
304
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

6LoWPAN Stack Model Configuration for IoT
Streaming Data Transmission over CoAP

Khalid S. Aloufi 1

1 College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia.

Abstract: Different protocols have been developed for the

Internet of things (IoT), such as the constrained application

protocol (CoAP) for the application layer of the IPv6 over low-

power wireless personal area networks (6LoWPAN) stack model.

Data transmitted over 6LoWPAN are limited by the throughput and

the frame size defined by IEEE 805.14.5 standards. Choosing the

best configuration for data transmission involves a tradeoff between

the application requirements, the constrained network

configuration, the constrained device specifications and IoT

application protocols. This paper provides an analysis of message

size and structure recommendations for the 6LoWPAN stack model

for different network topologies using CoAP. CoAP is a promising

application protocol for the 6LoWPAN stack model because it can

effectively manage the transmission required functionality in small

header UDP packets compared to TCP packets. However, a data

model is also required to realize an effective IoT model. While

fragmentation and reassembly are supported by CoAP, they should

be avoided for this type of model. As for any conceptual model, a

high configuration between layers is mandatory. Additionally, the

proposed message format is useful for semantic web of things

application development and for WSN design and management.

Keywords: Internet of Things (IoT); 6LoWPAN; CoAP;

Semantic Web; Web of Things (WoT); Smart City; Home

Automation.

1. Introduction

The number of constrained devices (CDs) connected to the

Internet is expected to tremendously grow in the coming few

years to approximately fifty billion devices [1]. To

accommodate Internet growth, the Internet Protocol (IP) is

moving from IPv4 towards IPv6. Consequently, different

protocols are being developed in terms of supported data size

or transmission criteria. Wireless sensor network (WSNs)

have different components. CDs are the main components of

the Internet of things (IoT). The IoT is effectively integrated

with other Internet and web technologies and has opened a

wide new domain of applications. For instance, the web of

things (WoT) is a bridge model to connect things to the web.

Additionally, the semantic web of things (SWoT) defines the

connectivity between the semantic web and a WSN. For the

IoT, different models have been developed, such as the IPv6

over low-power wireless personal area networks

(6LoWPAN) stack model in 2007. Since then, 6LoWPAN

has gone through different research and industry analyses and

implementations [2] [3] [4] [5]. One of the main components

of the 6LoWPAN model is the adaptation layer to exchange

data between the IPv6 and 6LoWPAN networks, where the

IP is compressed to operate with constrained data size [6] [3]

[7]. The adaptation layer of 6LoWPAN has been developed

to support the IP in CDs [3]. To integrate 6LoWPAN with

IPv4 networks, a connection could be made through a

gateway node at an edge node. The main components of the

6LoWPAN stack model, as shown in table 1, are IEEE

802.15.4, the adaptation layer, 6LoWPAN and application

protocols, such as the constrained application protocol

(CoAP) or message queuing telemetry transport (MQTT) [1]

[8] [9].

For effective functionality, IoT systems require CDs with

efficient power, constrained processing capabilities,

constrained storage size, effective network design and

configuration, a defined data model and an IoT application

model. The requirements are summarized in figure 1. The

6LoWPAN stack model layers, as shown in table 1, should

share a working configuration to work effectively to realize a

defined quality of service (QoS) [10]. For example, CoAP

should consider the mechanism of the 6LoWPAN adaptation

layer and the data size defined by the data link layer (DLL)

when sending data [3]. For CDs, the data memory and

processing capabilities are limited.

Figure 1. IoT System

One of the IoT application challenges is to deal with large

data streams. As the data size increases, the required power

and bandwidth also increase. In the IoT, generally the

hardware and the network are constrained, however, its

applications can go beyond the constrained environment

through the integration of a system structure including

advanced edge nodes or cloud capabilities.

In the application layer, since CoAP is transmitted over UDP,

CoAP has different features that allow its IoT functionality,

such as resource discovery and observation [1] [8]. Each

CoAP data payload should have structured data formats,

which will be detailed later, for integration with other

Io

T System

Processing Power

Storage

Data APP

Network

305
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

frameworks, such as the WoT or SWoT. CoAP has two types

of implementation, either as a client or as a server. For data

exchange between the CoAP client and server, the data

payload contains the application data and the CoAP header.

