone value of each resource which will continuously

be updated during the pheromone update process. Although

the proposed algorithm looks promising, it is just a conceptual

algorithm which has not been developed and validated to

proof its claimed performance.

Task scheduling with fault tolerance in grid computing using

ACO was proposed by [19] that combines checkpoint and

resubmission techniques. In the fault tolerance architecture,

they proposed a fault index that is maintained by the fault

index handler. The checkpoint handler works closely with a

fault index handler to determine the resource failure rate to

control the checkpoint interval and the number of checkpoints

which is claimed to minimize task processing time and

increase throughput. The checkpoint handler interacts with a

scheduler to perform unconditional task scheduling that

includes both initial submission and resubmission after

failure. The results showed that the proposed algorithm

reduces makespan, increases throughput and the average

turnaround time. Despite having good performance, the

consideration of resource load alone is believed to be not an

effective method to determine the resource fitness and may

lead to higher chance of execution failure.

Dynamic ACS-based fault tolerance in grid computing was

proposed by [20] to reduce the execution time and task

processing time, and to increase execution success rate. The

proposed algorithm consists of a resubmission to alternative

resources using checkpoint technique and consideration of

resource execution history during the pheromone update

process, to ensure that all failed tasks can complete execution.

For every checkpoint, the execution status will be recorded

and used during the pheromone update process to penalize

unfit resources so that they become less attractive to allow the

subsequent ants to explore other fit resources. In addition to

that, once the execution is completed, another round of

pheromone update will be applied to further reduce the

pheromone level. The experimental results showed that the

proposed algorithm gives a better average execution time per

task and execution success rate. It is also possible to control

the penalty by introducing a trust factor, so that resources that

299
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

complete the execution will be more attractive without

disregarding the load balancing aspect.

ACO has been one of the most adaptable algorithms for

dynamic scheduling in distributed systems. Integration with

other techniques such as task resubmission and checkpoint is

essential to further enhance its fault tolerance capability. In

addition to that, execution history and trust factor can also be

considered to provide better scheduling decisions to reduce

the turnaround time and failure rate without significant impact

to the performance and load balancing of the system.

3. Proposed Algorithm

Enhanced Dynamic ACS-based Fault Tolerance (EDAFT) is

the extended version of algorithm proposed by [20] that is

inspired by the foraging behavior of an ant colony to search

for the food source by constructing optimal path between the

nest and food source. This analogy is similar to the process of

constructing optimal path between tasks and resources in grid

computing system. In the proposed algorithm, this process is

further extended for ants to have the ability to perform

resource researching during the checkpoint-based

resubmission process to assign any failed task to alternative

resources with higher probability of success. To further

improve the pheromone update technique, a trust factor is

introduced to reward fit resources, or penalize unfit resources,

with a consideration of the execution history to control the

pheromone reduction or increase. The improved pheromone

update formula is expected to properly control the task

assignment based on resource fitness which could eventually

reduce the possibility of failure.

During the initial task submission, each resource should have

pre-defined parameters such as processor speed, current load,

and bandwidth and number of processing elements. All these

parameters will be used to calculate the initial pheromone

value (PVrj) for each combination of resource r and task j. The

initial pheromone value formula is given by the following

equation (1):

𝑃𝑉𝑟𝑗 = [
𝑆𝑗

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑟
+

𝐶𝑗

𝑀𝐼𝑃𝑆𝑟(1−𝑙𝑜𝑎𝑑𝑟)
]
−1

 (1)

Where Sj is the size and Cj is the required computation power

of a given task j, bandwidthj is the available bandwidth of

resource r, MIPSr is the processor speed, and loadr is the

current load at resource r. Note that the initial pheromone

value is assigned during initialization, but after that, it is

considered as a resource pheromone value. Since the initial

pheromone value is calculated for each combination of

resource and task, this information is stored in a PVmatrix as in

(2):

𝑃𝑉𝑚𝑎𝑡𝑟𝑖𝑥 =

[

𝑃𝑉1,1 𝑃𝑉1,2 𝑃𝑉1,𝑛−1 𝑃𝑉1,𝑛

𝑃𝑉2,1 𝑃𝑉2,2 𝑃𝑉2,𝑛−1 𝑃𝑉2,𝑛

𝑃𝑉𝑚−1,1 𝑃𝑉𝑚−1,2 𝑃𝑉𝑚−1,𝑛−1 𝑃𝑉𝑚−1,𝑛

𝑃𝑉𝑚,1 𝑃𝑉𝑚,2 𝑃𝑉𝑚,𝑛−1 𝑃𝑉𝑚,𝑛]

 (2)

Where n is total number of tasks and m is total number of

resources. PVmatrix is a logical form of ant topology whereby

an ant would move from one index to another index to find the

best resource for task assignment. It is assumed that all the

resources are interconnected which means that if the task

originates from a specific resource, it can be assigned to all

other available resources. Each row in PVmatrix represents the

list of possible tasks for resource r while each column

represents the list of possible resources for task j. The largest

pheromone value in each column will be considered by the

ants as the most fit resource and the task will be forwarded to

the resource with highest pheromone for processing.

