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Abstract- Internet of Things (IoT) is increasingly becoming the 

vehicle to automate, optimize and enhance the performance of 

systems in the energy, environment, and health sectors. In this paper, 

we use Wi-Fi wrapped sensors to provide online and in real time the 

current energy consumptions at a device level, in a manner to allow 

for automatic control of peak power consumption at a household, 

factory level, and eventually at a region level, where a region can be 

defined as an area supported by a distinct energy source. This allows 

to decrease the bill by avoiding the usage of heavily and controllable 

loads during high tariff tier and/or peak period per household and to 

optimize the energy production and distribution in a given region. 

The proposed model relies on adaptive learning techniques to help 

adjust the current load, while taking into consideration the actual and 

real need of the consumer. The experiments used in this study makes 

use of current and voltage sensors, Arduino platform, and simulation 

system. The main performance indexes used are the control of a peak 

consumption level, and the minimum time needed to adjust the 

distribution of load in the system. The system was able to keep the 

maximum load at a maximum of 10 kW in less than 10 seconds of 

response time. The level and response time are controllable 

parameters. 
 

Keywords: Demand Side Management, Internet of Things, Smart 

Grid. 

1. Introduction 

According to US Energy Information Administration (EIA), 

the cost of energy continues to grow despite the continued and 

increased use of cheap and renewable energy sources [1].To 

meet the challenge of growing cost, it is incumbent to 

investigate the means of lowering, controlling or optimizing 

the demand for electricity energy at residential, commercial 

and industrial customer sites [2]. A report released by the 

International Energy Agency (IEA) finds that in 2018 global 

energy demand grew by 2.3%, the fastest pace in a decade, 

leading to 1.7% of growth in energy-related CO2 emissions. 

This is despite the fact that renewable energy sources in 

meeting new energy demand keeps growing and energy 

efficiency continues to increase. It is noted that the rates of 

improvement are far below those required to meet the 

challenges of growing demand [3]. In this paper, we address a 

key solution to the challenge of growing demand, which lies 

in the necessity to manage the demand rather than to produce 

more energy and seek new sources, which evidently cause 

disruption in the climate management, and lead to 

consequences far more than the increasing energy bill.  

Demand side Management (DSM) generally aims to make the 

demand for electricity more flexible, where it can be 

forecasted and controlled to match the supply [4]. Given the 

uncontrolled culture of the tendency to use electric energy as 

long as it is available and useful. Even the attempt to control 

the ongoing usage of electric power is mostly done in an 

irregular, uninformed basis, such as turning off lights, using 

more efficient AC units, and so on. Evidently, this type of 

behavior is not based on a well-defined calculation of the 

energy usage at a given point in time.  Studies similar to the 

one in [5] and [6] discuss scheduling algorithms which are 

dedicated for thermal loads and for HVAC systems only. 

Heuristic approaches such as GAs (Genetic Algorithms) have 

also been used to optimize domestic consumption to yield cost 

reductions where it can adapt to load variations [7]. The work 

presented in [8] has used a heuristic approach for active 

demand management for an off-grid system consisting of 

renewable sources (PV and Wind). The aim of the system was 

to control power consumption according to the prevailing 

weather conditions. The system was an actual system built in 

the Technical University of Ostrava’s campus, Czech 

Republic. There, they managed to control energy flow and 

increase the efficiency of renewable energy systems, 

harnessing the roles artificial intelligence methods can play, 

in both of the underlying software and hardware parts. 

Authors of the work in [9, 10] presented another management 

system based on heuristic methods where home energy 

models were simulated in a real time pricing environment and 

were shown to yield energy cost minimization. The study 

showed that BPSO worked better towards cost reduction. 

Today, with the advancement made in the area of Internet of 

Things (IoT) technologies, it can be noted that IoT can be 

utilized to manage domestic power consumption just as well. 

Internet of Things (IoT) offers a space of interconnected items 

that are capable of rendering remote as well as near-end 

services as it can provide information about different devices 

simultaneously. It also benefits from available sensors and the 

pervasive wireless communication infrastructure [11]. 

The shift to smart grid is critical to satisfy real power demand 

and match supply with demand. Also, it facilitates the 

provisioning of electricity from different suppliers creating a 

possible trade commodity [12]. The energy sector has a lot to 

gain from IoTs, especially with the emergence of new energy 

infrastructures dubbed as the Internet Energy of things (IoET) 

[13]. 