For example, when CoAP is used to observe temperature, any

change is sent to the client by the server. These features

result in large amounts of data and application functionality

for smart cities and home automation. CoAP is effectively

compatible with the 6LoWPAN model in terms of the

application layer requirement if the CoAP payload fits in one

6LoWPAN frame; otherwise, different challenges arise, such

as fragmentation and reassembly [10].

Table 1. Internet of Things Stack

Layer OSI Layers TCP/IP 6LoWPAN
7 Application

Application CoAP, MQTT 6 Presentation

5 Session

4 Transportation Transportation UDP

3 Network Internet

IPv6

6LoWPAN

Adaptation Layer

2 Data Link
Network Access

IEEE 802.15.4 MAC

1 Physical IEEE 802.15.4 PYS

The design and configuration of IoT applications requires

consideration of the data size for QoS. The model can handle

data of large sizes, which require data fragmentation.

However, the model layers, such as the network layer and

DLL, are designed to work with a small data frame size.

Different transportation and application protocols have been

developed to work with such frame sizes and the constrained

environment [10]. The use of general protocols, such as

HTTP and TCP, or large frames sizes is not useful for IoT

applications [11]. Aqeel-ur-rehman et al [12], Had mentioned

how different IoT protocol are used for different IoT

applications. It has mentioned that Up uses CoAP for field

area network with medium support for security. Additionally,

the use of the general practices for data transportation and

application development is not recommended for such an

environment, such as sending large amounts of data over a

limited data frame and using fragmentation [11].

The objective of the study is to define the requirement of an

IoT device in different WSN topologies and the structured

data configuration for IoT applications over the 6LoWPAN

stack model using CoAP. The next section explains the

features of constrained devices and their role in IoT

applications. Then, the following section presents the

constrained application protocol to show the role of the

application layer in the 6LoWPAN model. After that, the

reason why fragmentation should be avoided is discussed.

The relationship between the CD and different network

topologies is shown in the next section because, in the

network layer, configuration and analysis are required to

show the CD requirements in different networks. Then, the

general model is presented. All notes and recommendation

from earlier sections regarding setting up the model

configuration are given. Then, related work is discussed in

the next section to show the relationship between the

proposed analysis and research activity in the field. Finally,

concluding remarks are presented, followed by the

references.

2. Related Work

This research mainly evaluates the application layer of the

IoT stack model; other studies have evaluated different layers

of the IoT stack model, such as the 6LoWPAN layer [25].

There are different studies that have analyzed the suitability

of the 6LoWPAN model for IoT applications [26] [10]. In

the application layer, CoAP and other IoT protocols are

suitable for IoT applications using the push mechanism of

messages from the server to the client [26]. There are

different models for using IoT data in semantic web

applications [28] implying that the integration between the

IoT model and the semantic web application model could be

at the application layer. Adding more complexity to the

model will result in difficult application development. The

research objective here is to analyze the data and application

requirements of the 6LoWPAN model. Previous studies

proposed various development methods for the different

layers of the 6LoWPAN model, such as developing the

congestion-aware routing protocol (CoAP) to deal with

periodic sensor data [29]. According to the requirement of

some applications, a software defined network (SDN) is used

to enhance the application of 6LoWPAN; a study by Miguel

et al. presented a model called the software-defined

6LoWPAN wireless sensor network (SD6WSN) [30].

Intrusion detection and prevention (IDC) has been developed

for integration in the 6LoWPAN model to protect CoAP

traffic against security threats, such as denial of service

(DoS) attacks [31]. Amanowicz and Krygier proposed a

solution for the expected high traffic in the 6LoWPAN

network, called the inter-session network coding mechanism,

to reduce the traffic and consequently reduce energy

consumption [32]. Another study proposed a framework for

IoT system adaptability for application development and

implementation, considering the 6LoWPAN mode [33].

Araújo et al. proposed a methodology to decrease device

power consumption and consequently increase network live

time by adapting a routing algorithm [34]. Abeele et al.

implemented a proxy at the edge of the network to enhance

WoT application over an IoT environment of limited

resources [35]. Chen et al. presented a routing protocol for

agricultural low-power and lossy networks (RPAL) using a

scalable context-aware objective function (SCAOF) to adapt

low-power and lossy networks (RPL) to the environmental

monitoring of agricultural low-power and lossy networks (A-

LLNs) [36]. Ludovici et al. presented a technique for

forwarding and routing 6LoWPAN fragmented packets [36].

While in this research, fragmentation is not recommended,

analysis and enhanced methodology is always helpful in the

changing environment of new and continuously evaluated

models in both industry and research.

