
185
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Dynamic Detection of Software Defects Using

Supervised Learning Techniques

Alaa Al-Nusirat 1, Feras Hanandeh 2, Mohammad Kharabsheh3, Mahmoud Al-Ayyoub4 and Nahla Al-dhufairi5

1, 2 and 3 Faculty of Prince Al-Hussein Bin Abdallah II For Information Technology, The Hashemite University, Jordan

4 Faculty of Computer and Information Technology, Jordan University of Science and Technology, Jordan
5 School of Engineering, Babylon University, Iraq

Abstract: In software testing, automatic detection of faults and

defects in software is both complex and important. There are

different techniques utilized to predict future defects. Machine

learning is one of the most significant techniques used to build

such prediction models. In this paper, we conduct a systematic

review of the supervised machine learning techniques (classifiers)

that are used for software defect prediction and evaluate their

performance on several benchmark datasets. We experiment with

different parameter values for the classifiers and explore the

usefulness of employing dimensionality reduction techniques, such

as Principle Component Analysis (PCA), and Ensemble Learning

techniques. The results show the effectiveness of the considered

classifiers in detecting bugs. Additionally, using PCA did not have

a noticeable impact on prediction systems performance while

parameter tuning positively impact classifies’ accuracy, especially

with Artificial Neural Network (ANN). The best results are

obtained by using Ensemble Learning methods such as Bagging

(which achieves 95.1% accuracy with Mozilla dataset) and Voting

(which achieves 93.79% accuracy with kc1 dataset).

Keywords: Software defects prediction, Machine learning,

Artificial Neural Network, supervised classifiers.

1. Introduction

Machine learning (ML) is a branch of Artificial Intelligence

(AI) concerned with “teaching” computers how to act

without being explicitly programmed for every possible

scenario [2]. The main concept in ML is developing

algorithms that can self-learn by training on a very large

number of inputs (possibly with known results) [1] [3].

One of the major types of ML is supervised learning. This

type relies fundamentally on estimating the future instances

based on known instances. The aim of supervised learning is

to extract a pattern of the distribution of class labels which

rely on predictor features. This pattern is used to select class

labels to the testing instances. Class labels for these instances

are selected based on the predictor features that are known.

Since features can be large in number and some of them can

be less informative than the others, Feature Selection (FS),

which is also called attribute selection, is a fundamental

phase to build any prediction model.

Detecting bugs and fixing them are reflected positively on

the software quality while locating the bugs increases the

capacity of systems developing and increase the software

reliability and efficiency [4]. Approaching the problem of

bug detection as a supervised learning problem is a common

trend in the literature.

According to many studies carried out in the field of

software testing [6] [7], there many metrics of the source

code that can be considered as features/attributes to identify

defects. The features are extracted using several

measures/techniques such as McCabe, Halstead, Line Count,

Operator, and Branch Count, etc. Since there is a large

number of such software metrics that can be used as features,

FS is used to get the most relevant and informative ones in

order to enhance the prediction accuracy [5].

Most of the information technology companies, such as

Ericsson, Samsung and Microsoft, need to purpose high

quality and error-free products. Since the number of defects

in the products can be an index of the quality of the software,

these companies have focused on the issues related to the

defects in their products. Predicting software faults at an

early phase of the software life cycle helps to reduce the

costs of product development and maintenance.

There are two types of analysis can be carried out to predict

software defect based on code metrics. The first is detecting

whether code segment contains bugs or not. The second is

estimating the potential impact of the defect taking into

account various points of view such as density, severity or

priority. In this paper, we focus primarily on the first type.

However, it also includes some of the experiments involving

the second type.

The objective of this research is to improve and develop an

effective and accurate model for automatic software defect

prediction. The contributions of this paper include presenting

a comprehensive study of the software defect prediction

algorithms, proposing a new model based on using different

preprocessing and FS algorithms to obtain high effective and

efficient model. Another significant contribution of this

research is presenting an Ensemble Learning method for

software defect prediction.

