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Abstract: Load balancing is often disregarded when implementing 

fault tolerance capability in grid computing. Effective load balancing 

ensures that a fair amount of load is assigned to each resource, based 

on its fitness rather than assigning a majority of tasks to the most 

fitting resources. Proper load balancing in a fault tolerance system 

would also reduce the bottleneck at the most fit resources and 

increase utilization of other resources. This paper presents a fault 

tolerance algorithm based on ant colony system, that considers load 

balancing based on resource fitness with resubmission and 

checkpoint technique, to improve fault tolerance capability in grid 

computing. Experimental results indicated that the proposed fault 

tolerance algorithm has better execution time, throughput, makespan, 

latency, load balancing and success rate. 
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1. Introduction 
 

Grid computing has been in the industry for many years 

providing intensive parallel and distributed computing 

capabilities to process large tasks. It is also one of the sub-

capabilities in recent distributed systems such as cloud and 

cluster computing. Generally, when a system consists of 

multiple independent computing resources based in different 

locations, it is impossible to prevent failures from happening. 

The only solutions are to mitigate the failure when it happens 

or prevent it from happening. There are many types of failures 

as described in [1] such as network failure (e.g.: packet loss 

and corruption), physical failure (e.g.: damaged CPU and 

storage drive), user termination, service and protocol failure. 

Any disruption in the processing machine would definitely 

lead to delay in response time for the users due to submitted 

tasks cannot be processed according to expected completion 

time and resources cannot be released to process subsequent 

tasks in the queue [2]. As a result, stagnation may occur and 

the throughput will be greatly degraded due to limited 

resources available to process the tasks in the queue. In 

addition to that, resource utilization will be reduced because 

initial scheduling and resource assignment is affected by the 

occurrence of failure. 

To minimize this problem, effective fault tolerance should be 

implemented to identify occurrence of failures more 

accurately during runtime, ensure reliable execution and 

preserve the great potential of computational grids [3, 4]. Fault 

tolerance is defined as a Nondeterministic Polynomial (NP)-

complete problem [5, 6] which means that there are more than 

one suboptimal solutions to solve problems in a polynomial 

time [7, 8]. Typically, approximate (heuristic) algorithms such 

as Genetic Algorithm (GA) [9], Simulated Annealing (SA) 

[10], Tabu Search (TS) [11] and recently Ant Colony 

Optimization (ACO) [12] are used to solve these problems. 

These algorithms are used to construct the best solution by 

moving from one solution to another dynamically. A feasible 

and optimal solution could be produced at a time, but it will 

not be the optimal solution at another time due to dynamically 

changing environment. 

ACO is an example of biologically-inspired algorithm that 

provides an adaptive concept for solving optimization 

problems and designing metaheuristics algorithms [13, 14]. 

The concept is almost similar to other heuristics algorithms 

whereby the best solution is constructed by a group of ants 

within the colony. Each ant is responsible to construct 

individual solution and all the individual solutions will be 

consolidated to build the best or optimal solution. The solution 

is represented by the pheromone intensity where the following 

ants will refer to its strength to choose the optimal path. ACO 

is very effective when it comes to enhancing scheduling and 

load balancing in grid computing, but the optimal path finding 

capability can be further upgraded to allow new path to 

alternative resource to be constructed in the presence of a 

failure, as illustrated in Figure 1(a-d) respectively. 
 

 

(a) 

 

(b) 

 

(c) 

 
(d) 

 

Figure 1(a-d). Illustration of the way ants find an alternative 

resource during failure 
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Figure 1(a) shows that Ant1 constructs a path to resource Ra 

and assigns the task. Then, in Figure 1(b), the Resource Ra 

fails to complete task execution. In Figure 1(c), Ant1 

constructs another path using previous path to alternative 

resource Rb to assign failed task. Finally, as in Figure 1(d), the 

next Ant2 uses previously constructed path to resource Rb to 

assign the next task. 

This paper proposes Enhanced Dynamic ACO-based Fault 

Tolerance (EDAFT) in grid computing extended from the Ant 

Colony System (ACS) scheduling algorithm, that focuses on 

load balancing based on resource fitness in addition to 

providing fault tolerance. Section 2 covers some of the related 

works and followed by details on the proposed algorithm in 

the Section 3. All the experimental results are analyzed and 

presented in the Section 4, whereas the last section concludes 

the paper. 
 

