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Abstract: In software testing, automatic detection of faults and 

defects in software is both complex and important. There are 

different techniques utilized to predict future defects. Machine 

learning is one of the most significant techniques used to build 

such prediction models. In this paper, we conduct a systematic 

review of the supervised machine learning techniques (classifiers) 

that are used for software defect prediction and evaluate their 

performance on several benchmark datasets. We experiment with 

different parameter values for the classifiers and explore the 

usefulness of employing dimensionality reduction techniques, such 

as Principle Component Analysis (PCA), and Ensemble Learning 

techniques. The results show the effectiveness of the considered 

classifiers in detecting bugs. Additionally, using PCA did not have 

a noticeable impact on prediction systems performance while 

parameter tuning positively impact classifies’ accuracy, especially 

with Artificial Neural Network (ANN). The best results are 

obtained by using Ensemble Learning methods such as Bagging 

(which achieves 95.1% accuracy with Mozilla dataset) and Voting 

(which achieves 93.79% accuracy with kc1 dataset). 
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1. Introduction 
 

Machine learning (ML) is a branch of Artificial Intelligence 

(AI) concerned with “teaching” computers how to act 

without being explicitly programmed for every possible 

scenario [2]. The main concept in ML is developing 

algorithms that can self-learn by training on a very large 

number of inputs (possibly with known results) [1] [3].  

One of the major types of ML is supervised learning. This 

type relies fundamentally on estimating the future instances 

based on known instances. The aim of supervised learning is 

to extract a pattern of the distribution of class labels which 

rely on predictor features. This pattern is used to select class 

labels to the testing instances. Class labels for these instances 

are selected based on the predictor features that are known. 

Since features can be large in number and some of them can 

be less informative than the others, Feature Selection (FS), 

which is also called attribute selection, is a fundamental 

phase to build any prediction model. 

Detecting bugs and fixing them are reflected positively on 

the software quality while locating the bugs increases the 

capacity of systems developing and increase the software 

reliability and efficiency [4]. Approaching the problem of 

bug detection as a supervised learning problem is a common 

trend in the literature. 

According to many studies carried out in the field of 

software testing [6] [7], there many metrics of the source 

code that can be considered as features/attributes to identify 

defects. The features are extracted using several 

measures/techniques such as McCabe, Halstead, Line Count, 

Operator, and Branch Count, etc. Since there is a large 

number of such software metrics that can be used as features, 

FS is used to get the most relevant and informative ones in 

order to enhance the prediction accuracy [5]. 

Most of the information technology companies, such as 

Ericsson, Samsung and Microsoft, need to purpose high 

quality and error-free products. Since the number of defects 

in the products can be an index of the quality of the software, 

these companies have focused on the issues related to the 

defects in their products. Predicting software faults at an 

early phase of the software life cycle helps to reduce the 

costs of product development and maintenance. 

There are two types of analysis can be carried out to predict 

software defect based on code metrics. The first is detecting 

whether code segment contains bugs or not. The second is 

estimating the potential impact of the defect taking into 

account various points of view such as density, severity or 

priority. In this paper, we focus primarily on the first type. 

However, it also includes some of the experiments involving 

the second type. 

The objective of this research is to improve and develop an 

effective and accurate model for automatic software defect 

prediction. The contributions of this paper include presenting 

a comprehensive study of the software defect prediction 

algorithms, proposing a new model based on using different 

preprocessing and FS algorithms to obtain high effective and 

efficient model. Another significant contribution of this 

research is presenting an Ensemble Learning method for 

software defect prediction. 

The rest of this paper structured as: In Section 2 some related 

work has been addressed. Then, the methodology is 

introduced in Section 3. We conclude our work in addition to 

the future works in the last section. 
 

2. Related Work  
 

Several methods have been introduced in the literature for 

the software defect prediction, and each has its own cons and 

pros according to speed, accuracy, and cost, etc. These 

methods included the work of [8], the authors carried out an 

analytical study which aims to compare and evaluate the 

performance of four types of the classifier which are Random 

Forest, Naïve Bayes, RPart and SVM. All the datasets were 

taken from the widely used NASA projects. 