One of the studies proposed by Ludovici et al. showed that

6LoWPAN fragmentation is suitable for a constrained

environment; however, in a congested network, a proposed

methodology called block wise outperforms the default

fragmentation methodology of the 6LoWPAN model [38].

Oliveira et al. presented a security framework to enhance the

6LoWPAN model [39]. Finally, another study showed a

model to interconnect CoAP with web applications using a

web socket in CoAP [40].

306
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

3. Constrained Devices

Three classes of constrained devices are defined to work with

low bandwidth and energy and lightweight protocols, as

listed in table 2 [13]. Class 0 devices have limited connection

capability and data storage. These devices can connect to the

Internet and perform some functionalities by connecting to

other devices, proxies, gateways, or servers. In some cases,

Class 0 devices can use an OS for the IoT, such as by using

the RIOT OS or customizing an OS to fit its specification.

Class 1 devices can communicate in an IP network with

security supported by constrained protocols, such as the

constrained application protocol (CoAP) over UDP. Class 2

devices support Class 1 protocols and a full protocol stack

because they have more code and data storage. Class 1

devices can replace Class 2 devices in cases where the

developer can customize the OS or the protocol stack used.

Each CD can have several resources, such as a few sensors,

which depends on the application and its capability.

Table 2. Classes of Constrained Devices

Name

data (RAM)
code (ROM) IP Support Name

data (RAM)
Class 0, C0 10 KB 100 KB No

Class 1, C1 ∼ 10 KB ∼ 100 KB Yes

Class 2, C2 ∼ 50 KB ∼ 250 KB Yes

CDs will have very limited RAM and ROM [14] [15]. The

RAM or flash memory size should be sufficient for the OS

and application data. The RAM size calculation considers the

OS and the application data requirements as shown in Eq.

(1). A CD has a RAM of APPRAM and OSRAM bytes reserved

for code and the OS. The data sources are assumed to send

data messages, limited to 127 bytes each [14]. The total data

size is measured by Eq. (2), where n1 is the number of

connections to the CD, and n2 is the number of cached

messages. The CD should be ready to store and process the

number of other connected CDs based on its location in the

WSN as defined by n1. The CD can cache message from

connected sensors, or another CD as defined by n2. Thus, the

RAM required is the number of bytes required by the OS; the

data shown in Eq. (2) define APPRAM in Eq. (1).

MRAM = OSRAM +APPRAM (1)

APPRAM = 127 ∗ (n1+n2) (2)

The maximum total size of data a CD can handle is x∗127

bytes, where x is the number of data messages the CD is

sending or caching at a time. For example, for a 10 KB

storage, the CD can have a maximum of 78 messages; for a

50 KB storage, the CD can have a maximum of 400

messages at a time.

Memory or ROM is the part of the CD that hosts the

operating systems (OS) or the boot loader and application

codes, as shown in table 3. The ROM size calculation

consider the OS and the application data requirements as

shown in Eq. (3). Different applications require different CD

specifications. For example, the Contiki OS for constrained

devices requires approximately 10 KB of RAM and

approximately 30 KB of ROM, similar to a Class 1 device.

CoAP implementation with the RIOT OS requires

approximately 200 KB of ROM and 100 KB of RAM,

similar to a Class 2 device. Each IoT OS can be customized

to smaller memory and thus applied to a lower class.

MROM = OSROM +APPROM (3)

Table 3. Oss for CDs

OS RAM ROM Constrained

Contiki 10 KB 30 KB Y

TinyOS [15] < 1 kB <4 KB Y

RIOT 1.5 KB 5 kB Y

mbed OS 512 KB 64 KB Y

Android >>n GB >>n GB N

Linux

(Raspbian)
>>n GB >>n GB N

iOS >>n GB >>n GB N

Table 3 shows different operating systems (OSs) that can be

used in IoT ecosystems. However, the table shows that some

types of OSs are mainly IoT OSs for different kinds of

boards and architectures. The table shows that constrained

OSs are useful for IoT devices in general ubiquitous and

pervasive computing. Other OSs could be useful for edge

nodes [17] [18] [19].

4. Constrained Application Protocol

This section analyses the data payload of the application

protocol of the 6LoWPAN model. Based on table 1, the

match between the model and the message structure is as

shown in table 4. In the model, the IPv6 header is

compressed to either 2, 12 or 20 bytes when the two devices

are in the same network, a different network with a known

prefix or a different network with an unknown prefix,

respectively [7] [4] [14] [20].