2. Related Works 
 

Load balancing using enhanced ACO was proposed by [15] to 

effectively balance task allocation to all available resources in 

a grid computing system. In the beginning, the initial 

pheromone will be calculated for each combination of tasks 

and resources by considering processing capability, size of 

task, bandwidth and current load. Once calculated, the initial 

pheromone value will be stored in a two-dimensional matrix 

and referred to by an ant to select the best resource. For each 

task in queue, an ant will be spawned to search for the resource 

with the highest pheromone in the matrix. When the resource 

is identified, a task will be assigned, and a global pheromone 

update will be performed to all entries associated with the 

current resource. Once the execution is completed, the 

resource will be released to process another task. The results 

showed that the proposed algorithm is able to increase 

resource utilization and load balancing. Notwithstanding the 

results, it is possible to adapt this concept in a fault tolerance 

algorithm to improve resource utilization and load balancing 

in a faulty grid computing environment.  

Trust-based ACO for grid resource scheduling was proposed 

by [16] with the goals of balancing the workload and reducing 

task completion time. They proposed a mechanism called 

‘trust’ to reward the success or penalize the failure and being 

applied during the global pheromone update process. Reward 

is a positive constant value which will increase the amount of 

calculated pheromone while penalty is a negative constant 

value that will decrease the amount of calculated pheromone. 

This mechanism is claimed to reduce the possibility of failure 

during task execution as the task assignment will also consider 

the amount of pheromone at each available resource. In terms 

of failure handling mechanism, each failed task will be 

reinserted into the queue for a reallocation process in addition 

to applying the penalty. In the end, the algorithm ensures that 

all submitted tasks complete the execution. Despite the 

effectiveness of applying the trust mechanism and reallocation 

process, due to the lack of checkpoint technique that requires 

all the failed tasks to be reprocessed from the beginning, it 

may lead to higher latency and makespan. 

[17] proposed an algorithm that combines ACO with Genetic 

Algorithm (GA) to reduce performance degradation due to the 

uncontrolled nature of the metaheuristics of an ACO. The GA 

is used to determine whether to increase or decrease the 

pheromone update parameters. Before forming subsets, ants 

will perform resource selection randomly using ACO. Then, 

each subset will be evaluated using the GA algorithm, to spot 

the lowest estimated error and will be sorted ascendingly. 

Tasks will be assigned to the subset with the lowest estimated 

error and followed by the application of the pheromone update 

once the execution is completed. Resources within the subset 

with the lowest estimated error will have a higher probability 

of getting tasks assigned. It is claimed that the proposed 

algorithm is suitable to be applied during task scheduling. 

Notwithstanding the performance of the proposed algorithm 

in reducing the possibility of failure, it could be further 

enhanced by incorporating effective recovery techniques 

during occurrence of failure. 

Fault tolerance ACO using checkpoints was proposed by [18] 

to solve fault and load balancing problems by finding the 

optimal resource as well as detecting the occurrence of failure 

during task execution. A component called fault index 

manager is applied to record the failure history that is used as 

a reference in the next task assignment. When failure occurs, 

failed tasks will be rescheduled to alternative optimal 

resources using checkpoint technique from the last saved state 

instead of from the beginning. In terms of load balancing 

aspect, tasks will have higher possibility to be assigned to the 

resources with a low workload. The workload is indicated by 

the pheromone value of each resource which will continuously 

be updated during the pheromone update process. Although 

the proposed algorithm looks promising, it is just a conceptual 

algorithm which has not been developed and validated to 

proof its claimed performance. 

Task scheduling with fault tolerance in grid computing using 

ACO was proposed by [19] that combines checkpoint and 

resubmission techniques. In the fault tolerance architecture, 

they proposed a fault index that is maintained by the fault 

index handler. The checkpoint handler works closely with a 

fault index handler to determine the resource failure rate to 

control the checkpoint interval and the number of checkpoints 

which is claimed to minimize task processing time and 

increase throughput. The checkpoint handler interacts with a 

scheduler to perform unconditional task scheduling that 

includes both initial submission and resubmission after 

failure. The results showed that the proposed algorithm 

reduces makespan, increases throughput and the average 

turnaround time. Despite having good performance, the 

consideration of resource load alone is believed to be not an 

effective method to determine the resource fitness and may 

lead to higher chance of execution failure. 

Dynamic ACS-based fault tolerance in grid computing was 

proposed by [20] to reduce the execution time and task 

processing time, and to increase execution success rate. The 

proposed algorithm consists of a resubmission to alternative 

resources using checkpoint technique and consideration of 

resource execution history during the pheromone update 

process, to ensure that all failed tasks can complete execution. 