Selvaraj et al. in 2013 [9] used the Support Vector Machine 

(SVM) for predicting software fault. They compared the 

performance of SVM with Naïve Bayes model and Decision 

stumps. SVM performed better than Naïve Bayes model and 

Decision stumps, this study evaluated the performance of 

http://mlms.hu.edu.jo/course/category.php?id=1
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SVM with different kernels based on six measures which are: 

accuracy, detection probability (dp) or recall, precision, 

Probability of false alarm (pf), and effort. KC1 dataset from 

NASA Metrics Data is used. It yielded recall = 0.86, 

accuracy = 86.05, F-Measure = 0.80, and precision = 0.804. 

Another approach based on combining more than one 

machine learning technique has also shown in the literature 

[10]. Amardeep and Kaur paper 2014 attempted to evaluate 

the performance of the predictive accuracy models in the 

literature. The study proceeded by a principle of an area 

under the curve (AUC). This approach depends on analyzing 

prediction model that built using three common methods 

which are; Bagging, Boosting, and Rotation Forest. The 

experiments were conducted using15 Java codes from 

PROMISE database. 

Several researchers adjust Neural Network learning and 

support vector machine algorithms to build bug prediction 

model [11]. They suggested a hybrid model using these two 

classifiers to increase the efficiency of bug prediction 

techniques. Their results were conducted using three 

different datasets from NASA to demonstrate that using PNN 

with SVM outperformed the use of other machine learning 

algorithms, for example, the accuracy of the proposed 

method with CM1 dataset was 90.16% which increases 5% 

over using other classification algorithms. 

In 2000 [12] Zhang presented a comprehensive study about 

machine learning algorithms, and how each algorithm can 

actively contribute to the tasks of software engineering. In 

addition, he summarized the steps of the algorithm to 

perform each software engineering task. To enrich the topic, 

Zhang presented more detail in his book in 2003 [13]. 

In 2014 [14], Petkovic et. al. used a machine learning model 

to build an estimation and prediction criteria of the efficiency 

of distributed teamwork in a software engineering course. To 

realize their goal, they used the random forest classification 

(RF) model, by following a number of steps. Their results 

showed that RF is a good model in the prediction of software 

engineering process and performance. 

The techniques used in their research in 2016 by Tsakiltsidis 

et al. [15] were similar to my own techniques, which 

concentrate on analyzing performance defects early, the 

authors used the mobile advertisement and marketing domain 

to find defect prediction model which is handy and ideal. 

Therefore, they utilized four classifiers to build several 

models; which are; C4.5 Decision Trees, Naive Bayes, 

Bayesian Networks, and Logistic Regression. Outcomes 

proved that a C4.5 model is the best model that can be used 

to predict performance defects, it yielded recall = 0.73, 

accuracy = 0.85, and precision = 0.96, such that lines of code 

changed (lines of code added or removed), file age and file 

size were used as explanatory variables. 

In this study [16], the authors focused on code clones which 

can be defined as a code segment that frequently more than 

one time in the same program that resulted in a longer 

program with high complexity time, so their thought was to 

use support vector machine in order to estimate the identity 

between two code-clones. The authors applied their 

experiments on C source codes as inputs to extract features 

from them, after that the authors used Tkinter tool for 

classification. 

The implementation of software metrics and software 

visualization after combination helps in a reverse 

engineering field. Michele Lanza (2001) [17] approach 

proposed an effective way to recover the development of a 

matrix of software from version to another. This matrix can 

minimize the quantity of the needed data in analyzing 

software development. This estimation matrix is used 

fundamentally to imagine the evaluation of categories in 

object-oriented systems. But the proposed method has some 

limitations such as negative effects on the number of changes 

between the two versions, missing of scalability in generating 

large numbers of classes, and changing the class name which 

will lead to deal with it as a new different approach. 

In this study [18], the authors have done a performance 

analysis on some classification algorithms including 

Bayesian Logistic Regression, Hidden Naïve Bayes, Radial 

Basis Function (RBF)Network, Voted Perceptron, Lazy 

Bayesian Rule, Logit Boost, Rotation Forest, NNge, Logistic 

Model Tree, REP Tree, Naïve Bayes, Multilayer Perceptron, 

Random Tree and J48. The rendering of the algorithms was 

deliberate in terms of Accuracy, Precision, Recall, 

FMeasure, Root Mean Squared Error, Receiver Operator 

characteristics Area and Root Relative Squared Error using 

WEKA data mining tool. To hold a balanced judgment of the 

classification algorithms’ performance, no feature selection 

or performance boosting method was appointed. The 

research display that a number of classification algorithms 

exist that if duly examined through feature selection means 

will produce more accurate results for email classification 

[23]. Rotation Forest has shown a near degree to achieve the 

most accurate result. Rotation Forest is set to be the classifier 

that accords the best accuracy of 94.2%. Though none of the 

algorithms didn't achieve 100% accuracy in sorting spam 

emails, Rotation Forest has shown a near stage to obtain the 

most accurate result. 
 

