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Abstract: The reliability and quality of software programs 

remains to be an important and challenging aspect of software 

design. Software developers and system operators spend huge time 

on assessing and overcoming expected and unexpected errors that 

might affect the users’ experience negatively. One of the major 

concerns in developing software problems is the bug reports, which 

contains the severity and priority of these defects. For a long time, 

this task was performed manually with huge effort and time 

consumptions by system operators. Therefore, in this paper, we 

present a novel automatic assessment tool using Machine Learning 

algorithms, for assessing bugs’ reports based on several features 

such as hardware, product, assignee, OS, component, target 

milestone, votes, and versions.  The aim is to build a tool that 

automatically classifies software bugs according to the severity and 

priority of the bugs and makes predictions based on the most 

representative features and bug report text. To perform this task, we 

used the Multi-Nominal Naive Bayes, Random Forests Classifier, 

Bagging, Ada Boosting, SVC, KNN, and Linear SVM Classifiers 

and Natural Language Processing techniques to analyze the Eclipse 

dataset. The approach shows promising results for software bugs’ 

detection and prediction.  
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1.    Introduction:  
 

A software bug is a failure in the program which causes 

unexpected or unwanted outputs [1]. It is an error that 

prevents the program to operate its function as it should, 

either while launching the software or while using its 

features. System operators and software developers spend 

huge time testing their proposed software as modules to 

bypass having any type of bugs or errors and assessing the 

potentials of having any type of system crashes for any 

reason. Research has shown that half of the developers' time 

is spent on fixing bugs, and just 36% is specified for adding 

new features. The bugs fixing process consists of 

determining why the program or software is behaving 

abnormally and trying to fix the part of the component that 

caused the error [2]. Although, this is their main concern to 

ensure a smooth user experience, there still exist many cases 

where human limitations in designing software modules 

cause certain lacuna in building those modules. The most 

common types of bugs or defects encountered in the software 

testing process are Functional Bugs, Logical Bugs, 

Workflow Bugs, Unit Level Bugs, System-level Integration 

Bugs, and Out of Bound Bugs [3]. Software bugs should be 

detected through the early stages of the development life 

cycle at the testing phase; because the cost to fix the error 

differs depending on which level it is discovered or fixed. 

For example, the cost to fix an error after the product is 

released is four to five times as much as being discovered 

during the design phase [4]. 

Classifying software bugs makes the corrective actions 

process easier and minimizes the defects. This step 

determines which bug should be fixed at first, which should 

be considered with higher priority and may affect the whole 

program operationally, functionally or security wise. For 

that, there is a need to automate this process to reduce the 

cost of time and effort. Bugs are prioritized according to two 

features: bug priority and bug severity, in which the bugs 

with the highest priority and severity are critical and must be 

solved at first. Now, the core question is how to define the 

bug priority? According to the priority, it divides the bugs 

into four different levels: critical bugs, high-priority bugs, 

medium-priority bugs, and low-priority bugs. The priority is 

set by the committee, contributor, or component owner; in 

this way, the importance of the bugs, and the possible 

enhancement can be indicated. The bugs' priority levels are 

symbolized to four levels from P1 to P4. P1 which has the 

highest priority, and it must be fixed, P4 which has the 

lowest priority which means is a valid bug, has a choice to 

fix it but it is not important. As for the bugs' severity, is 

assigned by the bug reporter which defines how much the 

bug is important. Bug severity is divided into seven types, 

which are major, blocker, critical, normal, enhancement, 

minor, and trivial [5].  

• Major: is a major loss of function. 

• Blocker: blocks the work of testing and development. 

• Critical: is crashes, loss the data, memory leak.  

• Normal: is a regular issue, loss of some functions but 

under specific conditions. 

• Minor: is a trivial loss of function or another problem 

that is easy to be solved.  

• Enhancement: This is an enhancement request.  

• Trivial: is a cosmetic problem, improving the 

problem.  

Different open-source projects can be an interesting area to 

analyze, study, and track bugs report such as Eclipse [6]. 

Eclipse project that composed of five sub-projects which are: 

Platform, Java development tools, Plug-in Development 

Environment (PDE), e4, Equinox, and Orion [7]. 
The provided model in figure 1 depends on the bugs features 

that are trained model on. Feature selection is an essential 

step; because not all features in the bugs dataset have the 

same importance and affect the final results in a big manner. 