As soon as the task is assigned, the pheromone value in the

PVmatrix will be updated by the global pheromone update (3) to

reduce the amount of pheromones assigned to the current

resource, so that it becomes less attractive by the next ant and

leads to the exploration of other resources. τrj is the amount of

pheromones on the resource, while ∆τrj is 1/Lbest, where Lbest

denotes the length of global best tour or otherwise (no global

best tour found), ∆τrj=0.

𝜏𝑟𝑗 = (1 − 𝜌) ∙ 𝜏𝑟𝑗 + 𝜌 ∙ ∆𝜏𝑟𝑗 (3)

ρ is the evaporation rate that is dynamically controlled by

using the following formula (4) with m and n as the total

number of resources and tasks respectively:

𝜌 = [(
𝑛

𝑚
)

2

]
−1

 (4)

A typical ACS algorithm consists of global and local

pheromone updates. In EDAFT, the local pheromone update

is improved to include a trust factor so that more pheromone

is added should the resource complete task execution or

otherwise the existing pheromone evaporates. The improved

global pheromone update (5) is given as follows:

𝜏𝑟𝑗 = (1 − 𝜌) ⋅ 𝜏𝑟𝑗 + [𝜌 ⋅ 𝜏0(𝑅𝐻)]𝐶 (5)

Where ρ is the evaporation rate, τrj is the current pheromone

intensity for resource r, τ0 is the initial pheromone value of

resource r, C is the trust factor defined by either task

completion (C = 1.5) or task failure (C = 1.0). The defined

value of C in this experiment provides the lowest load

balancing standard deviation using equation (11). The trust

factor may vary depending on the level of trust sensitivity to

be applied, in which too much penalty may cause unfit

resources to never get assigned with tasks after failure or too

much incentive may cause fit resources to be assigned with

most of the tasks. RH is the average weighted execution history

of resource r and is calculated by equation (6):

𝑅𝐻(𝑖) = {
𝑅𝑇(𝑖) =

𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝐶𝑃𝑓𝑎𝑖𝑙𝑒𝑑+𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠
, 𝑖 = 0

(1 − 𝛼) ⋅ 𝑅𝑇(𝑖) + 𝛼 ⋅ 𝑅𝐻(𝑖 − 1), 𝑖 > 0
 (6)

Where RT(i) is the current execution history at take i, CPsuccess

indicates the current successful checkpoint call, and CPfailed is

the current failed checkpoint, at resource r respectively. For

each resource r, i is initially set to 0 and will be incremented

by 1 for each local pheromone update process, RH(i-1) is the

previously recorded execution history and α is the degree of

weighting decrease set to 0.5. The execution history (also

known as resource fitness) will be used to control the quantity

of pheromones to be evaporated, or strengthened, at a

respective resource and eventually helps the following ants to

identify the best resources during task assignment; the better

the execution history, the higher the number of tasks assigned.

Figure 2 illustrates the high-level workflow of EDAFT as

proposed by [20, 21] with the improved process bolded for

clarity. An ant will be generated for each task in the queue to

perform resource searching based on pheromone values.

Before the first task in queue can be submitted, the initial

pheromone value will be calculated to determine the state of

all resources. The resource selection will be performed based

300
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

on the pheromone levels, either from the initial pheromone

calculation or the pheromone update process. Once the task is

assigned to any resource, the ant will apply global pheromone

update to reduce the amount of pheromone so that the resource

becomes less attractive for the next ant. Each assigned task

will be divided into several time-based checkpoints recorded

during execution. In the event of failure, the task will undergo

rescheduling process and will be assigned to alternative resource

from the last saved checkpoint and a local pheromone update

with penalty will be applied to the resource that failed to reduce

the pheromone intensity. If the execution is successful, the local

pheromone update with incentive will be applied to the

resource to increase the pheromone. In both execution failure and

execution success scenarios, the resource will be released for the

next task assignment after the pheromone update process.

Yes

START

Calculate initial pheromone

value for each combination of

task and resource

For each task in queue, ant

checks for the best resource

with highest pheromone

Is task completed?

STOP

Task execution by the

best resource

Are all tasks

completed?