3. Methodology 
 

This section, characterize the researcher’s procedure which 

is used for the purposes of software defect prediction that is 

theorized as one of the most important issues related to the 

quality of software. 

This work suggests several models depending on supervised 

learning methods. In this paper, the proposed work aims to 

build a set of models that can correctly predict the class of 

the different source code metrics. 

The input to these models is a set of source code metrics 

which is called training data, these metrics belong to defect 

or non-defect classes and a set of attributes that describing 

different characteristics of the source code (i.e., line count of 

code, difficulty, design complexity, etc.). Those attributes 

can be used to estimate the unlabeled source code for which 

class information is belongs to them.  

The methodology of this paper will be presented in the next 

subsections. These subsections include the  

1. Feature Selection Technique: is an essential phase to 

build any prediction model. The goal of this step to choose 

the minimum number of input features and determine the 

features that are the most efficient in improving the 

performance of prediction. The features were extracted using 

various techniques such as McCabe, Halstead, Line Count, 

Operator, and Branch Count…etc. 

2. Preprocessing: Principal Component Analysis (PCA) 

[19] is used to solve the dimensionality reduction problem, it 

is a preprocessing step for data before the use of supervised 
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machine learning classifiers. This operation helps in reducing 

the time complexity and increasing efficiency of classifiers. 

3. The Ensemble Learning: The proposed approach is 

based on combining two different classifiers namely: 

(Decision Tree ) (Support Vector Machine) to get a more 

accurate  result than a single classifier.  

Figure 1 summarizes the steps of our proposed 

methodology. 

In Figure 1, shows the major steps of defect prediction 

model which is mainly divided into many stages the author 

reads the report of defects from open source code, extracts 

features stage that includes basic complexity, independence 

of the program, the complexity of the design and lines of 

code. 

Classify training model for extracted features. Apply 

supervised classifiers to predict bugs. The last stage is the 

decision whether the class is a defect or non-defect. 
 

 
Figure 1. Major steps of defect prediction model 

This work investigates the effect of implementing various 

classifiers on the performance of the software defect 

prediction system. The feature selection for representation of 

source code is built is based on standard techniques such as 

McCabe and Halstead.  

According to many studies carried out in the field of 

software metrics [20] [21], the metric of source code was 

considered as features to identify defects. The features were 

extracted using various techniques such as McCabe, 

Halstead, Line Count, Operator, and Branch Count…etc. 
 

4. Experimental Results 
 

In this paper conducted four experiments over deferent 

datasets that were taken from PROMISE and NASA 

databases repository datasets which are described below: 

NASA datasets are publically available in the NASA 

repository by NASA Metrics Data Programme. According to 

Malhotra's study in 2015 [22], this dataset is used in 60% of 

the selected primary studies. 

We used five standard datasets; mozilla4 dataset, ar1, kc1, 

ar4 and pc1 dataset.  

• Mozilla4: this dataset is written in C++ language, It 

consists of 15544 modules and 5 static code attributes 

(McCabe, Halstead and LOC measures) and one defect 

information (0/1). 

• Kc1: this dataset is written in C++ language, it has 

included 43 KLOC, number of modules is 2108 and 

defective modules 325 

• Pc1 : this dataset is written in C language, it has included 

40 KLOC, number of modules is 1107 and defective 

modules 76 

• Ar1 & Ar4: These datasets are written in C language, 

each of them consists of 121 modules (9 defective / 112 

defect-free) and 29 static code attributes, and one defect 

information (false for defect /true for non-defect). In Table 1 

below summarizes the specifications of each used dataset. 
 

Table 1. The datasets used in this study 

Dataset 
# of 

modules 
Language 

# of 

attributes 

mozilla4 15544 C++ 6 

Kc1 2108 C++ 43 

Ar1 121 C 30 

Ar4 121 C 30 

Pc1 1107 C 40 
 

One of the most popular public domain data mining tools is 

the Waikato Environment for Knowledge Analysis (WEKA) 

tool is open source Java code, this tool is widely used for 

classification purposes to implement the supervised machine 

learning techniques. In this paper, used WEKA 3.7 version 

to conduct empirical results for evaluating the efficiency of 

five supervised classification techniques in software bug 

prediction. This tool is available online freely. WEKA 

supports a well-tested and reliable Java implementation of 

many methods for all type of tasks required by most machine 

learning and data mining issues. 