The model will be trained on the selected features to be able 

to classify the bugs according to the priority and severity 

level. As an extra advantage, bugs report text will be fed to 

the model and extracted more characteristics that will be 

helpful at the prediction phase. 

In this research, the Eclipse software bugs dataset will be 

used to develop a model that can automatically classify and 

predict the severity and priority of the bugs. The provided 

model will use bugs features which will be selected carefully 

to ensure they are representative and achieve the highest 
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results. At the classification process, machine learning 

algorithms, Random Forests Classifier, Bagging, Ada 

Boosting, SVC, and KNN, will be used to make bugs 

severity and priority classification based on hardware, 

product, component, OS, resolution, version, and status 

features. 

 
Figure 1: Bugs classification and prediction model 

architecture. 
 

The results will show an F1 score, accuracy, precision, 

recall, and execution time for each used algorithm at the 

testing process. On the other hand, a summary of bug reports 

will be studied using NLP techniques and try to extract the 

characteristics of the text and used them in the bugs 

prediction process. The report text will be preprocessed, 

converted to numerical form to facilitate dealing with, using 

TF-IDF. 
 

2. Related Work 
 

During the development life cycle, testers and editors are 

responsible to detect, triaging, and fixing the bugs that exist 

in the program or software. Bug triaging is an essential step 

that must be done at the beginning stages, that will consume 

the cost whether in the time, money, and effort [8]. Different 

cases cause software bugs, such as what happens during the 

development process. One of the drawbacks of using 

machine learning is that these algorithms cannot extract the 

important feature patterns for learning the classifier. This 

work aims to use a novel deep learning model for bug 

severity classification using CNN and random forest with 

boosting (BCR). This model can learn from the hidden and 

high representative features in the dataset. NLP techniques 

deal with the bug report text, and n-gram extracts the 

features. For CNN, is used to extract the important feature 

patterns and BCR to classify the multiple bug severity 

classes [9]. 

Machine learning algorithms are used in the classification 

process to compare the severity accuracy, such as the 

decision tree and random forest. Many of the bugs' reports 

have incomplete data that relate to the features, which causes 

inaccurate results. The case deletion, mean imputation, 

median imputation, and k nearest neighbor are methods that 

are used to deal with this issue. Different machine learning 

algorithms are used to predict future software faults depend 

on historical data and the comparison between each 

algorithm performance depends on some measures, such as 

accuracy, precision, recall, F-measure, and ROC curves. The 

used dataset consists of the number of faults, and the number 

of test workers for each day. The main goal of this study is to 

measure the ML performance in the bugs classification 

process [10].  

Bugs detection is a very essential step that should be done at 

the early level of the software development lifecycle. Which 

reflects in the software quality, reliability, and the cost of 

development positively. The machine learning algorithms, 

such as Logistic regression, Naive Bayes, and Decision tree, 

are used for bugs' severity classification process. In addition, 

statistical analysis helps in the detection of the bug. The 

imbalanced data problem can be solved using the 

oversampling methods, such as SMOTE [11]. Bugs' reports 

have a summary or description field as text, at the bug 

prediction process there is a need to deal with this text and 

convert it to numeric format to apply the machine learning 

algorithms. Bag-of-Words and tf-idf transformer are used to 

convert the text data into feature vectors. At the training and 

testing processes different machine learning algorithms and 

make a comparison between the final accuracy results [12]. 

The inconsistency in the used datasets to design and develop 

prediction models for software detects leads to get inaccurate 

results. Self-Paced Association and Node embedding 

(SPAN) is used to make connections between the text 

datasets effectively. Also, Software Bug Report Network is 

used to identify aimed features [13].   

Bug's priority is defined based on the emotion words that are 

included in the bug reports. Emotion values will be assigned 

for these emotion words. After that, machine learning models 

are applied to this data to predict the bugs' priority. THE 

SentiWordNet emotion words corpus is the most corpus 

used. Dealing with the text part of the dataset is includes 

tokenization, part of speech, remove the stop words, and 

lemmatization [14]. The bug severity, component, and 

problem title are the based features that will be used to make 

a model that aims to prioritize the bug. As the first step, the 

text input features are converted to numeric features using 

TF-IDF. PCA and NMF are used to reduce the complexity 

and running time of the algorithms. For the clustering 

approach, X-Mean and K-Mean algorithms are used, SVM, 

Naive Bayes classifiers are applied to all features. The 

FindBugs, JLint, and PMD are three bug-finding tools used 

in this research applied on open projects, namely Columba 

Lucene, and Scarab to assign the priority of the bug. The 

developed model is an improvement of the existing models, 

which use two new bugs features, classification algorithms, 

and feature reduction techniques [15]. 