For every checkpoint, the execution status will be recorded 

and used during the pheromone update process to penalize 

unfit resources so that they become less attractive to allow the 

subsequent ants to explore other fit resources. In addition to 

that, once the execution is completed, another round of 

pheromone update will be applied to further reduce the 

pheromone level. The experimental results showed that the 

proposed algorithm gives a better average execution time per 

task and execution success rate. It is also possible to control 

the penalty by introducing a trust factor, so that resources that 
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complete the execution will be more attractive without 

disregarding the load balancing aspect. 

ACO has been one of the most adaptable algorithms for 

dynamic scheduling in distributed systems. Integration with 

other techniques such as task resubmission and checkpoint is 

essential to further enhance its fault tolerance capability. In 

addition to that, execution history and trust factor can also be 

considered to provide better scheduling decisions to reduce 

the turnaround time and failure rate without significant impact 

to the performance and load balancing of the system. 
 

3. Proposed Algorithm 
 

Enhanced Dynamic ACS-based Fault Tolerance (EDAFT) is 

the extended version of algorithm proposed by [20] that is 

inspired by the foraging behavior of an ant colony to search 

for the food source by constructing optimal path between the 

nest and food source. This analogy is similar to the process of 

constructing optimal path between tasks and resources in grid 

computing system. In the proposed algorithm, this process is 

further extended for ants to have the ability to perform 

resource researching during the checkpoint-based 

resubmission process to assign any failed task to alternative 

resources with higher probability of success. To further 

improve the pheromone update technique, a trust factor is 

introduced to reward fit resources, or penalize unfit resources, 

with a consideration of the execution history to control the 

pheromone reduction or increase. The improved pheromone 

update formula is expected to properly control the task 

assignment based on resource fitness which could eventually 

reduce the possibility of failure. 

During the initial task submission, each resource should have 

pre-defined parameters such as processor speed, current load, 

and bandwidth and number of processing elements. All these 

parameters will be used to calculate the initial pheromone 

value (PVrj) for each combination of resource r and task j. The 

initial pheromone value formula is given by the following 

equation (1): 
 

𝑃𝑉𝑟𝑗 =  [
𝑆𝑗

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑟
+

𝐶𝑗

𝑀𝐼𝑃𝑆𝑟(1−𝑙𝑜𝑎𝑑𝑟)
]
−1

 (1) 

 

Where Sj is the size and Cj is the required computation power 

of a given task j, bandwidthj is the available bandwidth of 

resource r, MIPSr is the processor speed, and loadr is the 

current load at resource r. Note that the initial pheromone 

value is assigned during initialization, but after that, it is 

considered as a resource pheromone value. Since the initial 

pheromone value is calculated for each combination of 

resource and task, this information is stored in a PVmatrix as in 

(2): 
 

𝑃𝑉𝑚𝑎𝑡𝑟𝑖𝑥 =

[
 
 
 

𝑃𝑉1,1 𝑃𝑉1,2 𝑃𝑉1,𝑛−1 𝑃𝑉1,𝑛

𝑃𝑉2,1 𝑃𝑉2,2 𝑃𝑉2,𝑛−1 𝑃𝑉2,𝑛

𝑃𝑉𝑚−1,1 𝑃𝑉𝑚−1,2 𝑃𝑉𝑚−1,𝑛−1 𝑃𝑉𝑚−1,𝑛

𝑃𝑉𝑚,1 𝑃𝑉𝑚,2 𝑃𝑉𝑚,𝑛−1 𝑃𝑉𝑚,𝑛 ]
 
 
 

 (2) 

 

Where n is total number of tasks and m is total number of 

resources. PVmatrix is a logical form of ant topology whereby 

an ant would move from one index to another index to find the 

best resource for task assignment. It is assumed that all the 

resources are interconnected which means that if the task 

originates from a specific resource, it can be assigned to all 

other available resources. Each row in PVmatrix represents the 

list of possible tasks for resource r while each column 

represents the list of possible resources for task j. The largest 

pheromone value in each column will be considered by the 

ants as the most fit resource and the task will be forwarded to 

the resource with highest pheromone for processing.  

As soon as the task is assigned, the pheromone value in the 

PVmatrix will be updated by the global pheromone update (3) to 

reduce the amount of pheromones assigned to the current 

resource, so that it becomes less attractive by the next ant and 

leads to the exploration of other resources. τrj is the amount of 

pheromones on the resource, while ∆τrj is 1/Lbest, where Lbest 

denotes the length of global best tour or otherwise (no global 

best tour found), ∆τrj=0. 
 