Our experiments are divided into four main parts: first part is 

the results of implementation five well-known supervised 

classifiers with the default settings for all algorithms. The 

second part is the implementation of adaptive supervised 

classifiers, where some of the parameters are modified; in the 

third part, the researcher presented comparisons of the 

supervised classifiers after using PCA preprocessing 

methods. Finally, the researcher presented our proposed 

Ensemble Learning techniques that are combined two 

supervised classifiers. The researcher tested all algorithms by 

using the 10-fold cross-validation method. The results are 

analyzed in terms of accuracy, precision, recall and F1-

measure. 

Experiment 1: Results of Supervised Classifiers with 

Default Settings 

In this experiment, we used five standard datasets to display 

the results, knn achieved good results with ar1, kc1, pc1 

datasets, and the accuracy obtained was (90.0826%), 

(95.1724%) and (92.0649%) respectively. As we see, the F-

measure results are equal 0.901, 0.946 and 0.921 

respectively, whereas the accuracy was (79.4393%) with ar4 

dataset, and Table 2 shows the gained results. 
 

Table 2.  Results of Implementing KNN using default 

settings 

Dataset Accuracy Recall Precision 
F-

measure 

Mozilla4 88.9932% .890 .890 .890 

ar1 90.0826% .901 .901 .901 

kc1 95.1724% .952 .944 .946 

ar4 79.4393% .794 .771 .780 

pc1 92.0649% .921 .922 .921 

A sample of the results is shown in Table 3 below. As 

shown, mozilla4, ar1, kc1, pc1 datasets resulted respectively 
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in 94.5642%, 92.562%, 94.4828% and 93.5978% accuracy 

with environment prediction. 
 

Table 3.  Results of Implementing Decision Tree using 

default settings 

Dataset Accuracy Recall Precision  
F-

measure 

mozilla4 94.5642% .946 .947 .945 

ar1 92.562% .926 .857 .890 

kc1 94.4828% .945 .893 .918 

ar4 81.3084% .813 .806 .809 

pc1 93.5978% .936 .922 .924 

Table 4 shows the gained results. The results below show 

that all datasets achieved good results except pc1 with 

accuracy (74.4%), such that the accuracy of the rest datasets 

was in the range [81 - 93] %, and the f-measure was in the 

range [80 - 93] %. 
 

Table 4. Results of Implementing BayesNet using default 

settings 

Dataset Accuracy Recall Precision  
F-

measure 

mozilla4 93.522% 0.935 0.935 0.935 

ar1 90.9091% 0.909 0.856 0.882 

kc1 87.5862% 0.876 0.927 0.897 

ar4 81.3084% 0.813 0.806 0.809 

pc1 74.3913% .744 .900 .803 

After analyzing Table 5, the results show that kc1 got 

93.7931% accuracy. The average of four measures obtained 

against five bug prediction datasets indicates that the SVM 

algorithm achieved stable results. However, and for Mozilla4 

dataset, the SVM classifier has 10%, 10%, 9% and 10% 

lower Accuracy, Recall, Precision and F1-measure than NB 

respectively. 
 

Table 5. Results of Implementing SVM using default 

settings 

Dataset Accuracy Recall Precision  
F-

measure 

Mozilla4 83.21% .832 .848 .836 

ar1 91.7355% .917 .856 .886 

kc1 93.7931% .938 .917 .924 

ar4 85.0467% .850 .838 .823 

pc1 92.9666% .930 .866 .897 

The Table 6 below shows that all datasets achieved good 

results except for ar4 with accuracy (81.3%) such that the 

accuracy of the rest datasets was in the range [90 – 93.5] %, 

and the f-measure was in the range [89 - 93] %, another 

notable result which was reported is that all measures vary 

among datasets.  

Table 6. Results of Implementing ANN using default 

settings 

Dataset Accuracy Recall Precision 
F-

measure 

mozilla4 91.1869% .912 .911 .911 

ar1 90.0826% .901 .890 .895 

kc1 93.1034% .931 .931 .931 

ar4 81.3084% .813 .799 .805 

pc1 93.5978% .936 .921 .917 

For example, "pc1" dataset has a prediction F1-measure of 

91.7% while the same dataset has a noticeably poor Recall of 

80.1% using BayesNet. These poor results indicate that the 

"pc1" dataset is highly overlapped with other datasets. 