The rest of this paper structured as: In Section 2 some related

work has been addressed. Then, the methodology is

introduced in Section 3. We conclude our work in addition to

the future works in the last section.

2. Related Work

Several methods have been introduced in the literature for

the software defect prediction, and each has its own cons and

pros according to speed, accuracy, and cost, etc. These

methods included the work of [8], the authors carried out an

analytical study which aims to compare and evaluate the

performance of four types of the classifier which are Random

Forest, Naïve Bayes, RPart and SVM. All the datasets were

taken from the widely used NASA projects.

Selvaraj et al. in 2013 [9] used the Support Vector Machine

(SVM) for predicting software fault. They compared the

performance of SVM with Naïve Bayes model and Decision

stumps. SVM performed better than Naïve Bayes model and

Decision stumps, this study evaluated the performance of

http://mlms.hu.edu.jo/course/category.php?id=1

186
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

SVM with different kernels based on six measures which are:

accuracy, detection probability (dp) or recall, precision,

Probability of false alarm (pf), and effort. KC1 dataset from

NASA Metrics Data is used. It yielded recall = 0.86,

accuracy = 86.05, F-Measure = 0.80, and precision = 0.804.

Another approach based on combining more than one

machine learning technique has also shown in the literature

[10]. Amardeep and Kaur paper 2014 attempted to evaluate

the performance of the predictive accuracy models in the

literature. The study proceeded by a principle of an area

under the curve (AUC). This approach depends on analyzing

prediction model that built using three common methods

which are; Bagging, Boosting, and Rotation Forest. The

experiments were conducted using15 Java codes from

PROMISE database.

Several researchers adjust Neural Network learning and

support vector machine algorithms to build bug prediction

model [11]. They suggested a hybrid model using these two

classifiers to increase the efficiency of bug prediction

techniques. Their results were conducted using three

different datasets from NASA to demonstrate that using PNN

with SVM outperformed the use of other machine learning

algorithms, for example, the accuracy of the proposed

method with CM1 dataset was 90.16% which increases 5%

over using other classification algorithms.

In 2000 [12] Zhang presented a comprehensive study about

machine learning algorithms, and how each algorithm can

actively contribute to the tasks of software engineering. In

addition, he summarized the steps of the algorithm to

perform each software engineering task. To enrich the topic,

Zhang presented more detail in his book in 2003 [13].

In 2014 [14], Petkovic et. al. used a machine learning model

to build an estimation and prediction criteria of the efficiency

of distributed teamwork in a software engineering course. To

realize their goal, they used the random forest classification

(RF) model, by following a number of steps. Their results

showed that RF is a good model in the prediction of software

engineering process and performance.

The techniques used in their research in 2016 by Tsakiltsidis

et al. [15] were similar to my own techniques, which

concentrate on analyzing performance defects early, the

authors used the mobile advertisement and marketing domain

to find defect prediction model which is handy and ideal.

Therefore, they utilized four classifiers to build several

models; which are; C4.5 Decision Trees, Naive Bayes,

Bayesian Networks, and Logistic Regression. Outcomes

proved that a C4.5 model is the best model that can be used

to predict performance defects, it yielded recall = 0.73,

accuracy = 0.85, and precision = 0.96, such that lines of code

changed (lines of code added or removed), file age and file

size were used as explanatory variables.

In this study [16], the authors focused on code clones which

can be defined as a code segment that frequently more than

one time in the same program that resulted in a longer

program with high complexity time, so their thought was to

use support vector machine in order to estimate the identity

between two code-clones. The authors applied their

experiments on C source codes as inputs to extract features

from them, after that the authors used Tkinter tool for

classification.