The IP layer payload of the 6LoWPAN consists of the UDP

header and payload, containing the CoAP header and

payload. Application data are expected to be between 0 and

55 bytes in size for each frame, as shown in table 5. The

CoAP header is assumed to be 11 bytes. The CoAP header

has 4 bytes of a fixed header. Then, a token between 0 and 8

bytes is included. The option delta, length and value are

between 0 and 5 bytes in size, and their sizes increase as the

number of options increases. Then, a one-byte marker (0xFF)

and the payload are included. The total size is assumed to be

11 bytes on average plus the payload.

Eleven bytes is enough to send the reading of, for example, a

sensor along with its variables. If the CD is sending the

temperature of a room or a location, then the payload should

have enough bytes to send the temperature along with

variables to define the specific location of the sensor. In

general, the overhead is high because the maximum size is

127 bytes. However, the underlying protocol is designed for

a constrained environment. Additionally, CoAP may require

more than 11 bytes if data are required to have a specific

structure, along with some metadata.

As shown in table 5, different cases are used to configure the

CoAP data size. The IEEE 802.15.4 frame is 127 bytes, of

which the MAC header takes up the first 25 bytes, followed

by 21 bytes of link layer security, leaving approximately 81

bytes. An IPv6/6LoWPAN header requires 40/20/12/2, bytes

leaving approximately 28/48/56/66 bytes. For UDP, there are

some cases in which only 11 bytes are left when a

6LoWPAN mesh header is used. Additionally, there is a case

in which only 53 bytes are left when no fragmentation or

mesh headers are used for the 6LoWPAN header stack. For

CoAP, there are from 0 to 55 bytes left.

307
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Different implementations of CoAP in constrained devices

are shown in table 6. Each CoAP implementation is suitable

for either regular or edge nodes. Some implementations are

designed for regular client nodes. The CoAP

implementations are available in different varieties of OSs

and support different types of hardware. There also as well

some implementations to manage the IoT network data in the

cloud and it is commercial solution as shown in the end of

the table. Some implementations are developed by specific

Hardwar developer, which is an advantage of specific

hardware users. In general, having too many implementations

will require a design consistency when two different

implementations exchange messages.

The application layer should have optimization and

synchronization between the different layers of the IoT

model. When the data frame is more than 127 bytes, data

fragmentation is used [11]. When fragmentation is needed in

CoAP, each fragment header requires an additional 5 bytes,

except for the first fragment, which is 4 bytes [8] [22] [23].

Although fragmentation is supported by the DLL in IEEE

802.15.4, it is better to avoid fragmentation to save power

and bandwidth and prevent wasted overhead [11].

The protocol overhead is the percentage of the header bytes

in the total message bytes. IoT packets are small, so the

overhead percentage is expected to be high in comparison

with other network packets. Although fragmentation is

supported by the model, the IoT application generally has

small amounts of data to send, such as the temperature or air

quality in a room.

5. Model based on Constrained Network

The WSN topology is usually either a star, tree or mesh

topology. In any network topology, the CD is also resending

the data of other sources. Consequently, the project cost may

be affected by the network topology. In a star network, the

main node requires some bytes of RAM as shown in Eq. (4),

where n is the number of network connections. The required

RAM for a mesh network is as shown in Eq. (5), where x is

the number of nodes. In a tree network, the deeper the tree is,

the higher the requirements. For a tree WSN, the amount of

RAM required is as shown in Eq. (6), where g is the depth of

the tree. In a tree WSN, as shown in figure 2, the edge node

connects the nodes to outer connections. However, the WSN

nodes are connected to the edge node using internal node

connections. A WSN node should have more than one

connection to the edge node using one of the hybrid WSN

topologies, such as a partial mesh network topology, which is

a mix between tree and mesh topologies. In this case, nodes

in the tree topology have multiple connections to other nodes

in the tree; consequently, the node has more than one option

to connect to the edge node.

The design of a WSN involves different considerations;

however, for the constrained model of the IoT, the location

of the CD and the network design directly affect the CD

specifications. The CD requires a specific RAM size

depending on its application, its location and the topology of

the WSN.