This paper proposes a complete practical system that monitors 

the power consumption of domestic devices in real-time, and 

controls the operation of these devices remotely.  

Furthermore, it tests the performance of two scheduling 

algorithms in a simulated environment. The proposed model 

in this study relies on the ability to recognize plugged in 

devices based on a unique characterization of the device, 

which could act as a fingerprint of the device.  

In the next section, we provide a survey of relevant work. The 

Model and the proposed algorithms are presented in section 3; 

section 4 presents the simulation results, and finally 

conclusions are presented in section 5. 



377 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 13, No. 3, December 2021 
 

2. Related Work 

Tawalbeh et. al. [10] presented a model for demand based 

optimization of electric power consumption using Binary 

Particle Swarm Optimization (BPSO) [14]. The researchers 

showed the current load of a household electric devices can be 

optimized using the BPSO algorithm. The proposed system in 

[10] succeeded in maintaining 2000-Watt level (for the 

controlled devices only) with less than 10 seconds sampling 

rates, at different control levels pursuant with the type of 

domestic device used. The built system managed to serve as a 

monitoring and control device, using the WiFi communication 

capabilities. The researchers suggested the development of 

more optimization techniques, which take into consideration 

more conditions and priorities.  

The utilization of the power of Internet of Things (IoT) for the 

optimization of performance and the reduction of cost in many 

disciplines including energy consumption at the level of a 

single household or the grid in general has been recognized by 

several researchers such as in [11, 15]. The authors in [11] 

recognize that The Internet of Things (IoT) has been 

recognized as one of the major technological revolutions of 

this century  [16, 17], although the IoT is still in its infancy. 

According to the authors in [11], IoT will unleash its full 

potential with the development of smart applications, which 

can utilize the power of IoT. The current research is one such 

application. 

Scheduling of load at any given time is addressed as a one of 

the strategies which has commonly leveraged Neural 

Networks (NN); this was used for DSMs [18]. The study used 

MATLAB’s NN toolbox where the work presented reflected 

a reduction in the gap between demand and supply resulting 

from applying an artificially intelligent algorithm that 

recognizes the consumption patterns using NNs. NNs are also 

used for forecasting in real time pricing tariffs over smart 

grids. NNs are used to evaluate the demand depending on 

various parameters such as oil price, and previous year’s 

consumption [19]. Another prediction of the demand was 

done by NNs for an off-grid system using 24 hours of past 

information where the load profile can be predicted via 

simulations using NNs [20]. 

Heuristic approaches such as GAs (Genetic Algorithms) have 

also been used to optimize domestic consumption to yield cost 

reductions where it can adapt to load variations [7]. The work 

presented in [8] has used a heuristic approach for active 

demand management for an off-grid system consisting of 

renewable sources (PV and Wind). The aim of the system was 

to control power consumption according to the prevailing 

weather conditions. The system was an actual system built in 

the Technical University of Ostrava’s campus, Czech 

Republic. There, they managed to control energy flow and 

increase the efficiency of renewable energy systems, 

harnessing the roles artificial intelligence methods can play, 

in both of the underlying software and hardware parts. 

Authors of the work in [9, 10] presented another management 

system based on heuristic methods where home energy 

models were simulated in a real time pricing environment and 

were shown to yield energy cost minimization. The study 

showed that BPSO worked better towards cost reduction. 

Today, with the advancement made in the area of Internet of 

Things (IoT) technologies, it can be noted that IoT can be 

utilized to manage domestic power consumption just as well. 

Internet of Things (IoT) offers a space of interconnected items 

that are capable of rendering remote as well as near-end 

services as it can provide information about different devices 

simultaneously. It also benefits from available sensors and the 

pervasive wireless communication infrastructure [11] 

The shift to smart grid is critical to facilitate the transition 

towards low-carbon energy systems and enable the provision 

of reliable and cost-effective balancing mechanisms to satisfy 

real power demand and match supply with demand. Also, it 

facilitates the provisioning of electricity from different 

suppliers creating a possible trade commodity [12]. The 

energy sector has a lot to gain from IoTs, especially with the 

emergence of new energy infrastructures dubbed as the 

Internet Energy of things (IoET) [13]. In particular, the IoET 

enables better understanding the power consumption of 

residential customers and crucially the provision of a well-

defined and predictable load profiles for various energy 

consuming units.  