The implementation of software metrics and software

visualization after combination helps in a reverse

engineering field. Michele Lanza (2001) [17] approach

proposed an effective way to recover the development of a

matrix of software from version to another. This matrix can

minimize the quantity of the needed data in analyzing

software development. This estimation matrix is used

fundamentally to imagine the evaluation of categories in

object-oriented systems. But the proposed method has some

limitations such as negative effects on the number of changes

between the two versions, missing of scalability in generating

large numbers of classes, and changing the class name which

will lead to deal with it as a new different approach.

In this study [18], the authors have done a performance

analysis on some classification algorithms including

Bayesian Logistic Regression, Hidden Naïve Bayes, Radial

Basis Function (RBF)Network, Voted Perceptron, Lazy

Bayesian Rule, Logit Boost, Rotation Forest, NNge, Logistic

Model Tree, REP Tree, Naïve Bayes, Multilayer Perceptron,

Random Tree and J48. The rendering of the algorithms was

deliberate in terms of Accuracy, Precision, Recall,

FMeasure, Root Mean Squared Error, Receiver Operator

characteristics Area and Root Relative Squared Error using

WEKA data mining tool. To hold a balanced judgment of the

classification algorithms’ performance, no feature selection

or performance boosting method was appointed. The

research display that a number of classification algorithms

exist that if duly examined through feature selection means

will produce more accurate results for email classification

[23]. Rotation Forest has shown a near degree to achieve the

most accurate result. Rotation Forest is set to be the classifier

that accords the best accuracy of 94.2%. Though none of the

algorithms didn't achieve 100% accuracy in sorting spam

emails, Rotation Forest has shown a near stage to obtain the

most accurate result.

3. Methodology

This section, characterize the researcher’s procedure which

is used for the purposes of software defect prediction that is

theorized as one of the most important issues related to the

quality of software.

This work suggests several models depending on supervised

learning methods. In this paper, the proposed work aims to

build a set of models that can correctly predict the class of

the different source code metrics.

The input to these models is a set of source code metrics

which is called training data, these metrics belong to defect

or non-defect classes and a set of attributes that describing

different characteristics of the source code (i.e., line count of

code, difficulty, design complexity, etc.). Those attributes

can be used to estimate the unlabeled source code for which

class information is belongs to them.

The methodology of this paper will be presented in the next

subsections. These subsections include the

1. Feature Selection Technique: is an essential phase to

build any prediction model. The goal of this step to choose

the minimum number of input features and determine the

features that are the most efficient in improving the

performance of prediction. The features were extracted using

various techniques such as McCabe, Halstead, Line Count,

Operator, and Branch Count…etc.

2. Preprocessing: Principal Component Analysis (PCA)

[19] is used to solve the dimensionality reduction problem, it

is a preprocessing step for data before the use of supervised

187
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

machine learning classifiers. This operation helps in reducing

the time complexity and increasing efficiency of classifiers.

3. The Ensemble Learning: The proposed approach is

based on combining two different classifiers namely:

(Decision Tree) (Support Vector Machine) to get a more

accurate result than a single classifier.

Figure 1 summarizes the steps of our proposed

methodology.

In Figure 1, shows the major steps of defect prediction

model which is mainly divided into many stages the author

reads the report of defects from open source code, extracts

features stage that includes basic complexity, independence

of the program, the complexity of the design and lines of

code.

Classify training model for extracted features. Apply

supervised classifiers to predict bugs. The last stage is the

decision whether the class is a defect or non-defect.

Figure 1. Major steps of defect prediction model

This work investigates the effect of implementing various

classifiers on the performance of the software defect

prediction system. The feature selection for representation of

source code is built is based on standard techniques such as

McCabe and Halstead.

According to many studies carried out in the field of

software metrics [20] [21], the metric of source code was

considered as features to identify defects. The features were

extracted using various techniques such as McCabe,

Halstead, Line Count, Operator, and Branch Count…etc.