127 ∗ n (4)

127 ∗ (x− 1) (5)

OS+ 127 ∗ (2g+1− 1) (6)

Figure 2. WSN Example

After defining the topology, the recommended configuration

of the 6LoWPAN model detailed earlier is presented. The

recommendations presented are mainly for the configuration

of application data, CD specifications and the network

topology. For the application data, CoAP is recommended as

the application protocol for the model. Data fragmentation is

not recommended when using CoAP. IoT application data

should be small enough to fit in one CoAP data payload,

between 0 and 55 bytes.

Regarding the CD specifications, the CD should have enough

specifications to support the 6LoWPAN model. The OS

selected should support the transportation, Internet and

network access requirements with enough RAM and ROM in

the CD. Based on the node location, the specifications can be

defined, either for a regular node or a gateway node. The

main node features for the model are the power, storage,

processing unit and connectivity. The connectivity should

support the IEEE 802.15.4 standard. A gateway node is used

for forwarding and processing data. Since the gateway node

is an intermediate node between regular nodes and the

Internet, it should have an unlimited power source and

reasonable processing capabilities. The gateway should have

cached value, i.e., a CoAP client observer, of all the

resources connected to the nodes, which will help increase

the system performance.

 CoAP Header CoAP Data Application layer

 UDP Header UDP Data UDP

 IP Header IP Data IP

Frame Header Frame Data Frame Footer IEEE 802.15.4

Table 4. Message Format of the IoT Model

Edge
Node

n1

n2

n3

n4

n5

n6 n7

n8

n9 n10

308
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Table 5, IEEE 802.15.4 Packet of 127 bytes

scenario F H/D SH Mesh H Fragment H 6LoWPAN H/D UDP H/D CoAP H/D

worst case 0

25/102 21/81 0/64 5/76 40/36 8/28 11/17

worst case 1

25/102 21/81 17/64 5/59 40/19 8/11 11/0

same network
25/102

21/81 0/64 5/76 2/74 8/66 11/55

known

network
25/102 21/81 0/64 5/76 12/64 8/56 11/45

unknown

network
25/102

21/81 0/64 5/76 20/56 8/48 11/37

case 1

25/102 21/81 0/64 0/81 20/61 8/53 11/43

scenario F H/D SH Mesh H Fragment H 6LoWPAN H/D UDP H/D CoAP H/D

The network topology should be a partial mesh network

topology. The data are routed in the network all the way to

the gateway nodes using the routing protocol for low-power

and lossy networks (RPL) [24]. The throughput in

IEEE802.15.4 is limited to 250 kbps [4] [8]. A basic mode is

shown in figure 3, Where nodes are connecting to the

Internet and advanced information processing is done

through an Edge Node.

Figure 3. IoT Basic Model

Table 6. Implementation of CoAP in Constrained Devices

For CoAP, there are four kinds of messages, including

confirmable, non-confirmable, acknowledgement, and reset.

Each message is either GET, POST, PUT or DELETE. The

non-confirmable format is used for repeated values from a

resource, such as sensor data [8]. Reset is sent to check the

availability of the resources. If a resource is an actual

resource, then GET is the suitable method to get the value of

the resource. On the other hand, when the resource is virtual,

then POST is used to set the resource value. CoAP and

HTTP integration can close the gap between CoAP and web

applications, which enables real applications for the WoT

and SWoT. A piggybacked response is recommended to save

bandwidth and energy. A CoAP server has the feature of

responding to a "resource discovery" request with its list of

resources. Hence, CoAP can be used for sharing resources

over the web.

Implementation Client Server Language Con. OS Note

Erbium √ √ C √ Contiki
official CoAP for the Contiki

OS

libcoap √ √ C √ All

tinydtls √ √ C √ LWIP/Contiki/TinyOS/RIOT
adds security to other

implementations

TinyCoAP √ √ C √ TinyOS

LibNyoci √ √ C √ LWIP/Contiki/TinyOS/RIOT
spun off from the SMCP

project

microcoap x √ C √ Arduino -

cantcoap √ √ C √ Linux

Lobaro CoAP √ √ C √ All

MR-CoAP [20] √ √ Java √ VM using IBM Mote Runner

Wakaama √ √ C √ All LWM2M implementation

309
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

coap-node √ x JavaScript √/x Windows/Linus/macOS LWM2M implementation

coap-shepherd x √ JavaScript √/x Windows/Linus/macos LWM2M implementation

Californium √ √ Java x JVM

nCoAP √ √ Java x JVM

Leshan √ √ Java x JVM built on top of Californium

CoAP.NET √ √ C# x Windows

CoAPSharp √ √ C# x Windows

gen_coap √ √ Erlang x Windows/Linux

go-coap √ √ Go x Linux/Windows

node-coap √ √ JavaScript x Windows/Linux/macOS (node.js)