There were many tries to find alternatives to the manual code 

testing and detect the defects, which is time and effort 

consuming. They got the main advantage from the neural 

networks, which have multiple layers that allow extracting 

the high-level features from the original dataset to solve the 

problems. Deep Belief Networks (DBN), CNN, LSTM, and 

Transformer architecture are the most popular deep learning 

techniques used for software bugs detection [16]. Deep 

neural networks can be appropriate to deal with bug 

prediction. The TensorFlow and traditional python 

algorithms are used from the scikit-learn python package. 

The best setup of the networks is decided according to the 

best F1-measure result, such as learning rate, number of 

layers, number of learning epochs, number of neurons, the 

early stopping, and dynamic learning rates. The final results 
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are also compared to the final results using machine learning 

algorithms [17]. The convolution neural networks can be 

used for software bug triaging to deal with the text features 

in the dataset. Word2vec is used to make a word vector 

representation. Then, CNN is combined with batch 

normalization, pooling, and a full connection approach to 

learning from the word vector. This work is based on three 

large open projects, namely Eclipse, Mozilla, and NetBeans. 

The text preprocessing approach includes word 

segmentation, Stemming, and Stop words removal. CNN 

model extracts the high-level features from the text, the 

different spatial scales are used with convolution kernels. 

The ReLU is used as an activation function to avoid the 

gradient descent problem. For the dimensionality problem, 

the maximum pooling operation is used. This model shows 

high performance comparing with many other machine 

learning algorithms [18]. Machine learning is one of the 

approaches that is used in the bug prediction process. ML is 

widely used because it gives accurate results and good 

analysis. Systematic Literature Review (SLR) is a 

methodology that contains identifying, evaluating, and 

understanding steps for the available research. During this 

work, the goal is to know What kind of machine learning 

techniques have been selected for the prediction model? 

Which performance measures should be used? and Which 

metrics are frequently used?  The six techniques that have 

been identified are Bayesian Network (BN), Neural Network 

(NN), Support Vector Machine (SVM), Clustering, Feature 

Selection (FS), and Ensemble Learning (EL). Through these 

used techniques, NN is the most widely used.   

For the measurement, there are types, such as graphical 

measure and numerical measure. The graphical measure 

consists of the precision-recall curve, cost curve, and ROC 

curve, whereas numerical measure consists of accuracy, F-

Measure, precision, recall [19]. The duplicated software 

bugs' reports it's a problem that faces many of the software 

companies, which these companies have a large number of 

users and customers that can submit a huge number of bugs 

reports for the same fault. Many techniques are used to deal 

with this problem, such as the classification technique.  

The feature extraction technique that reduces the feature size 

and yet retains the information that is most critical for the 

classification. The N-grams are used to deal with the text 

part of the dataset, which compute the distance between the 

incoming stack traces and the historical set of bug reports 

stack traces. For the linear combination between the reports 

and non-textual features such as component and severity. 

This approach is applied to the Eclipse dataset which has 

thousands of bugs reports [20]. The main goal or purpose of 

detecting the root cause of the software bugs is to reduce the 

manual involvement in the software development process. 

Using the Eclipse bugs dataset, ten of the root cause 

categories are decided based on the most common bugs 

causes. Then, using ML algorithms, such as Naive Bayes, 

Maximum entropy, SVM, and Decision Trees. F1-score, 

precision, and recall are used as measurements [21]. Feature 

selection strategy is used at bugs' severity types detection 

process. The work shows that a ranking-based strategy and 

ensemble feature selection show better performance than 

using a commonly used maximization-based strategy based 

on F1-score measure using Eclipse, and Mozilla bugs' 

severity dataset [22]. Bugs' priority is very important to tell 

when the bug should be resolved, in case the process of 

filtering bug reports and assigning priority manually is very 

heavy, time and effort consuming. With the increasing 

number of bugs and bugs' reports, there need to design a 

model that can detect the bugs' priority. The provided model 

uses component name, summary, assignee, and reporter as 

features in the model that may affect bugs' priority. The 

model is a 5-layer deep learning RNN-LSTM neural 

network. The text-preprocessing step is applied to the bugs' 

summary. Bugs' report passes through five levels, Open, In-

Progress, Resolved, Closed, and Reopened. Bug's priority is 

classified or labeled to low and high.  