4. Experimental Results

In this paper conducted four experiments over deferent

datasets that were taken from PROMISE and NASA

databases repository datasets which are described below:

NASA datasets are publically available in the NASA

repository by NASA Metrics Data Programme. According to

Malhotra's study in 2015 [22], this dataset is used in 60% of

the selected primary studies.

We used five standard datasets; mozilla4 dataset, ar1, kc1,

ar4 and pc1 dataset.

• Mozilla4: this dataset is written in C++ language, It

consists of 15544 modules and 5 static code attributes

(McCabe, Halstead and LOC measures) and one defect

information (0/1).

• Kc1: this dataset is written in C++ language, it has

included 43 KLOC, number of modules is 2108 and

defective modules 325

• Pc1 : this dataset is written in C language, it has included

40 KLOC, number of modules is 1107 and defective

modules 76

• Ar1 & Ar4: These datasets are written in C language,

each of them consists of 121 modules (9 defective / 112

defect-free) and 29 static code attributes, and one defect

information (false for defect /true for non-defect). In Table 1

below summarizes the specifications of each used dataset.

Table 1. The datasets used in this study

Dataset
of

modules
Language

of

attributes

mozilla4 15544 C++ 6

Kc1 2108 C++ 43

Ar1 121 C 30

Ar4 121 C 30

Pc1 1107 C 40

One of the most popular public domain data mining tools is

the Waikato Environment for Knowledge Analysis (WEKA)

tool is open source Java code, this tool is widely used for

classification purposes to implement the supervised machine

learning techniques. In this paper, used WEKA 3.7 version

to conduct empirical results for evaluating the efficiency of

five supervised classification techniques in software bug

prediction. This tool is available online freely. WEKA

supports a well-tested and reliable Java implementation of

many methods for all type of tasks required by most machine

learning and data mining issues.

Our experiments are divided into four main parts: first part is

the results of implementation five well-known supervised

classifiers with the default settings for all algorithms. The

second part is the implementation of adaptive supervised

classifiers, where some of the parameters are modified; in the

third part, the researcher presented comparisons of the

supervised classifiers after using PCA preprocessing

methods. Finally, the researcher presented our proposed

Ensemble Learning techniques that are combined two

supervised classifiers. The researcher tested all algorithms by

using the 10-fold cross-validation method. The results are

analyzed in terms of accuracy, precision, recall and F1-

measure.

Experiment 1: Results of Supervised Classifiers with

Default Settings

In this experiment, we used five standard datasets to display

the results, knn achieved good results with ar1, kc1, pc1

datasets, and the accuracy obtained was (90.0826%),

(95.1724%) and (92.0649%) respectively. As we see, the F-

measure results are equal 0.901, 0.946 and 0.921

respectively, whereas the accuracy was (79.4393%) with ar4

dataset, and Table 2 shows the gained results.

Table 2. Results of Implementing KNN using default

settings

Dataset Accuracy Recall Precision
F-

measure

Mozilla4 88.9932% .890 .890 .890

ar1 90.0826% .901 .901 .901

kc1 95.1724% .952 .944 .946

ar4 79.4393% .794 .771 .780

pc1 92.0649% .921 .922 .921

A sample of the results is shown in Table 3 below. As

shown, mozilla4, ar1, kc1, pc1 datasets resulted respectively

188
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

in 94.5642%, 92.562%, 94.4828% and 93.5978% accuracy

with environment prediction.

Table 3. Results of Implementing Decision Tree using

default settings

Dataset Accuracy Recall Precision
F-

measure

mozilla4 94.5642% .946 .947 .945

ar1 92.562% .926 .857 .890

kc1 94.4828% .945 .893 .918

ar4 81.3084% .813 .806 .809

pc1 93.5978% .936 .922 .924

Table 4 shows the gained results. The results below show

that all datasets achieved good results except pc1 with

accuracy (74.4%), such that the accuracy of the rest datasets

was in the range [81 - 93] %, and the f-measure was in the

range [80 - 93] %.