𝜏𝑟𝑗 = (1 − 𝜌) ∙ 𝜏𝑟𝑗 + 𝜌 ∙ ∆𝜏𝑟𝑗  (3) 
 

ρ is the evaporation rate that is dynamically controlled by 

using the following formula (4) with m and n as the total 

number of resources and tasks respectively: 
 

𝜌 = [(
𝑛

𝑚
)

2

]
−1

 (4) 

 

A typical ACS algorithm consists of global and local 

pheromone updates. In EDAFT, the local pheromone update 

is improved to include a trust factor so that more pheromone 

is added should the resource complete task execution or 

otherwise the existing pheromone evaporates. The improved 

global pheromone update (5) is given as follows: 
 

𝜏𝑟𝑗 = (1 − 𝜌) ⋅ 𝜏𝑟𝑗 + [𝜌 ⋅ 𝜏0(𝑅𝐻)]𝐶  (5) 
 

Where ρ is the evaporation rate, τrj is the current pheromone 

intensity for resource r, τ0 is the initial pheromone value of 

resource r, C is the trust factor defined by either task 

completion (C = 1.5) or task failure (C = 1.0). The defined 

value of C in this experiment provides the lowest load 

balancing standard deviation using equation (11). The trust 

factor may vary depending on the level of trust sensitivity to 

be applied, in which too much penalty may cause unfit 

resources to never get assigned with tasks after failure or too 

much incentive may cause fit resources to be assigned with 

most of the tasks. RH is the average weighted execution history 

of resource r and is calculated by equation (6): 
 

𝑅𝐻(𝑖) = {
𝑅𝑇(𝑖) =

𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝐶𝑃𝑓𝑎𝑖𝑙𝑒𝑑+𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠
, 𝑖 = 0

(1 − 𝛼) ⋅ 𝑅𝑇(𝑖) + 𝛼 ⋅ 𝑅𝐻(𝑖 − 1), 𝑖 > 0
   (6) 

  

Where RT(i) is the current execution history at take i, CPsuccess 

indicates the current successful checkpoint call, and CPfailed is 

the current failed checkpoint, at resource r respectively. For 

each resource r, i is initially set to 0 and will be incremented 

by 1 for each local pheromone update process, RH(i-1) is the 

previously recorded execution history and α is the degree of 

weighting decrease set to 0.5. The execution history (also 

known as resource fitness) will be used to control the quantity 

of pheromones to be evaporated, or strengthened, at a 

respective resource and eventually helps the following ants to 

identify the best resources during task assignment; the better 

the execution history, the higher the number of tasks assigned.  

Figure 2 illustrates the high-level workflow of EDAFT as 

proposed by [20, 21] with the improved process bolded for 

clarity. An ant will be generated for each task in the queue to 

perform resource searching based on pheromone values. 

Before the first task in queue can be submitted, the initial 

pheromone value will be calculated to determine the state of 

all resources. The resource selection will be performed based 
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on the pheromone levels, either from the initial pheromone 

calculation or the pheromone update process. Once the task is 

assigned to any resource, the ant will apply global pheromone 

update to reduce the amount of pheromone so that the resource 

becomes less attractive for the next ant. Each assigned task 

will be divided into several time-based checkpoints recorded 

during execution. In the event of failure, the task will undergo 

rescheduling process and will be assigned to alternative resource 

from the last saved checkpoint and a local pheromone update 

with penalty will be applied to the resource that failed to reduce 

the pheromone intensity. If the execution is successful, the local 

pheromone update with incentive will be applied to the 

resource to increase the pheromone. In both execution failure and 

execution success scenarios, the resource will be released for the 

next task assignment after the pheromone update process.

 

Yes

START

Calculate initial pheromone 

value for each combination of 

task and resource

For each task in queue, ant 

checks for the best resource 

with highest pheromone

Is task completed?

STOP

Task execution by the 

best resource

Are all tasks 

completed?

Save checkpoint 

information

Apply global 

pheromone update

No

No

Yes

Apply local 

pheromone update

Increase resource 

success count

Is task failed?
No

Retrieve 

checkpoint 

information

Yes

Resubmit failed 

job from the last 

saved state

Apply local 

pheromone update

Increase resource 

failure count

Increase resource 

success count

Apply local 

pheromone update

 
Figure 2. High-level workflow of EDAFT 
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4. Experimental Design and Results 
 

There are various performance metrics used to measure the 

proposed algorithm, which include execution time, 

throughput, makespan, latency, load balancing and success 

rate. Execution time (equation 7) is measured from the 

moment the first task is submitted to the system, 

SubmissionTime1 to undergo scheduling and execution 

process, until the last task n is completely processed, 

CompletionTimen.  
 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑛 − 𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒1  (7)  

 

Throughput (equation 8) is calculated by dividing the total 

number of tasks, n, with the total time taken to completely 

process all tasks [19].  
 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑛

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
  (8)    

 

The average turnaround time per task is also considered as the 

average execution time per individual task, from the moment 

the task received by the resource until completely processed. 