txThings √ √ Python x All

Aiocoap √ √ Python x All

Ruby-gem √ x Ruby x Linux/Windows/macOS

David x √ Ruby x Linux/Windows/macOS

coap-rs √ √ Rust √/x All

Copper √ x
Browser-

based
 Linux/Windows/macOS

iCoAP √ x
Objective-

C
x iOS, OSX

SwiftCoAP √ √ Swift x iOS, OSX

SPITFIREFOX √ √ Java x Android

Aneska √ x Python x Android works with txThings

mbed client √ √ C √ mbed OS
ARM mbed, commercial and

support IoT management

oneMPOWER x x non x All
Commercial, Support IoT

management

thethings.io x x non x All
Commercial, Support IoT

management

310
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Figure 4. CoAP Model

The model provides semantic structured data, as shown in

figure 4, where the data are presented using the resource

description framework (RDF). The data are delivered in

either request or response messages according to CoAP

specifications. The resource can have more than one RDF

triple in one transmission if the available CoAP payload is

sufficient. If for each of the subjects, the predicate object will

require a minimum of 3 bytes, then one triple will require a

minimum of 16 bytes each. Two triples will require 32 bytes ,

etc. In this case, one message will not be able to have more

than approximately 4 RDF triples. One example of an RDF

triple is the temperature degree response message, which

could be "temp""is""22.5◦C".

 More triples will be involved if required for location or other

parameters. In table 5, worst case 1 will accommodate no

triples. If the CoAP header is the minimum size with only 6

bytes, meaning 4 bytes of the basic header, a 1-byte token

and a 1-byte marker, then only 5 bytes are left, which will not

be sufficient to send any structured data or meaningful

parameters unless not stated in the response but taken from

the request.

The purpose of the model is to enable utilization of

structured response application data. Worst case 1 can have

only one triple. The presented model cannot work without

IPv6 compression unless carefully configured and tuned for

the frame sections mentioned in table 5.

Referring to the previous argument, despite the high

configuration requirements, CoAP is a promising application

protocol for the IoT. CD specifications, OS requirements,

6LoWPAN stack model header compression and the

structure data model are the main things to consider when

using CoAP over the 6LoWPAN stack model.

6. Conclusion

IoT data are constrained data sent using a CD and a

constrained network. The optimum specifications of a CD

can be defined according to the performance evaluation of

the constrained model. The objective of this study is to define

the amount of CoAP data a CD can handle in each

transmission. CoAP messages of the type observe requests

consume large amounts of memory. However, the request

size in bytes is unknown. In general, the RAM size as has

been shown in different studies to directly affect the

processing power and power consumption. This research

shows the relationship between the memory requirements and

data size, functionality and CD location.

The data generated from CDs in total are big data; however,

each individual data frame has a few tens of bytes, as

mentioned earlier. The data generated from a single CD are

considered constrained because of their limited size

according to the application protocol used, such as CoAP

over 6LoWPAN. The data should be limited to the available

CoAP payload. Further studies are required to consider an

analysis of the trade-off between energy, processing and

bandwidth. When the processing or throughput increases, the

power consumption increases.

Hence, the application should design a system such that the

processing is maintained at the gateway node. Nodes should

only be used for reading and forwarding data. The resource

data can be taken from the gateway rather than from a

connection to the CD node. Additionally, the retransmission

time out (RTO) and round-trip time (RTT) will be computed

for general congestion control algorithms of CoAP.

The model is suitable for smart cities, home automation and

any other applications where the data size is expected to be in

the range mentioned earlier. Most smart city and home

automation data are a type of reading or a signal of different

sensors or parameters, such as temperature, average traffic

wait time or expected time for events or resources.

The network topology should be a partial mesh network

topology. The adaptation layer is the key element for network

connectivity in the model because of the IP adaptation

process and compression [7]. CoAP has been receiving much

attention in the research community and from application

developers for different OSs. Finally, this article gives

recommendations for CoAP implementation in the

6LoWPAN stack mode.

References

[1] C. Bormann, A. P. Castellani and Z. Shelby, "CoAP: An

Application Protocol for Billions of Tiny Internet Nodes,"

in IEEE Internet Computing, Vol. 16, No. 2, pp. 62-67,

March-April 2012.