Save checkpoint

information

Apply global

pheromone update

No

No

Yes

Apply local

pheromone update

Increase resource

success count

Is task failed?
No

Retrieve

checkpoint

information

Yes

Resubmit failed

job from the last

saved state

Apply local

pheromone update

Increase resource

failure count

Increase resource

success count

Apply local

pheromone update

Figure 2. High-level workflow of EDAFT

301
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

4. Experimental Design and Results

There are various performance metrics used to measure the

proposed algorithm, which include execution time,

throughput, makespan, latency, load balancing and success

rate. Execution time (equation 7) is measured from the

moment the first task is submitted to the system,

SubmissionTime1 to undergo scheduling and execution

process, until the last task n is completely processed,

CompletionTimen.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑛 − 𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒1 (7)

Throughput (equation 8) is calculated by dividing the total

number of tasks, n, with the total time taken to completely

process all tasks [19].

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑛

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
 (8)

The average turnaround time per task is also considered as the

average execution time per individual task, from the moment

the task received by the resource until completely processed.

As shown in equation (9), it is measured by summing the

execution time for each individual task and dividing the result

by the total number of tasks n.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑𝑇𝑖𝑚𝑒 =
∑ (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗)

𝑛
𝑗=1

𝑛
 (9)

Average latency per task measures the waiting time for each

task to be processed by the assigned resource, from the

moment the task is submitted to the queue until arrival at the

resource. As depicted in equation (10), total latency for all

tasks is divided by the total number of tasks n.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ (𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗−𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗)

𝑛
𝑗=1

𝑛
 (10)

Load balancing is measured by calculating the standard

deviation of the initially assigned fitness rate and actual ratio

of total processed tasks, as in equation (11). Population

standard deviation formula is used as a base formula, as

follows:

𝜎𝑟 = √
∑(𝑋𝑟−𝜇𝑟)2

𝑁
 (11)

Where Xr is the percentage of total tasks executed by resource

r, μr is the fitness rate of resource r and N is the total number

of resources. Instead of using the mean, the percentage of total

tasks processed by a resource is used to measure the

effectiveness of the load balancing aspect. The lower the

standard deviation is, the better load balancing the resource

has. For a more accurate measurement, the processing

capability of each resource should be identical, while the task

and output size should be within an acceptable range. The

proposed formula is suitable to measure the load balancing at

the end of simulation but is not intended to measure the load

balancing during runtime. Finally, the execution success rate

(equation 12) calculates the total number of successful

checkpoints, CPsuccess over the total number of recorded

checkpoints (CPfailed + CPsuccess).

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

∑(𝐶𝑃𝑓𝑎𝑖𝑙𝑒𝑑+𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
 (12)

To validate the performance of the proposed EDAFT

algorithm in the presence of failure, pseudorandom algorithm

is used to randomly assign resource fitness within a defined

range. In this case, the range of resource fitness is defined as

having a value between 50% and 100%, as used by [2]. It is

important to define the range of resource fitness to validate the

effectiveness of fault tolerance algorithm in handling different

possibilities of failures. On the other hand, other resources and

task parameters are adopted from [19] as shown in Table 1.

Table 1. Simulation parameters

Parameter Value

No. of resources 100

No. of tasks 5000

PE rating 50 MIPS

Bandwidth 5000 B/S

Machine per resource 1

PE per machine 2

Task length 50000

File size 100 + (10-40%)

Output size 250 + (10-50%)

The proposed algorithm was compared with TACO [16],

FTACO [18], ACOwFT and ACO [19] where all algorithms

were redeveloped based on published pseudocodes,

formulations and flowcharts. They are suitable to be used for

validation, because the EDAFT algorithm is inspired by all

algorithms in terms of the fault tolerance techniques. All the

experiments are simulated in a JAVA based simulator, known

as GridSim Toolkit, because it provides a comprehensive

simulated grid environment within which most of the

components are included. Each algorithm is executed 10 times

for each fault range and the average is taken for a more precise

measurement. The list of performance metrics includes

execution time, throughput, average makespan and latency per

task, load balancing and execution success rate.

The execution time for all algorithms are almost similar when

there is no failure (refer Figure 3). However, as the failure rate

increases, the execution time for EDAFT is the lowest among

all and followed by ACOwFT and FTACO respectively. The

results also suggest that ACO and TACO have significantly

longer execution time because the application of checkpoint

technique provides significant reduction of execution time as

the failed task does not need to be re-executed from the

beginning. This technique is also effective especially when the

size of each task is big and the expected time to completely

execute each task is long.