Said El Abdellaoui et. al.  [21] addressed the use of wireless 

sensor network for the management of energy harvesting. In 

their research, the authors proposed an algorithm in order to 

maximize the network lifetime for the energy harvesting 

system. The results presented in [21] showed that the 

algorithm OPA-RB achieved a much higher Lifetime than the 

others algorithm. They propose to address in the future work 

the application of the algorithm to a multi-hop model using a 

Non-Orthogonal Multiple Access Systems (NOMAS) with 

Partial Channel Information (PCI). Different simulation-

based algorithms have been also proposed in the literature to 

reduce peak demand in power grids by controlling residential 

appliances. For instance, direct load control method is adopted 

in [22, 23] to connect or disconnect a specific type of load to 

mitigate congestions in power distribution networks. Also, 

optimization-based energy management algorithms have been 

provided, for instance the study in [24] to optimally define the 

best control actions of controllable loads in response to 

dynamic price signals. Although the proposed algorithms are 

found effective to manage power consumption, they have not 

been implemented and tested in practice. This is important to 

better understand the implications and challenges of IoET and 

inform energy policy makers. 

In this paper, we utilize the wireless sensor network for 

scheduling electric devices usage in a household in a manner 

to manage the energy bill in a given time period. 

3. The model and load optimization Algorithm 

Figure 1 shows the general model of the proposed system. Ui 

stands for electric unit (i), Si stands for smart socket (i). Each 

smart socket is enabled with a wireless connection to a smart 

and adaptive demand control system (SACS). The wireless 

connection can be made via Bluetooth Zigbee Protocol (BZP) 

or WiFi 2.5 or 5 GHz, depending on the size of the facility. In 

a relatively small home, BZP can be sufficient, whereas in a 

larger facility such as a factory or an organization, a wider 

Wireless connection range is required. The SACS unit is 

responsible for recognizing the plugged in device, its expected 

power consumption, expected time usage, and to permit the 

entrance of the unit to the system or to block it based on the 

deployed algorithm (to be defined in the next section).  

Each smart socket (Si) is identified by its unique MAC address 
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(permanent ID) and by a local IP address (temporary ID). The 

smart socket in this study is designed (for experimental 

purposes) using Arduino micro-computer device. The smart 

socket main function is twofold. First it identifies the unit, 

once the unit is plugged into the socket. An algorithm is 

designed and hard coded into the Arduino device. The 

algorithm detects the transient characteristics of the unit, 

which is used as a unique classifier of the unit [25]. For the 

experiments conducted in this study, the classifiers were 

unique for all the devices used in the study. A 98% accuracy 

was reported in [25] using the Controlled On/Off Loads 

Library (COOLL) dataset. The SACS system records the 

transient characteristics classifier for each device and builds a 

profile for the device. For example, a refrigerator R1 is 

plugged into the smart socket, the socket measures its transient 

characteristics, reports it to the SACS, and the SACS 

determines whether the refrigerator R1 is a new device or a 

previously recorded device. If the device (R1) is a new one, 

the SACS records the device with its transient characteristics 

as a classifier and identifier (IDC). While the device is 

plugged in, after the initial transient period, the smart socket 

will report the energy consumption of the device to the SACS, 

which on its turn maintains energy consumption averages of 

the device. For practical reasons, it is possible for the classifier 

of a unit to be identified when the device is used for the first 

time, using repeated plug and unplug cycles in order to record 

several variations of the transient characteristics, in a similar 

manner to fingerprint recording at smart phone devices. The 

SACS acts as a local server, which records basic information 

on any device plugged into the system. The information 

includes IDC, average power consumption, average time 

while plugged in, priority index, and history of the device 

usage. 

 
Figure 1: Smart and adaptive control system model 

3.1  Algorithm 1: First Come First Served 

The SACS uses two variations of the optimization algorithm. 

Each algorithm can be selected through a configuration file, 

which can be managed and administered by the household 

administrator. The algorithms will use the following 

parameters. 

1. Maximum Load Level LMAX. This is a configurable 

parameter 

2. The device identification classifier ID 

3. Current load level 

4. Device priority parameters PDI 

5. The expected time duration of the device TDI 

6.  The expected energy consumption of the device LDI 

 

Algorithm 1: First Come First Server (FCFS). 