Finally, ANN and NB classifiers perform highly in the ar1 

dataset. 
 

Experiment 2: Results of Adaptive Supervised Classifiers 

with Adjusted Settings 

After analyzing Table 7, the researcher found that using 

Manhattan distance little bit greater than Euclidian distance 

with regards to F1-measure in ar4 and mozilla4. 
 

Table 7. Results of Implementing KNN using modified 

settings 

Dataset Distance Accuracy Recall Precision 
F-

measure 

Mozilla 

4 

Euclidian 89.13% 0.891 0.892 0.892 

Manhattan 89.7523% .898 .899 .898 

ar1 
Euclidian 90.08% 0.901 0.855 0.877 

Manhattan 89.2562% .893 .854 .873 

kc1 
Euclidian 95.17% 0.952 0.954 0.934 

Manhattan 94.4828% .945 .926 .929 

ar4 
Euclidian 84.11% 0.841 0.822 0.816 

Manhattan 85.9813% .860 .851 .837 

pc1 
Euclidian 92.25% 0.922 0.908 0.914 

Manhattan 92.2453% .922 .905 .911 

The experimental results had shown in Table 8 that mozilla4 

dataset yielded 94.6092% accuracy, followed by kc1 with a 

closed result equals to 94.4828%. 
 

Table 8. Results of Implementing Decision Tree using 

modified settings 

Dataset Accuracy Recall Precision 
F-

measure 

Mozilla4 94.6092% .946 .947 .945 

Ar1 91.7355% .917 .856 .886 

Kc1 94.4828% .945 .893 .918 

Ar4 81.3084% .813 .775 .779 

Pc1 93.2372% .932 .912 .909 

This experiment is conducted using BayesNet, shows that the 

used search algorithm is LAGD Hill Climber- L 2-G 5- P 1 -

S BAYES, Table 9 shows the gained results. All datasets 

achieved good results except pc1 with accuracy (76.7358%), 

such as that the accuracy of the rest datasets was in the range 

[81.3 – 94.4] %, and the f-measure was in the range [80.9 – 

94.3] %.  
 

 Table 9. Results of Implementing BayesNet using modified 

settings 

Dataset Accuracy Recall Precision 
F-

measure 

mozilla4 94.3969% .944 .947 .943 

ar1 90.9091% .909 .856 .882 

kc1 87.5862% .876 .927 .897 

ar4 81.3084% .813 .806 .809 

Pc1 76.7358% .767 .897 .819 

This part of the second experiment tested SVM classifier 

with the adaptive settings, it's worthily mentioned that the 

filterType = Standardize training data with a number of 

kernel = 250007-G 11.0. Table 10 shows the gained results 

after analyzing it the researcher found that kc1 dataset 

outperformed the other datasets with regards to accuracy and 

F1-measures which are equal to (94.4828%) and (.918) 

respectively. 

The last phase of experiment two tested Neural Network 

classifier with the adaptive settings that are used to conduct 

it, such that validationSetSize = 43, and the randomSeed = 5. 

Table 11 shows the gained results. The results below showed 
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that all datasets achieved good results except ar4 with 

accuracy (86.9159%), such as the accuracy of the rest 

datasets was in the range [90.4 – 95.86]%, and the f-measure 

was in the range [89 - 93]%. 
 

 

Table 10. Results of Implementing SVM using modified 

settings 

Dataset Accuracy Recall Precision 
F-

measure 

mozilla4 89.1991% .892 .892 .892 

ar1 90.9091% .909 .856 .882 

kc1 94.4828% .945 .893 .918 

ar4 81.3084% .813 .661 .729 

Pc1 93.688% .937 .924 .918 
 

Table 11. Results of Implementing ANN using modified 

settings 

Dataset Accuracy Recall Precision 
F-

measure 

Mozilla4 90.4214% .904 .904 .903 

ar1 92.562% .926 .857 .890 

kc1 95.8621% .959 .960 .947 

ar4 86.9159% .869 .870 .845 

Pc1 93.147% .931 .908 .907 

The Figures 1-6 below compare between default and 

modified settings for each dataset. 
 