Table 4. Results of Implementing BayesNet using default

settings

Dataset Accuracy Recall Precision
F-

measure

mozilla4 93.522% 0.935 0.935 0.935

ar1 90.9091% 0.909 0.856 0.882

kc1 87.5862% 0.876 0.927 0.897

ar4 81.3084% 0.813 0.806 0.809

pc1 74.3913% .744 .900 .803

After analyzing Table 5, the results show that kc1 got

93.7931% accuracy. The average of four measures obtained

against five bug prediction datasets indicates that the SVM

algorithm achieved stable results. However, and for Mozilla4

dataset, the SVM classifier has 10%, 10%, 9% and 10%

lower Accuracy, Recall, Precision and F1-measure than NB

respectively.

Table 5. Results of Implementing SVM using default

settings

Dataset Accuracy Recall Precision
F-

measure

Mozilla4 83.21% .832 .848 .836

ar1 91.7355% .917 .856 .886

kc1 93.7931% .938 .917 .924

ar4 85.0467% .850 .838 .823

pc1 92.9666% .930 .866 .897

The Table 6 below shows that all datasets achieved good

results except for ar4 with accuracy (81.3%) such that the

accuracy of the rest datasets was in the range [90 – 93.5] %,

and the f-measure was in the range [89 - 93] %, another

notable result which was reported is that all measures vary

among datasets.

Table 6. Results of Implementing ANN using default

settings

Dataset Accuracy Recall Precision
F-

measure

mozilla4 91.1869% .912 .911 .911

ar1 90.0826% .901 .890 .895

kc1 93.1034% .931 .931 .931

ar4 81.3084% .813 .799 .805

pc1 93.5978% .936 .921 .917

For example, "pc1" dataset has a prediction F1-measure of

91.7% while the same dataset has a noticeably poor Recall of

80.1% using BayesNet. These poor results indicate that the

"pc1" dataset is highly overlapped with other datasets.

Finally, ANN and NB classifiers perform highly in the ar1

dataset.

Experiment 2: Results of Adaptive Supervised Classifiers

with Adjusted Settings

After analyzing Table 7, the researcher found that using

Manhattan distance little bit greater than Euclidian distance

with regards to F1-measure in ar4 and mozilla4.

Table 7. Results of Implementing KNN using modified

settings

Dataset Distance Accuracy Recall Precision
F-

measure

Mozilla

4

Euclidian 89.13% 0.891 0.892 0.892

Manhattan 89.7523% .898 .899 .898

ar1
Euclidian 90.08% 0.901 0.855 0.877

Manhattan 89.2562% .893 .854 .873

kc1
Euclidian 95.17% 0.952 0.954 0.934

Manhattan 94.4828% .945 .926 .929

ar4
Euclidian 84.11% 0.841 0.822 0.816

Manhattan 85.9813% .860 .851 .837

pc1
Euclidian 92.25% 0.922 0.908 0.914

Manhattan 92.2453% .922 .905 .911

The experimental results had shown in Table 8 that mozilla4

dataset yielded 94.6092% accuracy, followed by kc1 with a

closed result equals to 94.4828%.

Table 8. Results of Implementing Decision Tree using

modified settings

Dataset Accuracy Recall Precision
F-

measure

Mozilla4 94.6092% .946 .947 .945

Ar1 91.7355% .917 .856 .886

Kc1 94.4828% .945 .893 .918

Ar4 81.3084% .813 .775 .779

Pc1 93.2372% .932 .912 .909

This experiment is conducted using BayesNet, shows that the

used search algorithm is LAGD Hill Climber- L 2-G 5- P 1 -

S BAYES, Table 9 shows the gained results. All datasets

achieved good results except pc1 with accuracy (76.7358%),

such as that the accuracy of the rest datasets was in the range

[81.3 – 94.4] %, and the f-measure was in the range [80.9 –

94.3] %.