Step 1: Set The Maximum Load Level LMax 

  When a new device (DI) is plugged in 

     DO 

          { 

             Add new device DI 

             Detect Device classifier IDCDI 

             Get IDC Load (LDI) 

            Compute current load:  

                      Lcurrent = Lcurrent+  LDI  

                      If Lcurrent ≤  LMax  Accept Device  

                       Else Block the device DI             

                     }    

Algorithm 1 incrementally adds devices to the current load of 

the controlled environment. When the load level reaches the 

maximum configured load level, the system blocks the new 

device and does not allow it to consume energy. This function 

is accomplished by the smart socket device, which has the 

capability of enabling or disabling the electric current flow 

into the device. The smart socket (SI) acts upon the decision 

made at the SACS.  Algorithm 1 givens preference to devices 

on a first come first served (FCFS) order. The SACS server 

can be configured to control the maximum load for a specific 

time interval, e.g. 30 minutes. This is especially useful in 

countries such as the USA, where the electric bill contains a 

significant factor which depends on the maximum load used 

during a given period of time, e.g. 15 minutes [1, 14]. 

FCFS algorithm is known for its simplicity, while it 

guarantees the load level to be within the allowed configured 

load level. However, the FCFS algorithm suffers from a 

discriminatory behavior, where devices with lower energy 

consumption may be disabled and not allowed to join the 

system, simply because a heavy load consuming device was 

plugged in earlier. Consider the following examples. 

1) Example 1. Let the controlled unit (e.g. household) has 5 

appliances as shown in Table 1. And the maximum allowed 

load is 5000 Watt. In this example, 5 devices manage to enter 

the system, and one with the load (1800) was not allowed 

because the system had reached maximum allowed capacity. 

The actual load on the system is 3500, and one device is 

unable to join. The load utilization is 70%. 

Table 1: Example 1 – FCFS 
Device 

Di 

Expected 

Load LDi (W) 

Order of 

Arrival 

Lcurrent 

(W) 

Status Device 

Di 

1 2000 1 2000 On 1 

2 1000 2 3000 On 2 

3 500 3 3500 On 3 

4 1800 4 5000 Off 4 

5 300 5 5100 On 5 

2) Example 2. Now assume that the order of arrival changes 

as shown in Table 2. Note that in this example, three devices 

are allowed into the system with a total load of 4800 Watts. 

Load utilization in this example is 96%. As shown in example 

2, 2 devices out of 5 will not be able to function until one of 

the other 3 devices finishes. Obviously algorithm 1 (FCFS) 

can be credited for its simplicity and ease of implementation. 

However, the performance and predictability of the system 

may not be favorable. In a small household unit with relatively 

low number of devices, the manager can control the behavior 

of the algorithm in a manner, which allows an optimal 

scheduling. However, this is not practical for a large 

establishment, where the number of devices is relatively large.  
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Table 2: Example 2 - FCFS 

    3.2  Algorithm 2: Priority Preemptive (PPA)  

This algorithm allows the system to preempt one or more 

devices in order to accommodate a new device. Of course the 

device to be preempted must be of the type whose operation 

can be interrupted such as iron, washing machine, dish washer 

and the like [9]. Some devices can be considered interruptible 

given certain conditions. For example, an AC unit may be 

interrupted if the outside temperature is below 25 OC, but is 

considered uninterruptible when the outside temperature is 

above 35 OC degrees. Life critical devices such as oxygen 

supplier units are not interruptible at all. 

For example, assume that the current load in the system is 9 

kW, and the newly plugged in device has a steady state load 

average of 2 kW and the device has a high priority index. 

Assume that the maximum allowed load is 10 kW. Evidently, 

adding the new device causes the load to exceed the maximum 

configured load. The system knowing that the new device has 

a high priority, decides to unplug one of the devices with load 

exceeding 1 kW and with priority index lower than the new 

one, thus allowing the new device to be added to the system.  

Device priority is configured in this study based on several 

parameters including 

1. The average steady state load of the device (LDI). LDI is 

dynamically adjusted based on the previous uses of the device. 

For first time use of the device, LDI is set to 0. 

2. The expected operation time of the device TDI. TDI is 

estimated based on previous operation of the device. For first 

time use of the device, TDI is set to 0. 