 
Figure 2. A comparison between default and adaptive 

classifiers using mozilla4 dataset 

 
Figure 3. A comparison between default and adaptive 

classifiers using ar1 dataset 

 
Figure 4. A comparison between default and adaptive 

classifiers using kc1 dataset 

 
Figure 5. A comparison between default and adaptive 

classifiers using ar4 dataset 

 
Figure 6. A comparison between default and adaptive 

classifiers using pc1 dataset 

After analyzing Figures 1-6 above, the researcher found that 

the adaptive classifier outperformed default settings on most 

datasets with regards to accuracy results. Recall results 

obtained showed that the ar4 was positively affected by the 

modified settings of the classifier on two models which are, 

KNN and ANN. 

Moreover, for the ar1 dataset, the ANN classifier has 

(2.48%) higher accuracy than default settings. 
 

Experiment 3: Results of Supervised Classifiers with 

Preprocessing Feature selection: PCA. 
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Table 12. Results of Implementing PCA with different 

classifiers with preprocessing Feature selection: PCA. 

 
Table 12 shows the gained results that for the mozilla4 

dataset, the accuracy achieved between 0.75 to 0.85%, were 

the best result gained with kNN with accuracy (85.4037%). 

Also, the same results were obtained with using ar1, between 

(88%) with KNN and (92%) with BayesNet. 

Experiment 4: Results of Ensemble Learning Classifiers 

In this experiment, a combination of classifiers with some 

major modifications has been applied. The researcher 

combined Bagging with REPTree classifier the researcher 

chose bagging for its efficiency and REPTree classifier for 

its flexibility and appropriateness to the real world scenarios.  

The aim of generating additional datasets in training phase is 

done by distributing a specified percentage of features in the 

training dataset with the remaining features in the test 

dataset; this approach is called Bagging. 
 

Table 13. Results of Implementing Ensemble Learning 

methods 

Dataset 

Hybrid 

machine 

learning 

methods 

Accuracy Recall Precision 
F-

measure 

mozilla4 

Bagging 

+ 

REPTree 

95.01%  0.95 0.952 0.949 

ar1 92.56%  0.926 0.857 0.89 

kc1 93.79%  0.938 0.892 0.915 

ar4 85.05%  0.85 0.838 0.823 

pc1 93.51%  0.935 0.919 0.919 

mozilla4 
Vote 

 + 

REPTree 

+ Ibk 

93.46%  0.935 0.934 .9340  

ar1 92.56%  0.926 0.857 0.89 

kc1 93.79%  0.938 0.917 0.924 

ar4 84.11%  0.841 0.822 0.822 

pc1 93.51%  0.935 0.919 0.918 

After analyzing Table 13 above, it was noted that using 

those two Ensemble Learning methods achieved the best 

results compared to the previous three experiments. The 

highest accuracy is gained when applied over mozilla4 

dataset. It was found that the Ensemble Learning classifier 

gained good results in the first three experiments with 

accuracy (95.1%) with an increase of (1%) accuracy over 

adaptive DT and Adaptive NB on most datasets with regards 

to accuracy results. 

Finally, according to pc1, all the accuracy results were 

approximately (93%) except for (default and adaptive NB) 

with 74.39% and 76.73% respectively. The Figure 7 below 

summarizes the comparison between default and Ensemble 

Learning model in terms of accuracy. 

 
Figure 7. Comparison between default and Ensemble 

Learning model in terms of accuracy 
 

5. Conclusions  
 

This research deals with the task of software defect 

prediction. In this task, are given some of the predefined 

datasets that are organized in a defect/ non-defect structure. 

The target of defect prediction is to efficiently and 

effectively combine further information on classes' structure 

into the learning process.  

The research is given in this paper concentrates on two 

aspects of bug prediction: learning and performance 

evaluation. We argue that software should be consistent with 

no bugs. Then, five learning algorithms are implemented 

carried out consistent classification. The results showed that 

the researchers use a decision tree for bug prediction studies 

and avoid using Naïve Bayes.     

The main contribution of this research is the new Ensemble 

Learning software defect prediction model. For instance, 

when default Machine Learning classifier is applied on the 

mozilla4 dataset, the average accuracy was 90%, while 95% 

reached when applying the Ensemble learning method. 
 

6. Future Work 
 

Future studies will utilize feature selection method to resolve 

the problem of extracted a fully large number of metrics used 

as features and with hardness in identifying any of these 

features is the best way to realize the best performance of the 

predicting defect systems. 

In a future study, research can be taken out to get better the 

quality of the software defect prediction model by applying 

other existing machine learning algorithms. 

Recommendation for future study is to increase the size of 

the software defect prediction datasets since a larger pattern 

size will produce more accurate results. 
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