The results from this provided model are compared to others 

from models using ML algorithms, such as SVM, KNN. The 

study showed that LSTM reported the best performance 

results based on all performance measures [23]. Software 

bugs' datasets have many features that can be used at bugs' 

priority determining process. Problem title, summary, and 

component name features are used in this work. The textual 

data is converted to numerical formal to facilitate dealing 

with using the TF-IDF technique. PCA and NMF are used 

for feature reduction, besides clustering and classification 

algorithms. The authors in [24] proposed a novel approach 

for malware detection in Android devices since they are 

vulnerable for continuous attacks although they are the most 

popular. The authors used ensemble machine learning 

algorithms for malware and anomaly detection since using a 

single anomaly classifier will not be as effective as using 

ensemble classifiers. The authors proposed grid search N-

gram system call sequence features to improve the accuracy 

of anomaly and malware detection in mobile-based devices.  

Many works focus on using the bugs' reports to classify the 

bugs' severity as secure and non-secure bugs. Using text data 

and making preprocessing on the text by N-gram for feature 

extraction. Then use a machine learning algorithm, such as a 

stacking-based Naive Bayes classifier to classify the 

extracted features data. The model performance is measured 

using F1- score and compared to SVM and Decision Tree 

algorithms performance on the Eclipse dataset [15].   

The used approach counts the probability for all the 

sentences for both classes 0 and 1according to the probability 

for each word in the sentence. Then, make a comparison 

between which class has the highest probability [25]. Three 

features are used to detect the bugs' severity, such as 

component name, product, and OS; because of the severity 

of the existed bug associated with the component and 

product. Besides these features, the stack trace is used in this 

model as a source of bugs' reports. KNN algorithm is used in 

this work, the used algorithm computes the nearest class of 

the bugs' severity for the inputted bug report [26].  The idea 

of bugs data study is the same, the core difference in what 

are the used ML algorithms, the feature selection techniques, 

the selected features from the bugs' reports, and the 

environment of the dataset. The final results are compared 

according to precision, recall, accuracy, F1-score. Some 

approaches depend on unstructured data, such as summaries, 

and descriptions of the bugs. For that, unstructured data need 

to be preprocessed using for example word embedding, 

tokenization [27]. Bugs reports are submitted significantly by 

the users, Stack Overflow is a website for asking and 
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answering different questions and problems. For that this 

website can be used to collect a dataset about potential bugs 

that may users suffer from as bugs' summaries and 

descriptions. Then, apply techniques for preprocessing the 

text. Using the maximum likelihood method to train the logic 

regression model [28]. Text mining techniques have a core 

role in analyzing and developing models of bugs' reports 

databases. Such as word embedding that captures the 

semantics of the text. The work shows the effectiveness of 

using word2vec for bugs' severity prediction process, the 

results show using a bigger window size improves the 

classifier's performance. Xgboost and Random Forest ML 

algorithms are used because of their ability for classifying 

the bugs' severity with a small number of records or 

infrequent appearance of words specific to each class. 

3. Proposed System 

In case most software programs have become large and 

complicated, software bugs need to take into consideration. 

Detecting and fixing bugs problem at initial levels that 

reflected positively on the quality, security, and performance 

of the program, and will save time and effort. Machine 

learning algorithms and Natural language processing 

techniques (NLP) have a great effort in software bugs 

classification and prediction. Depending on the historical 

bugs data ML and NLP can be used to build an automated 

model for classification and prediction software bugs instead 

of the manual way the be used by testers and editors. 

With the emergence of new types of software bugs, there is a 

significant need to find new ways to detect and deal with 

them. Software bugs reports can be used to study and 

recognize new features and characteristics of new bugs. NLP 

techniques give a manner to analyze, study and extract 

characteristics from the text, which enable the testers and 

editors to recognize the software bugs deeply and facilitate 

the detecting and fixing processes.  

In this research, the Eclipse software bug dataset will be used 

to develop a model that can automatically classify and 

predict the severity and priority of the bugs. The proposed 

model can be helpful and facilitate the testers' and editors' 

work during the testing process and the development life 

cycle generally. 

The overall architecture of the proposed system can be found 

in figure (2). 
 