3. General conditions Index GDI. This index is calculated 

based on specific external conditions such as current 

temperature, which is used to define an index priority for AC 

units, inhabitants of the unit such as children, elderly, people 

with special needs and other conditions.  

4. Initial priority Index (IDI). This is set by the manager. 

The priority of a device PDi = f(LDi , TDi , GDi , IDi). PDi is 

normalized between 0 and 10, where 10 is the highest and 0 is 

the lowest priority. The calculation of the priority is performed 

dynamically. Algorithm PPA is shown next. 

Algorithm 2: Priority Preemptive Algorithm 

  Step 1: Set The Maximum Load Level LMax 

    When a new device (DI) is plugged in 

     DO 

      { 

        Add new device DI 

        Detect Device classifier IDCDI 

        Find IDC Load (LDI) 

        Lcurrent = Lcurrent+  LDi 

       If   Lcurrent ≤  LMax  Continue 

      Else  

         If PDi is higher than PDj  

  //where PDj is the priority of any plugged in device  

    THEN 

    Replace PDi with PDj 

}    

Example 3. Assume that a unit system has several devices 

plugged in with a total load of 4500 Watt and that the 

maximum allowed load is 5000 Watt. A new device is plugged 

in with an average estimated load of 1000 Watt. Assume that 

the priority of the new device is 7.5, and one of the plugged in 

devices has a priority of 5.5 and load average = 600 Watt. The 

system will unplug the lower priority device, reduce the 

current load to 3900 Watt, then the new device with 1000 Watt 

load demand is allowed to enter the system. The total current 

load becomes 4900 Watt. The SACS system keeps track of the 

plugged in devices, their load and priorities.  

Note that when a device is unplugged from the system, it 

remains physically plugged to the smart socket, and the socket 

will keep trying to rejoin the device, which will succeed 

whenever a physically plugged device is turned off.  

Further optimizations can be applied to Algorithm 2 (Priority 

Preemptive Algorithm). In this paper, we consider only the 

Priority Index based algorithm, where the lowest priority 

device is pre-empted and replaced in case a new device with 

higher priority needs to be plugged in. 

4. Simulation and Results 

The system is simulated using a Client Server Architecture. 

The SACS serves in the system as a server, and each smart 

socket is modeled as a client.  

Two servers are used in this study, one for executing 

Algorithm 1, and the second one for executing Algorithm 2.  

Once a smart socket is plugged in, it immediately makes a 

request to connect to the server, and the server connects the 

client (representing the smart socket). The server registers the 

ID of the socket (Its local IP address and Port number). The 

server maintains the smart socket ID’s in its own database. 

When a device is plugged into a smart socket, the client 

representing the socket sends the device data to the server. The 

data includes the Ampere-Volt (Watt) data. At plug-in time, 

the client sends the Amp-Volt data at 100 ms intervals. This is 

necessary for the SACS server to identify the transient 

characteristics of the device, and identify the plugged in 

device in case the device had been plugged in before. The 

SACS server identifies the transient characteristics of the 

device within a given time interval, sufficient for the device’s 

Amp-Vol data stabilizes near a nominal value. If the device 

has been used before, the SACS pulls its data from the 

database and uses the device’s previously stored Watt average 

and use it to decide whether to admit or reject the device based 

on Algorithm 1 or Algorithm 2. The server keeps a record of 

the device’s average power consumption, and the average 

plugin time of the device. This information is used in the 

calculation of the device priority. This data will be used in 

another study to predict the device health, maintenance 

requirements, or scrabbling of the device.  

The simulation is run for small and large units or households, 

where a small unit has 20 sockets and a large one has 100 

smart sockets, where each socket may be used by several 

devices over the simulation time.  

Figure 2 shows a comparison between FCFS and PPA 

algorithms for different household sizes (20, 40, 60, and 100 

smart sockets per household). Each socket plugs 5 devices 

over the simulation time. It is shown that the PPA algorithm 

allows the system to better utilize the load while keeping the 

load below the maximum configured load. This is due to the 

fact that PPA attempts to accommodate new devices, even 

when the maximum load had been reached by replacing one 

or more of the currently used devices.  