The results of throughput for all algorithms is depicted in

Figure 4. Throughput is mainly influenced by the execution

time and total amount of completed task. In this case, the

throughput for ACO and TACO are in agreement with the

execution time in Figure 3. At 0% failure rate, the throughput

for all algorithms is at the highest, and gradually decreased as

the failure rate increased. The results also suggest that EDAFT

has the lowest reduction of throughput from 10% to 50%

failure rate as compared to the other algorithms. It is crucial

to preserve the execution time despite in the presence of

failure to ensure that the throughput can also be preserved.

As presented in Figure 5, the average execution time for

EDAFT, FTACO and ACOwFT are almost similar as

compared to TACO and ACO. This is where the checkpoint

technique plays a role as it allows each failed task to be

executed from the last saved state, instead of from the

beginning, which eventually reduces the turnaround time per

302
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

individual task. The results also suggest that EDAFT, FTACO

and ACOwFT are able to control the turnaround time using

checkpoint technique in the presence of failures so that each

individual task can be executed completely in a timely

manner.

Figure 3. Results of execution time

Figure 4. Results of throughput

Figure 5. Results of average turnaround time per task

The average latency as shown in Figure 6 is also having the

same pattern as average turnaround time in Figure 5. The

results suggest that ACO has the highest latency and followed

by TACO in which both algorithms do not apply checkpoint

technique. The latency can also be controlled by properly

distributing the tasks to all available resources to avoid

bottleneck where queues for some resources are longer than

the average queue length.

Load balancing is essential to measure how well the task

distribution is performed. As shown in Figure 7, ACOwFT

and ACO have relatively the lowest standard deviation

because the task assignment is done based on the current load

of each resource. As for EDAFT with almost the same

performance as ACOwFT, the task assignment is performed

by considering the execution history in determining the fitness

of the resource and balancing the load. The closer the standard

deviation to 0, the better the load balancing is. In other words,

without even knowing the fitness of a specific resource in the

first place, the proposed algorithm is able to apply heuristic

capability to determine the fitness based on execution history

while preserving the resource utilization.

Figure 6. Results of average latency per task

In addition to that, the trust factor is useful to reward fit

resources or penalize unfit resources based on task execution

status. Coupling both components provides a more effective

pheromone update process that can tackle load balancing and

the execution success rate.

Figure 7. Results of load balancing

In any fault tolerance system, the ultimate aim is to maintain

the execution success rate without disregarding the

performance. Figure 8 shows that EDAFT has a higher

success rate compared to the other algorithms. Surprisingly,

TACO has the second highest success rate because it assigns

most of the tasks to fit resources rather than unfit resources. It

is obvious that whenever most of the tasks are assigned to the

most fit resources, it would increase the possibility of success.

Figure 8. Results of success rate

The drawback of TACO is that the latency and makespan will

be significantly higher because fit resources will have a longer

queue. In addition to that, ACOwFT and ACO have the lowest

303
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

success rate because by referring to the load alone is not

sufficient to determine the fitness of the resource. Some

resources may have low load because they are not actively

executing tasks. However, for EDAFT, it can maintain the

success rate in addition to maintaining throughput and

providing better load balancing, lower latency and makespan.

It is also discovered that by reducing the trust value C in the

presence of failure, EDAFT can achieve a higher success rate,

but will also increase the load balancing standard deviation.

Thus, it is important to define the most optimal trust value to

achieve either the best execution success rate or the best load

balancing.

5. Conclusion

It can be concluded that EDAFT has the best overall

performance compared to the other algorithms in terms of

execution time, throughput, average turnaround time, average

latency and execution success rate. However, in terms of load

balancing, ACOwFT has the best performance with a slight

difference compared to ACO and EDAFT. Despite EDAFT

having an overall good performance, it can be further

enhanced by including a temporary suspension so that a

recently failed resource will not be assigned a task until it is

recovered from failure. This capability may be effective,

especially when the size of an individual task is large at a point

of time, when most resources are busy processing a large task

and only the current suspended task is idle. Crucially, the

decision is important to not assign the task immediately to the

recently failed resource to reduce the possibility of another

failure and to select the resource that can complete current

execution in the least time and has a good fitness.

Additionally, the length of suspension is also an important

aspect so that a sufficient length of suspension can be applied

to preserve the load balancing and execution success rate.

6. Acknowledgements

The authors thank the Ministry of Higher Education Malaysia

in funding this study under the Trans Disciplinary Research

Grant Scheme (TRGS), S/O code 13164 and Research and

Innovation Management Centre (RIMC), Universiti Utara

Malaysia, Kedah for the administration of this study.