 
Figure 2: The overall architecture of our proposed Bugs’   

severity and priority classification and prediction system 
 

3.1 Eclipse overview: 
  

Eclipse is an open-source project since November 2000, is an 

integrating development tools platform, is an open and 

extensible architecture based on plug-ins [29]. Although 

Eclipse was developed for Java applications, plug-ins also 

allow the developers to create other applications with other 

languages, such as C, C++, COBOL, PHP, Python, and Perl. 

Using the plug-ins, Eclipse can work with network 

applications, database management systems, and modeling 

tools. IBM has established the Eclipse and gave to the open-

source community. The consortium’s primary goal was 

marketing and business affairs to provide code administrated 

and controlled by the Eclipse community. 

The Java Development Tool (JDT) is a plug-in permit to use 

Eclipse as Java IDE. As for the PyDev plug-in permits 

Eclipse to be used as Python IDE. CDT is a plug-in that 

allows Eclipse to be used for developing applications using 

C/C++ [30].  

The Eclipse Modeling Framework (EMF) is a code generator 

for creating software applications and tools based on a 

structured data model. EMF has a big advantage in providing 

tools and runtime support; to generate a set of Java classes 

for the model, as well as adapter classes for viewing and 

command-based editing, and a basic editor [31]. 
 

3.2 Dataset Overview 

The dataset size is 10000 rows, that consists of 30 features 

describing the bugs. These features are: Bug ID, Product, 

Component, Assignee, Status, Resolution, Summary, 

Changed, Assignee Real Name, Classification, Flags, 

Hardware, Keywords, Number of Comments, Opened, OS, 

Priority, QA Contact, QA Contact Real Name, Reporter, 

Reporter Real Name, Severity, Tags, Summery, Target 

Milestone, URL, Version, Votes, Whiteboard, and Alias.  

These features have different effects on determining the 

importance of each resulting bug, and thereafter its severity 

and priority. This dataset is collected from the Eclipse 

environment and includes various bugs that harm this IDE. It 

has two main classes, severity, and priority. The severity is 

divided into seven classes, major, blocker, critical, normal, 

enhancement, minor, and trivial, and three priority classes, 

high, middle, and low. These two main classes are used 

together to decide which bug should be solved first, which is 

the most harmful, and which is normal and can skip it.  

The data set contains a summary as a short text description 

about the bugs. In this case, the text needs to deal with in 

another way, many features can be extracted from the text 

which is helpful in the classification process and identifying 

each type. The discrimination between the minor bugs from 

the blocker bugs for example can be learned. Figure 3 shows 

part of dataset features. 

Figure 3: An overview on the Eclipse dataset 
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These features will be studied and analyzed to choose the 

most effective and representative features that will improve 

the final results. 
 

3.3    Data Pre-processing and Cleaning 

The most important aspect that was taken into consideration 

in the preprocessing phase was the feature selection. Because 

all features do not have the same importance level in the 

task, and each one may affect the final results differently. So, 

the features must be chosen in a way that efficiently serves 

the task. In addition, the dataset in not balanced, which that 

affect the accuracy degree that the results may be not 

accurate as should. 

 

 

 

Figure 4: Correlation between the bugs' features, with 

severity as the target feature 

3.3.1     Text Pre-processing 

The text may contain numbers, special characters, foreign 

letters, or unwanted spaces. All of these reduce the efficiency 

of the model's work. In this step unwanted characters, 

punctuations, numbers, or spaces were removed from the 

description and the summary of the text in the dataset. The 

regular expressions from the Python library along with 

lemmatization were applied on the dataset. used to deal with 

the text cleaning process. The main goal of using 

lemmatization is to avoid producing features that are 

semantically similar but syntactically different. 

3.3.2     Converting Text to Numbers 

There are different approaches are used to convert the text 

data into numerical forms, such as the Bag of Words (BoW) 

model that will be used in this work. The Bag of Word 

model has one drawback as it cannot consider the frequency 

of the word that may vary from one document to another, or 

from text to another. To overcome this problem, Term 

Frequency-Inverse Document Frequency (TF-IDF) was also 

used. TF-IDF multiplies the word frequency by the inverse 

document frequency.  

3.3.3     Label Encoding 

In machine learning, most of the used datasets contain 

multiple labels and these labels may be words or numbers 

depending on the class that represents. Label encoding is 

converting labels into numeric form to be machine-readable. 

It is an essential pre-processing step when dealing with 

structured datasets in supervised learning. 