 Table 9. Results of Implementing BayesNet using modified

settings

Dataset Accuracy Recall Precision
F-

measure

mozilla4 94.3969% .944 .947 .943

ar1 90.9091% .909 .856 .882

kc1 87.5862% .876 .927 .897

ar4 81.3084% .813 .806 .809

Pc1 76.7358% .767 .897 .819

This part of the second experiment tested SVM classifier

with the adaptive settings, it's worthily mentioned that the

filterType = Standardize training data with a number of

kernel = 250007-G 11.0. Table 10 shows the gained results

after analyzing it the researcher found that kc1 dataset

outperformed the other datasets with regards to accuracy and

F1-measures which are equal to (94.4828%) and (.918)

respectively.

The last phase of experiment two tested Neural Network

classifier with the adaptive settings that are used to conduct

it, such that validationSetSize = 43, and the randomSeed = 5.

Table 11 shows the gained results. The results below showed

189
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

that all datasets achieved good results except ar4 with

accuracy (86.9159%), such as the accuracy of the rest

datasets was in the range [90.4 – 95.86]%, and the f-measure

was in the range [89 - 93]%.

Table 10. Results of Implementing SVM using modified

settings

Dataset Accuracy Recall Precision
F-

measure

mozilla4 89.1991% .892 .892 .892

ar1 90.9091% .909 .856 .882

kc1 94.4828% .945 .893 .918

ar4 81.3084% .813 .661 .729

Pc1 93.688% .937 .924 .918

Table 11. Results of Implementing ANN using modified

settings

Dataset Accuracy Recall Precision
F-

measure

Mozilla4 90.4214% .904 .904 .903

ar1 92.562% .926 .857 .890

kc1 95.8621% .959 .960 .947

ar4 86.9159% .869 .870 .845

Pc1 93.147% .931 .908 .907

The Figures 1-6 below compare between default and

modified settings for each dataset.

Figure 2. A comparison between default and adaptive

classifiers using mozilla4 dataset

Figure 3. A comparison between default and adaptive

classifiers using ar1 dataset

Figure 4. A comparison between default and adaptive

classifiers using kc1 dataset

Figure 5. A comparison between default and adaptive

classifiers using ar4 dataset

Figure 6. A comparison between default and adaptive

classifiers using pc1 dataset

After analyzing Figures 1-6 above, the researcher found that

the adaptive classifier outperformed default settings on most

datasets with regards to accuracy results. Recall results

obtained showed that the ar4 was positively affected by the

modified settings of the classifier on two models which are,

KNN and ANN.

Moreover, for the ar1 dataset, the ANN classifier has

(2.48%) higher accuracy than default settings.

Experiment 3: Results of Supervised Classifiers with

Preprocessing Feature selection: PCA.

190
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Table 12. Results of Implementing PCA with different

classifiers with preprocessing Feature selection: PCA.

Table 12 shows the gained results that for the mozilla4

dataset, the accuracy achieved between 0.75 to 0.85%, were

the best result gained with kNN with accuracy (85.4037%).

Also, the same results were obtained with using ar1, between

(88%) with KNN and (92%) with BayesNet.

Experiment 4: Results of Ensemble Learning Classifiers

In this experiment, a combination of classifiers with some

major modifications has been applied. The researcher

combined Bagging with REPTree classifier the researcher

chose bagging for its efficiency and REPTree classifier for

its flexibility and appropriateness to the real world scenarios.

The aim of generating additional datasets in training phase is

done by distributing a specified percentage of features in the

training dataset with the remaining features in the test

dataset; this approach is called Bagging.