As shown in equation (9), it is measured by summing the 

execution time for each individual task and dividing the result 

by the total number of tasks n. 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑇𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑𝑇𝑖𝑚𝑒 =
∑ (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗−𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗)

𝑛
𝑗=1

𝑛
  (9) 

 

Average latency per task measures the waiting time for each 

task to be processed by the assigned resource, from the 

moment the task is submitted to the queue until arrival at the 

resource. As depicted in equation (10), total latency for all 

tasks is divided by the total number of tasks n. 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ (𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑇𝑖𝑚𝑒𝑗−𝑆𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗)

𝑛
𝑗=1

𝑛
  (10)    

Load balancing is measured by calculating the standard 

deviation of the initially assigned fitness rate and actual ratio 

of total processed tasks, as in equation (11). Population 

standard deviation formula is used as a base formula, as 

follows:  
 

𝜎𝑟 = √
∑(𝑋𝑟−𝜇𝑟)2

𝑁
  (11) 

 

Where Xr is the percentage of total tasks executed by resource 

r, μr is the fitness rate of resource r and N is the total number 

of resources. Instead of using the mean, the percentage of total 

tasks processed by a resource is used to measure the 

effectiveness of the load balancing aspect. The lower the 

standard deviation is, the better load balancing the resource 

has. For a more accurate measurement, the processing 

capability of each resource should be identical, while the task 

and output size should be within an acceptable range. The 

proposed formula is suitable to measure the load balancing at 

the end of simulation but is not intended to measure the load 

balancing during runtime. Finally, the execution success rate 

(equation 12) calculates the total number of successful 

checkpoints, CPsuccess over the total number of recorded 

checkpoints (CPfailed + CPsuccess). 
 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 =
∑𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

∑(𝐶𝑃𝑓𝑎𝑖𝑙𝑒𝑑+𝐶𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
  (12) 

 

To validate the performance of the proposed EDAFT 

algorithm in the presence of failure, pseudorandom algorithm 

is used to randomly assign resource fitness within a defined 

range. In this case, the range of resource fitness is defined as 

having a value between 50% and 100%, as used by [2]. It is 

important to define the range of resource fitness to validate the 

effectiveness of fault tolerance algorithm in handling different 

possibilities of failures. On the other hand, other resources and 

task parameters are adopted from [19] as shown in Table 1.  
 

Table 1. Simulation parameters 

Parameter Value 

No. of resources 100 

No. of tasks 5000 

PE rating 50 MIPS 

Bandwidth 5000 B/S 

Machine per resource 1 

PE per machine 2 

Task length 50000 

File size 100 + (10-40%) 

Output size 250 + (10-50%) 

 

The proposed algorithm was compared with TACO [16], 

FTACO [18], ACOwFT and ACO [19] where all algorithms 

were redeveloped based on published pseudocodes, 

formulations and flowcharts. They are suitable to be used for 

validation, because the EDAFT algorithm is inspired by all 

algorithms in terms of the fault tolerance techniques. All the 

experiments are simulated in a JAVA based simulator, known 

as GridSim Toolkit, because it provides a comprehensive 

simulated grid environment within which most of the 

components are included. Each algorithm is executed 10 times 

for each fault range and the average is taken for a more precise 

measurement. The list of performance metrics includes 

execution time, throughput, average makespan and latency per 

task, load balancing and execution success rate.  

The execution time for all algorithms are almost similar when 

there is no failure (refer Figure 3). However, as the failure rate 

increases, the execution time for EDAFT is the lowest among 

all and followed by ACOwFT and FTACO respectively. The 

results also suggest that ACO and TACO have significantly 

longer execution time because the application of checkpoint 

technique provides significant reduction of execution time as 

the failed task does not need to be re-executed from the 

beginning. This technique is also effective especially when the 

size of each task is big and the expected time to completely 

execute each task is long. 