[2] Z. Shelby, Z. Bormann, "6LoWPAN: The Wireless

Embedded Internet," Wiley Publishing, 2010.

[3] S. Chakrabarti, G. Montenegro, R. Droms, J. woodyatt, "IPv6

over Low-Power Wireless Personal Area Network

(6LoWPAN) ESC Dispatch Code Points and Guidelines,"

RFC 8066, 2017.

[4] P. Thubert, J. Hui, "Compression Format for IPv6 Datagrams

over IEEE 802.15.4-Based Networks," RFC 6282, 2011.

[5] G. Montenegro, C. Schumacher, N. Kushalnagar, "IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs):

Overview, Assumptions, Problem Statement, and Goals,"

RFC 4919, 2007.

[6] M. Crawford, "Transmission of IPv6 Packets over Ethernet

Networks," RFC 2464, 1998.

Application Data
"subject""predicate""object".

Requests/Responses

Messages

UDP

6 LoWPAN

IEEE 802.15.4

311
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 2, August 2019

[7] A. Ludovici, A. Calveras, M. Catalan , C. Gómez, J.

Paradells, "Implementation and Evaluation of the Enhanced

Header Compression (IPHC) for 6LoWPAN," EUNICE 09.

Lecture Notes in Computer Science, Vol 5733. Springer,

Berlin, Heidelberg, 2009.

[8] Z. Shelby, K. Hartke, C. Bormann, "The Constrained

Application Protocol (CoAP)," RFC 7252, 2014.

[9] A. Banks, R. Gupta, "MQTT version 3.1.1 plus errata 01,"

O.S.I.A.E., 10 December 2015. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, Accessed 2019.

[10] N. Ismail, R. Hassan, K. Ghazali, "A study on protocol stack

in 6lowpan model. Journal of Theoretical and Applied

Information Technology" Vol. 41, No. 2, pp. 220-229, 2012.

[11] J. Olsson, "6LoWPAN demystified," T.I.,

http://www.ti.com.cn/cn/lit/wp/swry013/swry013.pdf,

Accessed 2014.

[12] A. ur Rehman, S. ur Rehman, I. Uddin Khan, M. Moiz, S.

Hasan, "Security and Privacy Issues in IoT," International

Journal of Communication Networks and Information

Security (IJCNIS), Vol 8, No 3 ,2016.

[13] C. Bormann, M. Ersue, A. Keränen, "Terminology for

Constrained-Node Networks," RFC 7228, 2014.

[14] G. Montenegro, J. Hui, D. Culler, N. Kushalnagar,

"Transmission of IPv6 Packets over IEEE 802.15.4

Networks," RFC 4944, 2007.

[15] J. W. Hui and D. E. Culler, "Extending IP to Low-Power,

Wireless Personal Area Networks," in IEEE Internet

Computing, Vol. 12, No. 4, pp. 37-45, July-Aug. 2008.

[16] P. Gburzyński, E. Kopciuszewska, "On Rapid Development

of Reactive Wireless Sensor Systems," CZOTO, Vol. 1, No.

1, pp. 574-582, 2019.

[17] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M.

Mohanty, C. Lin, "Edge of Things: The Big Picture on the

Integration of Edge, IoT and the Cloud in a Distributed

Computing Environment," in IEEE Access, Vol. 6, pp. 1706-

1717, 2018.

[18] M. Chiang and T. Zhang, "Fog and IoT: An Overview of

Research Opportunities," in IEEE Internet of Things Journal,

Vol. 3, No. 6, pp. 854-864, Dec. 2016.

[19] S. Yi, C. Li, Q. Li, "A Survey of Fog Computing: Concepts,

Applications and Issues,". Proceeding of the Workshop on

Mobile Big Data, NY, USA; Mobidata ’15, pp. 37–42. 2015.

[20] S. A. B. Awwad, C. K. Ng, N. K. Noordin, B. M. Ali and F.

Hashim, "Second and subsequent fragments headers

compression scheme for IPv6 header in 6LoWPAN network,"

Seventh International Conference on Sensing Technology

(ICST), Wellington, pp. 771-776, 2013.

[21] T. Kramp, M. Baentsch, T. Eirich, M. Oestreicher, I.

Romanov, "The IBM Mote Runner," ERCIM , 2009.

[22] A. Ludovici, C. Augé, J. Casademont, J. "Forwarding

Techniques for IP Fragmented Packets in a Real 6LoWPAN

Network," Sensors, Vol. 11, No. 1, pp 992–1008, 2011.