Table 13. Results of Implementing Ensemble Learning

methods

Dataset

Hybrid

machine

learning

methods

Accuracy Recall Precision
F-

measure

mozilla4

Bagging

+

REPTree

95.01% 0.95 0.952 0.949

ar1 92.56% 0.926 0.857 0.89

kc1 93.79% 0.938 0.892 0.915

ar4 85.05% 0.85 0.838 0.823

pc1 93.51% 0.935 0.919 0.919

mozilla4
Vote

 +

REPTree

+ Ibk

93.46% 0.935 0.934 .9340

ar1 92.56% 0.926 0.857 0.89

kc1 93.79% 0.938 0.917 0.924

ar4 84.11% 0.841 0.822 0.822

pc1 93.51% 0.935 0.919 0.918

After analyzing Table 13 above, it was noted that using

those two Ensemble Learning methods achieved the best

results compared to the previous three experiments. The

highest accuracy is gained when applied over mozilla4

dataset. It was found that the Ensemble Learning classifier

gained good results in the first three experiments with

accuracy (95.1%) with an increase of (1%) accuracy over

adaptive DT and Adaptive NB on most datasets with regards

to accuracy results.

Finally, according to pc1, all the accuracy results were

approximately (93%) except for (default and adaptive NB)

with 74.39% and 76.73% respectively. The Figure 7 below

summarizes the comparison between default and Ensemble

Learning model in terms of accuracy.

Figure 7. Comparison between default and Ensemble

Learning model in terms of accuracy

5. Conclusions

This research deals with the task of software defect

prediction. In this task, are given some of the predefined

datasets that are organized in a defect/ non-defect structure.

The target of defect prediction is to efficiently and

effectively combine further information on classes' structure

into the learning process.

The research is given in this paper concentrates on two

aspects of bug prediction: learning and performance

evaluation. We argue that software should be consistent with

no bugs. Then, five learning algorithms are implemented

carried out consistent classification. The results showed that

the researchers use a decision tree for bug prediction studies

and avoid using Naïve Bayes.

The main contribution of this research is the new Ensemble

Learning software defect prediction model. For instance,

when default Machine Learning classifier is applied on the

mozilla4 dataset, the average accuracy was 90%, while 95%

reached when applying the Ensemble learning method.

6. Future Work

Future studies will utilize feature selection method to resolve

the problem of extracted a fully large number of metrics used

as features and with hardness in identifying any of these

features is the best way to realize the best performance of the

predicting defect systems.

In a future study, research can be taken out to get better the

quality of the software defect prediction model by applying

other existing machine learning algorithms.

Recommendation for future study is to increase the size of

the software defect prediction datasets since a larger pattern

size will produce more accurate results.

7. Acknowledgement

The current study was submitted in partial fulfillment of the

requirements for the degree of master for the lead author.

References

[1] M. Bkassiny, Y. Li ,SK. Jayaweera, “ A survey on machine-

learning techniques in cognitive radios,” IEEE

Communications Surveys & Tutorials, Vol. 15, No. 3, pp.

1136-59, 2013.

[2] F. Thung, S. Wang, D. Lo and L. Jiang, “An Empirical Study

of Bugs in Machine Learning Systems,” IEEE 23rd

191
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

International Symposium on Software Reliability

Engineering, Dallas, pp. 271-280, 2012.

[3] J. S. Di Stefano and T. Menzies, “Machine learning for

software engineering: case studies in software reuse, ”, 14th

IEEE International Conference on Tools with Artificial

Intelligence, pp. 246-251, 2002.

[4] K. A. Gunes, and L. Hongfang, “ Building effective defect-

prediction models in practice,” IEEE Software, Vol. 22, No.

6, pp. 23-29 , 2005.

[5] J. Śliwerski, T. Zimmermann, A. Zeller, “ When do changes

induce fixes? ,” InACM sigsoft software engineering notes ,

Vol. 30, No. 4, pp. 1-5 , 2005.

[6] S. Agarwal and T. Divya, “A feature selection based model

for software defect prediction. ,” International Journal of

Advanced Science and Technology, Vol. 65, pp. 39-58, 2014.