References

[1] D. Rakheja, P. Kaur, A. Rkheja, “Performance evaluation

of resource scheduling and fault tolerance in grid,”

International Journal of Computer and Communication

System Engineering, Vol. 1, No. 01, pp. 15-19, 2014.

[2] M. Amoon, “A fault tolerance scheduling system based

on checkpointing for computational grids,” International

Journal of Advanced Science and Technology, Vol. 48,

pp. 115-124, 2012.

[3] M. Nandagopal, V. R. Uthariaraj, “Fault tolerant

scheduling strategy for computational grid

environment,” International Journal of Engineering

Science and Technology, Vol. 2, No. 9, pp. 4361-4372,

2010.

[4] P. Keerthika, N. Kasthuri, “An efficient fault tolerant

scheduling approach for computational grid,” American

Journal of Applied Sciences, Vol. 9, No. 12, pp. 2046-

2051, 2012.

[5] C. Glaßer, A. Pavan, S. Travers, “The fault tolerance of

NP-hard problems,” Language and Automata Theory

and Applications, Springer Berlin Heidelberg, 2009.

[6] H. J. A. Nasir, K. R. Ku-Mahamud, E. Kamioka

“Enhanced ant-based routing for improving performance

of wireless sensor network,” International Journal of

Communication Networks and Information Security,

Vol. 9, No. 3, pp. 386-392, 2017.

[7] C. Blum, A. Roli, “Metaheuristics in combinatorial

optimization: Overview and conceptual comparison,”

Journal of ACM Computing Surveys, Vol. 35, No. 3, pp.

268-308, 2003.

[8] Z. Pooranian, M. Shojafar, J. H. Abawajy, M. Singhal,

“GLOA: A new job scheduling algorithm for grid

computing,” International Journal of Artificial

Intelligence and Interactive Multimedia, Vol. 2, No. 1,

pp. 59-64, 2013.

[9] F. Werner, “Genetic algorithms for shop scheduling

problems: A survey,” Preprint, Vol. 11, No. 31, pp. 1-66,

2011.

[10] S. W. Lin, F. Y. Vincent, “A simulated annealing

heuristic for the team orienteering problem with time

windows,” European Journal of Operational Research,

Vol. 217, No. 1, pp. 94-107, 2012.

[11] F. Glover, M. Laguna, “Tabu Search*,” Handbook of

Combinatorial Optimization, Springer New York, 2013.

[12] K. R. Ku-Mahamud, M. M. Alobaedy, “New heuristic

function in ant colony system for job scheduling in grid

computing,” Mathematical Methods for Information

Science and Economics, WSEAS, Montreux, 2012.

[13] M. Dorigo, T. Stützle, “Ant colony optimization,” MIT

Press, Cambridge, 2004.

[14] M. H. Ferdaus, M. Murshed, R. N. Calheiros, R. Buyya,

“Virtual machine consolidation in cloud data centers

using ACO metaheuristic,” Euro-Par 2014 Parallel

Processing, Springer International Publishing, Porto,

2014.

[15] H. J. A. Nasir, K. R. Ku-Mahamud, “Grid load balancing

using ant colony optimization,” Second International

Conference on Computer and Network Technology,

Bangkok, Thailand, pp. 207-211, 2010.

[16] H. Wenming, D. Zhenrong, W. Peizhi, “Trust-based ant

colony optimization for grid resource scheduling,” Third

International Conference on Genetic and Evolutionary

Computing, Guilin, China, pp. 288-292, 2009.

[17] S. Mandloi, H. Gupta, “Adaptive job scheduling for

computational grid based on ant colony optimization

with genetic parameter selection,” International Journal

of Advanced Computer Research, Vol. 3, No. 9, pp. 66-

71, 2013.

[18] T. Prashar, Nancy, D. Kumar, “Fault tolerant ACO using

checkpoint in grid computing,” International Journal of

Computer Applications, Vol. 98, No. 10, pp. 44-49,

2014.

[19] H. Idris, A. E. Ezugwu, S. B. Junaidu, A. O. Adewumi,

“An improved ant colony optimization algorithm with

fault tolerance for job scheduling in grid computing

systems,” PLOS ONE, Vol. 12, No. 5, pp. 1-24, 2017.

[20] S. Bukhari, K. R. Ku-Mahamud, H. Morino, “Fault

tolerance grid scheduling with checkpoint based on ant

colony system,” Journal of Computer Science, Vol. 13,

No. 8, pp. 363-370, 2017.

[21] S. Bukhari, K. R. Ku-Mahamud, H. Morino, “Dynamic

ACO-based fault tolerance in grid computing,”

International Journal of Grid and Distributed

Computing, Vol. 10, No. 12, pp. 117-124, 2017.