The correlation between the chosen bugs' features is shown 

in Figure 4, the figure shows the relationship for each feature 

with the other which allows knowing how may affect each 

other. For example, the strongest relation as shown in the 

figure is between OS and Hardware. This figure helps to 

explain what are features that more affect the Severity as the 

target feature, Version, Hardware, OS, and Resolution have 

the highest correlation score. 

. 

 

 

 
 

 

 

 

 

 
Figure 5: Correlation between the bugs' features, with 

priority as the target feature. 
 

As for the Priority as the target feature, Figure 5 shows the 

correlation between the chosen features and how much affect 

each other. As clearly shown the Priority feature has the 

highest correlation score with the Version feature.  
 

3.4 System Methodology 

The most important and affected features will be used in the 

classification process such as Priority, OS, Hardware, 

Component, Product, Version, Votes, Resolution, 

Classification, Status, Severity. As for, the severity, and 

priority features will be used as a label for bugs classification 

and prediction alternately. The severity will be re-labeled as 

an integer number to facilitate dealing with it.  

Because this work focuses and works on a multi-labeled 

dataset the challenge is to build a model which can 

distinguish between different bugs' severity and priority 

types. A series of Machine learning algorithms were 

experimented to assess their performance such as KNN , 

Random Forest, and SVM.  

Dataset was not balanced and therefore the results may not 

be accurate. To overcome this issue we used two techniques: 

feature selection and oversampling (the Synthetic Minority 

Oversampling Technique (SMOTE)) along with ensemble 

learning method (e.g. voting classifier, bagging decision tree, 

Ada Boost). The evaluation metrics used are the level of 

accuracy, F1 score, precision, and recall. Also, the tf-idf will 

be used to study the text features, count the terms that are 

repeated in the corpus; that may help to distinguish between 

the types of bugs' severity.  

4. Experimental Results and Discussion 

In this work, several experiments were produced to show the 

power of the provided system. Different Machine Learning 

algorithms were applied in these experiments to detect 

Eclipse's software bugs.  
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Machine Learning algorithms were applied in two stages. In 

the first stage, the highest correlated features were used,  

such as Priority, OS, Hardware, Component, Product, 

Version, Votes, Resolution, Classification, Status, Severity, 

the Severity, and Priority were used as target feature 

alternately. As for the second stage, bugs' reports were used 

as a feature in the bugs detection process labeled by 

bugs' severity. 
Table 1 summarizes the results obtained from several ML 

algorithms used. It also shows the final results of the system 

using different ML algorithms to make the detection process 

of the bugs' severity depending on the bugs' summary text. 

The used algorithms extracted features from the reports and 

used them in the detection process and distinguishing 

between severity different types   

Table 2, on the other hand, shows the final results of the 

system using different ML algorithms to make the detection 

process of the bugs' priority depending on the bugs' summary 

text. The used algorithms extracted features from the reports 

and used them in the detection process and distinguishing 

between priority different types. 
 

Table 2: The results of the system using the bugs' reports as 

system feature, and bugs' priority as target feature. 

 
 

Tables 3 summarize the results obtained using several 

features’ alternations and variations and their effect in the 

assessment process. 
 

Table 3: The results of the system using the representative 

bugs' features, and bugs' severity as target feature 

Algorithm 

Name 

Accuracy F1 score ROC 

Dummy 

classifier 

65.6% 3.0 0.5 

Random 

Forest 

100% 1.0 1.0 

KNN 92.4 7.4 8.2 

Bagging | 

PCA 

100% 1.0 1.0 

Bagging | 

Multi 

9.9 9.9 9.9 

Ada Boosting  91% 5.3 7.7 

SVC 99.8% 9.9 9.9 

  

Table 4: The results of the system using the representative 

bugs' features, and bugs' severity as target feature/ Over-

sampling. 

Algorithm 
Name 

Accuracy F1 score ROC 

Ada 
Boosting 

90.8% 7.9 9.2 

Bagging  100% 1.0 1.0 
 

Table 5: The results of the system using the representative 

bugs' features, and bugs' severity as target feature/ Feature 

Selection. 