[7] V. Gupta, N. Ganeshan and T. K. Singhal, “Developing

Software Bug Prediction Models Using Various Software

Metrics as the Bug Indicators,” International Journal of

Advanced Computer Science and Applications, Vol. 6, No. 2,

pp. 60-65, 2015.

[8] D. Bowes, H. Tracy and P, Jean,“Software defect prediction:

do different classifiers find the same defects? ,” Software

Quality Journal, Vol. 26, No. 2, pp. 1-28, 2017.

[9] P.A .Selvaraj ,Dr.P. Thangaraj, “Support Vector Machine for

Software Defect Prediction,” International Journal of

Engineering & Technology Research, Vol. 1, No. 2, pp. 68-

76, 2013.

[10] A. Kaur and K. Kaur, “Performance analysis of ensemble

learning for predicting defects in open source software,”

In Advances in Computing, Communications and Informatics

(ICACCI, 2014 International Conference on, IEEE, PP. 219-

225, 2014.

[11] M. M .Askari and K. B. Vahid,“Software defect prediction

using a high performance neural network,” International

Journal of Software Engineering and Its Applications , pp.

177-188, 2014.

[12] DU. Zhang, “Applying machine learning algorithms in

software development,”Proceedings of the 2000 Monterey

workshop on modeling software system structures in a fastly

moving scenario, Vol. 26, No. 2, pp. 275-291, 2000.

[13] DU. Zhang and JP. Jeffrey , “Machine learning and software

engineering. ,” Software Quality Journal , Vol. 11, No. 2, pp.

87-119, 2003.

[14] D.Petkovic, M. Sosnick-Pérez, S. Huang, R.Todtenhoefer,K.

Okada,S. Arora ,R. Sreenivasen,L. Flores, S. Setap Dubey, “

Software engineering teamwork assessment and prediction

using machine learning,” In2014 IEEE Frontiers in Education

Conference (FIE) , pp. 1-8, 2014.

[15] S.Tsakiltsidis, A. Miranskyy and E. Mazzawi, “On Automatic

Detection of Performance Bugs,” In Software Reliability

Engineering Workshops (ISSREW), PP.132-139, 2016.

[16] S. Jadon, “Code clones detection using machine learning

technique: Support vector machine,” In Computing,

Communication and Automation (ICCCA), PP. 399-

303,2016 .

[17] M. Lanza, “The evolution matrix: Recovering software

evolution using software visualization techniques,”

Proceedings of the 4th international workshop on principles

of software evolution, PP 37-42, 2001.

[18] M.Shuaib,O. Osho, I.Ismaila,JK, “Alhassan , Comparative

Analysis of Classification Algorithms for Email Spam

Detection,” International Journal of Computer Network and

Information Security,VOL.10,NO.1,2018.

[19] S. Karamizadeh, S. Abdullah, S. M. Manaf, M.Zamani, and

H. Alireza, “An overview of principal component

analysis,” Journal of Signal and Information

Processing ,vol.4,no. 3, pp.173 , 2013.

[20] R.Moser, W. Pedrycz and G. Succi, “ A comparative analysis

of the efficiency of change metrics and static code attributes

for defect prediction,”In Proceedings of the 30th international

conference on Software engineering ACM,PP. 181-190 ,

2008.

[21] K. GaoT. M. Khoshgoftaar, H. Wang and N. Seliya, “

Choosing software metrics for defect prediction: an

investigation on feature selection techniques,” Software:

Practice and Experience, vol.41,no.5,pp. 579-606 ,2011.

[22] R. Malhotra, “ A systematic review of machine learning

techniques for software fault prediction,” Applied Soft

Computing, pp.504-518 , 2015.

[23] MS.Gadelrab, M.ElSheikh, MA. Ghoneim, M. BotCap.

Rashwan, “ Machine Learning Approach for Botnet

Detection Based on Statistical Features,” International

Journal of Communication Networks and Information

Security,vol.10,no.3,pp.563, 2018.