[23] J. Hui, D.C.; Chakrabarti, S. 6LoWPAN: Incorporating IEEE

802.15.4 into the IP architecture. IPSO, 2009.

[24] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P.

Thubert, P. Levis, R. Struik, R. Kelsey, T. Winter, "RPL:

IPv6 Routing Protocol for Low-Power and Lossy Networks.,"

. RFC 6550, 2012.

[25] R. Garg, S. Sharma, "A study on Need of Adaptation Layer in

6LoWPAN Protocol Stack,". International Journal of

Wireless and Microwave Technologies, Vol. 7, pp. 49–57,

2017.

[26] C. Devasena, "IPv6 Low Power Wireless Personal Area

Network (6LoWPAN) for Networking Internet of Things

(IoT) – Analyzing its Suitability for IoT," Indian Journal of

Science and Technology, Vol. 9, 2016.

[27] P. Saint-Andre, "Extensible Messaging and Presence Protocol

(XMPP): Core,". RFC 3920, 2004.

[28] M. Ruta, F. Scioscia, E. Sciascio, "Enabling the Semantic

Web of Things: Framework and Architecture," IEEE Sixth

International Conference on Semantic Computing, pp. 345–

347, 2012.

[29] Bhandari, K.S.; Hosen, A.S.M.S.; Cho, G.H. "CoAR:

Congestion-Aware Routing Protocol for Low Power and

Lossy Networks for IoT Applications," Sensors, Vol. 18, No.

11, 2018.

[30] Miguel, M.L.F.; Jamhour, E.; Pellenz, M.E.; Penna, M.C.

"SDN Architecture for 6LoWPAN Wireless Sensor

Networks," Sensors, Vol. 18, No. 11, 2018.

[31] J. Granjal, JM. Silva, N. Lourenço, "Intrusion Detection and

Prevention in CoAP Wireless Sensor Networks Using

Anomaly Detection," Sensors, Vol. 18, 2018.

[32] M. Amanowicz, J. Krygier, "On Applicability of Network

Coding Technique for 6LoWPAN-based Sensor Networks,"

Sensors, Vol. 18, 2018.

[33] C. Martín, J. Hoebeke, J. Rossey, M. Díaz, B. Rubio, F. Van

den Abeele, "Appdaptivity: An Internet of Things Device-

Decoupled System for Portable Applications in Changing

Contexts," Sensors, Vol 18, 2018.

[34] H. Araújo, R. Filho, J. Rodrigues, R. Rabelo, N. Sousa, J.

Filho, J. Sobral, "A Proposal for IoT Dynamic Routes

Selection Based on Contextual Information," Sensors, Vol.

18, 2018.

[35] F. Van den Abeele, I. Moerman, P. Demeester, J. Hoebeke,

"Secure Service Proxy: A CoAP(s) Intermediary for a Securer

and Smarter Web of Things," Sensors, Vol. 17, 2017.

[36] Y. Chen, J. Chanet, K. Hou, H. Shi, G. de Sousa, "A

Scalable Context-Aware Objective Function (SCAOF) of

Routing Protocol for Agricultural Low-Power and Lossy

Networks (RPAL)," Sensors, Vol 15, No. 8, pp. 19507–

19540, 2015.

[37] A. Ludovici, A. Calveras, J. Casademont, "Forwarding

Techniques for IP Fragmented Packets in a Real 6LoWPAN

Network." Sensors, Vol 11, No. 1, pp. 992–1008, 2011.

[38] A. Ludovici, P. Marco, A. Calveras, K. Johansson,

"Analytical Model of Large Data Transactions in CoAP

Networks," Sensors, Vol. 14, No. 8, pp. 15610–15638, 2014.

[39] L. Oliveira, J. Rodrigues, A. de Sousa, J. Lloret, "A Network

Access Control Framework for 6LoWPAN Networks,"

Sensors, Vol. 13, No. 1, pp. 1210–1230, 2013.

[40] A. Ludovici, A. Calveras, "A Proxy Design to Leverage the

Interconnection of CoAP Wireless Sensor Networks with

Web Applications," Sensors, Vol. 15, No. 1, pp. 1217–1244,

2015.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.ti.com.cn/cn/lit/wp/swry013/%20swry013.pdf
http://www.ti.com.cn/cn/lit/wp/swry013/%20swry013.pdf