The results of throughput for all algorithms is depicted in 

Figure 4. Throughput is mainly influenced by the execution 

time and total amount of completed task. In this case, the 

throughput for ACO and TACO are in agreement with the 

execution time in Figure 3. At 0% failure rate, the throughput 

for all algorithms is at the highest, and gradually decreased as 

the failure rate increased. The results also suggest that EDAFT 

has the lowest reduction of throughput from 10% to 50% 

failure rate as compared to the other algorithms. It is crucial 

to preserve the execution time despite in the presence of 

failure to ensure that the throughput can also be preserved. 

As presented in Figure 5, the average execution time for 

EDAFT, FTACO and ACOwFT are almost similar as 

compared to TACO and ACO. This is where the checkpoint 

technique plays a role as it allows each failed task to be 

executed from the last saved state, instead of from the 

beginning, which eventually reduces the turnaround time per 
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individual task. The results also suggest that EDAFT, FTACO 

and ACOwFT are able to control the turnaround time using 

checkpoint technique in the presence of failures so that each 

individual task can be executed completely in a timely 

manner. 
 

 
Figure 3. Results of execution time 

 
Figure 4. Results of throughput 

 

Figure 5. Results of average turnaround time per task 
 

The average latency as shown in Figure 6 is also having the 

same pattern as average turnaround time in Figure 5. The 

results suggest that ACO has the highest latency and followed 

by TACO in which both algorithms do not apply checkpoint 

technique. The latency can also be controlled by properly 

distributing the tasks to all available resources to avoid 

bottleneck where queues for some resources are longer than 

the average queue length. 

Load balancing is essential to measure how well the task 

distribution is performed. As shown in Figure 7, ACOwFT 

and ACO have relatively the lowest standard deviation 

because the task assignment is done based on the current load 

of each resource. As for EDAFT with almost the same 

performance as ACOwFT, the task assignment is performed 

by considering the execution history in determining the fitness 

of the resource and balancing the load. The closer the standard 

deviation to 0, the better the load balancing is. In other words, 

without even knowing the fitness of a specific resource in the 

first place, the proposed algorithm is able to apply heuristic 

capability to determine the fitness based on execution history 

while preserving the resource utilization. 
 

Figure 6. Results of average latency per task 
 

In addition to that, the trust factor is useful to reward fit 

resources or penalize unfit resources based on task execution 

status. Coupling both components provides a more effective 

pheromone update process that can tackle load balancing and 

the execution success rate. 
 

Figure 7. Results of load balancing 
 

In any fault tolerance system, the ultimate aim is to maintain 

the execution success rate without disregarding the 

performance. Figure 8 shows that EDAFT has a higher 

success rate compared to the other algorithms. Surprisingly, 

TACO has the second highest success rate because it assigns 

most of the tasks to fit resources rather than unfit resources. It 

is obvious that whenever most of the tasks are assigned to the 

most fit resources, it would increase the possibility of success.  
 

 
Figure 8. Results of success rate 

 

The drawback of TACO is that the latency and makespan will 

be significantly higher because fit resources will have a longer 

queue. In addition to that, ACOwFT and ACO have the lowest 
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success rate because by referring to the load alone is not 

sufficient to determine the fitness of the resource. Some 

resources may have low load because they are not actively 

executing tasks. However, for EDAFT, it can maintain the 

success rate in addition to maintaining throughput and 

providing better load balancing, lower latency and makespan. 

It is also discovered that by reducing the trust value C in the 

presence of failure, EDAFT can achieve a higher success rate, 

but will also increase the load balancing standard deviation. 

Thus, it is important to define the most optimal trust value to 

achieve either the best execution success rate or the best load 

balancing. 
 

5. Conclusion 
 

It can be concluded that EDAFT has the best overall 

performance compared to the other algorithms in terms of 

execution time, throughput, average turnaround time, average 

latency and execution success rate. However, in terms of load 

balancing, ACOwFT has the best performance with a slight 

difference compared to ACO and EDAFT. Despite EDAFT 

having an overall good performance, it can be further 

enhanced by including a temporary suspension so that a 

recently failed resource will not be assigned a task until it is 

recovered from failure. This capability may be effective, 

especially when the size of an individual task is large at a point 

of time, when most resources are busy processing a large task 

and only the current suspended task is idle. Crucially, the 

decision is important to not assign the task immediately to the 

recently failed resource to reduce the possibility of another 

failure and to select the resource that can complete current 

execution in the least time and has a good fitness. 

Additionally, the length of suspension is also an important 

aspect so that a sufficient length of suspension can be applied 

to preserve the load balancing and execution success rate. 
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