Algorithm 
Name 

Accuracy F1 score ROC 

Ada 
Boosting 

91.1% 5.3 7.7 

Bagging  90.2% 7.9 8.3 
 

Table 6: The results of the system using the representative 

bugs' features, and bugs' priority as target feature 

Algorithm 
Name 

Accuracy F1 score ROC 

Dummy 
classifier 

64.6 % 2.0 0.5 

Random 
Forest 

100 % 1.0 1.0 

KNN 94.5 % 8.2 8.8 

Bagging | 
Multi 

100% 1.0 1.0 

Bagging | 
PCA 

9.9 9.9 9.9 

Ada 
Boosting  

90.9% 5.3 7.7 

SVC 99.8% 9.9 9.9 
  

Table 7: The results of the system using the representative 

bugs' features, and bugs' priority as target feature/ Over-

sampling. 

Algorithm 
Name 

Accuracy F1 score ROC 

Ada 
Boosting 

90.8% 7.8 9.2 

Bagging  100% 1.0 1.0 
 

Table 8: The results of the system using the representative 

bugs' features, and bugs' priority as target feature/ Feature 

Selection. 

Algorithm 
Name 

Accuracy F1 score ROC 

Ada 
Boosting 

90.9% 5.5 7.7 

Bagging  100 % 9.9 9.9 
 

4.1    Result Analysis  
 

The previous tables show the effect of feature selection on 

the assessment process proposed in this paper. It is shown 

that when using bugs' summary as the main feature and data 

label with priority and severity alternately, the results range 

between 73% - 79% in reference to F1-score, since we are 

using unstructured data. 
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In terms of using structured data as model features, such as 

OS, Hardware, Component name, Product, Version, Votes, 

Resolution, Classification, Status, and data label with priority 

and severity alternately. These features were chosen based 

on the correlation degree between them and the priority and 

severity; to ensure the result is accurate, representative. The 

final results of using ML algorithms, such as KNN, Bagging, 

Ada-Boosting, SVC, Random Forest, show a very good 

performance based on F1-score, ROC curve, and accuracy 

measures.  

In order to improve the result and the model performance, 

two techniques were used, Feature selection and Over-

sampling techniques. SMOTE focuses on samples near the 

border of the optimal decision function and will generate 

samples in the opposite direction of the nearest neighbors' 

class and connect inliers and outliers.  

For the feature-selection technique, according to the 

correlation result in Figures 4 and 5, nine features were used 

as they have highest relationship score with both bugs' 

severity and priority. In this case two ML algorithms were 

used, Bagging and Ada-Boosting, the final results were very 

good in reference to the F1-score, accuracy, and ROC curve 

measures. 
 

5.    Conclusion 

This paper proposes a detection bugs' severity and priority 

system using the Eclipse bugs dataset. Since dealing with 

bugs process is not easy and take a huge effort, financial and 

time cost.  

The proposed model passed on two phases for the detection 

of bugs. The first stage was bugs' summary which was 

preprocessed before being used in the model. Then, the 

machine learning algorithms, Naive Bayes, Random Forest, 

SVM, Ada Boosting, Bagging, KNN, and Stochastic 

Gradient Descent, were applied and trained the model to 

distinguish and detect the bugs' severity and priority types. 

To improve the performance two techniques were applied, 

Over-sampling, and feature selection, the performance 

improvement was noticed. 

In the second phase, 12 representative features were selected 

from the 30 features from the dataset, Product, Component, 

Status, Resolution, Classification, Assignee, Hardware, OS, 

Version, Votes, and Opened. Then applied the same used 

ML algorithms and notice the model performance during the 

bugs' severity and priority detection process.  

The model performance was better when the 12 features 

were used instead of using the bug's summary. The 

comparison process was done depending on Accuracy, F1 

score, and ROC curve final results, before and after applying 

the over-sampling and feature-selection techniques.  
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Table 1: The results of the system using the bugs' reports as system feature, and bugs' severity as target feature.
 

Algorithm 

Name 

Accuracy Training 

Time 

Prediction 

Time 

F1 score Precision Recall 

Multinomial NB 56.1 % 0.08 0.25 sec 79 65 99 

Random Forest 64.5 % 0.63 sec 53.3 sec 78 67 95 

SVM 

 

64.3 % 0.07 sec 12.4 sec 78 66 95 

Majority voting 65 % 1.02 sec 66.0 sec 79 67 95 

Bagging 

 

64 % 0.93 sec 2929.22 sec 77 67 92 

Ada Boosting 

 

64 % 80.3 sec 4.94 sec 78 66 97 

Stochastic 

Gradient Descent 

 

65 % 

 

1067.1 sec 
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79 

 

66 
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