Device 

Di 

Expected Load LDi 

(W) 

Order of 

Arrival 

LCurrent 

(W) 

Status 

1 2000 1 2000 On 

2 1000 2 3000 On 

4 1800 3 4800 On 

5 300 4 5100 off 

3 500 5 5600 off 



380 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 13, No. 3, December 2021 
 

 
Figure 2: Monthly Energy consumption under FCFS and 

PPA algorithms with different number of sockets per 

household whilst keeping the maximum power below 10 kW 

Figure 3 compares both algorithms in terms of the number of 

served devices over the simulation run for different household 

sizes with the number of sockets per household is 20, 40, 60, 

80 and 100 and each socket plugs 5 devices over the 

simulation duration. It is shown that the PPI algorithm is 

capable of serving more devices used by the smart sockets for  

relatively large set of devices in the system. However, for 

small household units with less than 40 devices the FCFS 

algorithm has similar performance to the PPI algorithm. Table 

3 shows a snapshot of the devices used in the system over a 

short period of time.  

 
Figure 3: Number of served devices under FCFS and PPA 

algorithms with different number of sockets per household 

whilst keeping the maximum power below 10 kW 

Table 3: Device usage distribution 
Socket 

ID 

Device 

ID 

Time Duration 

(minutes) 

Average Demand 

(W) 

1 1 10 200 

1 2 15 700 

2 1 60 100 

3 1 20 1000 

… … … … 

Cost Analysis 

Here, the cost of electrical bill at a given household is 

calculated based on energy charge ($/kWh) and peak power 

charge ($/kVA) [26]. The energy charge is applied to the total 

volume of consumed energy by the household devices, e.g., 

100 kWh. The peak power charge is defined based on both the 

maximum power drawn during the billing period (e.g., 

average power each 15 minute period) and the power factor.   

In the standard usage of electric power (without any form of 

control), the bill is heavily impacted by exceeding a given load 

threshold within a certain interval, usually determined by the 

power provider company. For example, assume that the total 

consumption of a given unit is 1000 kWh at $0.1/kWh, the 

peak power measured at each 15 minute period is 10 kW at 

$10/kVA, and the power factor is 0.8. Then the electric bill 

total will be (1000 x 0.1) + (10/0.8 x 10) = 100+125 = $225. 

Note that the power demand and the power factor contributes 

significantly to the final bill.  In fact the actual bill (to be paid) 

is more than double the real amount of energy consumed by 

the customer. The proposed system in this study allows the 

customer to significantly reduce the bill by controlling the 

average power demand and the power factor.  

Next, we show how the total bill can be reduced by the 

proposed system. In the above example, the consumer can set 

the maximum load in a given period of time (e.g., 15 minutes) 

to 2 kW. The maximum consumption per a billing period of 

30 days will be 5760 kWh at a cost of $576. The power 

demand cost is 2 x 10 = $20 and with power factor at 0.8, the 

paid power charge becomes 20 x 1.25 = $25 and the total bill 

is 576+25 = $601. The bill overhead due to online demand is 

25/601 = 4% of the total bill cost, which constitutes a 

significant reduction of the bill.  

 
Figure 4: Monthly Energy cost under standard (no-control), 

FCFS and PPA algorithms with different number of sockets 

per household 

Figure 4 shows the cost comparison using demand 

management system algorithms FCFS and PPA compared to 

the standard system with no optimization of the load demand. 

The major cost charged by electric utility companies is heavily 

impacted by the real-time power demand by devices of the 

client, on top of the total consumed energy. Consequently, the 

reduction of the peak power is the most cost effective means 

of saving on electricity bills for customers; in the meantime, it 

enables the network operators to better manage power flows 

throughout the grid. 

In a further research investigation, we will consider the 

management of power and energy consumption using 

machine learning algorithms. The actual cost of the power 

demand control system presented in this study is negligible 

compared to the saving on power cost. 

5. Conclusions 

This paper presented a new approach for controlling the power 

demand by a customer and lowering the power instant supply 

by the utility company generating the power to meet the 

customers’ demands. The paper presented two algorithms for 

optimizing average demand per a given period of time.  

The first come first serve algorithm (FCFS) is a simple and 

easy to implement and shows efficiency for small households 

with less than 40 smart sockets. The priority preemptive 

algorithm (PPA) is a rather complex algorithm, which 

provides more control and better utilization to the offered load 

within a given period of time especially for large household 

units. Both PPA and FCFS algorithms stream to better 

optimize the number of served devices and the utilization of 
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the offered/configured load.  

Future work will address different optimization methods, and 

power factor efficiency optimization. 
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