
88
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

Topology Optimization in Hybrid Tree/Mesh-based
Peer-to-Peer Streaming System

Tran Thi Thu Ha1, Jinsul Kim1, Jaehyung Park1 Sunghyun Yoon2, Ho-Yong Ryu2

1School of Electronics & Computer Engineering, Chonnam National University, Republic of Korea

2Smart Network Research Department, Electronics and Telecommunications Research Institute, Republic of Korea
thuhabkhn@gmail.com, jsworld@jnu.ac.kr, hyeoung@jnu.ac.kr, shy72@etri.re.kr, hyryu@etri.re.kr

Abstract: Peer-to-Peer (P2P) video streaming is the fastest
growing application of the Internet. One of the main challenge is to
provide a high quality of service through the dynamic behavior of
the network because a peer may join or leave anytime. Currently,
P2P streaming network exist two types of users: streaming users -
who use mobile devices with 3G/4G connection expect to watch the
live video immediately and storage users - who use PC with wired
Internet will download and then watch the video later. We realized
that the streaming users may stop watching live video after a while
if they find the video is out of their interest. Users leaving causes
dynamic and affect the data delivery. On the other hand, the storage
users that are downloading the video do not have the concern of
interest and playback quality, until they start to watch the video.
Hence, the storage users are relatively more stable than streaming
users. This paper, we investigate the strategies on the topology
construction and maintenance of P2P streaming systems with
storage users are closer to the broadcaster than streaming users.
And also we apply our idea on hybrid push-pull protocol that
combines the benefits of pull and push mechanisms for live video
delivery to provide better video streaming quality

Keywords: peer–to–peer, live video streaming, file sharing,
chunk, tree-based, mesh-based

1. Introduction

Streaming is a method for intelligent broadcasting of data on
the network, it differs from conventional multimedia services
because it isn't necessary to wait for the end of downloading
video and able to start playing back. Current approaches in
P2P video streaming can be classified as tree-based, mesh-
based or hybrid. With tree-based model uses a push method
to transfer data. This model has low start-up delay. However,
there are two main problems in this method: if the bandwidth
of parent node is low, children nodes will be lose data and
when parent node failure, other nodes can’t receive data until
completing the recovery of the tree. On the other hand, mesh-
based model uses a pull method to request necessary data
from a number of neighbor nodes. However, mesh-based
model requires large buffers to support pull data from
neighbors and there is an adjustment between minimum delay
by sending pull request and overhead of whole system. So,
both models have their own strengths and weaknesses. This
paper proposes a new architecture system design for P2P live
video streaming that combines the advantages of pull and
push methods for broadcasting live video. This consists of
two states: tree-based and mesh-based. Also, we design
network topology with storage nodes are adjacent to the
broadcaster, because they are more stable than streaming
nodes which can leave system anytime. The remainder of this
paper is organized as follows. We briefly discuss the related

work in Section 2. The formulation for topology optimization
in tree/mesh-based P2P streaming systems, simulation setting
and numerical results are presented in Section 3. Finally, the
paper is concluded in Section 4.

2. Related Work

In a tree or multi-tree, a video stream is pushed along defined
routes, from parents to their children. Tree topologies use
pushing method as show in Figure 1 (left side) by choosing
which child node to push the selected chunk based on the tree
structure. Tree-based provides low latency. In a mesh,
multiple and dynamic neighbors may have video data
available to send, a node has to pull data to avoid significant
redundancies. Mesh topologies use pull-based scheduling as
show in Figure 1 (right side). Choosing which video frame to
be request based on own buffer map, choose which peer to
send chunks request based on the neighbor’s buffer map,
resend request to partners for necessary chunks. A mesh-
based system is therefore more potent, but longer delays and
higher control overhead. Compared with mesh-based
systems, the tree-based systems have well-organized overlay
structures and typically distribute video by actively pushing
data from a peer to its children peers. However, maintaining
the tree overlay with node churns is a difficult task.
In hybrid pull-push scheduling is proposed to enable push in
a mesh-based system to lower the system overhead.
We make a survey about the overlay of streaming video
systems and comparison these systems with three metrics:
throughput, low latency, scalability shown in Table 1.
Overcast [1] constructs and maintains a high bandwidth
distribution tree from a source to multiple nodes. So, it
utilizes a tree algorithm to maximize the bandwidth from the
root towards each node. SplitStream [2] proposes using
multiple trees to distribute parts of the whole video stream to
balance load across different nodes and provides better
scalability compared to a single tree system. SplitStream
doesn’t provide additional means to recover from node
failure.
CoolStreaming [3] is a mesh-based overlay. The video
stream is segmented into chunks and is broadcasted to
neighbors. Comparing to a simple tree-based overlay,
observe that playback continuity is much better. Hence, some
mixed strategies have also been proposed to exploit the
advantages of both schemes. Prime [4] presents topology
design for mesh-based live streaming. Prime is designed to
work with MDC to minimize content bottlenecks and

89
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

bandwidth bottlenecks. LiveSky [5] uses a hybrid approach,
where the stream is split into different chunks which are then
distributed in a sub-trees. Missing chunks are received by
pull-based mesh overlay. ToMo [6] combines low overhead
of tree-based system with the stability of a mesh-based
system. The source node divides the video stream into
several sub-trees, with each chunk being sent to multiple sub-
trees. ToMo also designs the mesh-based structure for stable
nodes close to the source, and the tree-based structure for
dynamic nodes far away from the source.

Table 1. Comparison of P2P live video streaming systems

System Method Throughput
Low

latency
Scalability

Overcast

(2000)
Push + - -

SplitStream

(2003)
Push 0 + +

CoolStreaming

(2005)
Pull 0 0 +

Prime

(2009)
Hybrid 0 + +

LiveSky

(2009)

Push/

Pull
+ + 0

ToMo

(2010)
Push + + -

3. Topology Optimization and Implementation

 3.1 Topology Optimization

We design the storage nodes are nearby to the broadcaster.
We call the storage users are storage nodes and streaming
users are streaming nodes for design new network topology
[7]. Figure 2 shows the organization of two types of nodes
(storage node and streaming node) in the overlay. For this
case, we can split overlay tree into three sub-trees. User are
organized in separate sub-trees, except the broadcaster. That
means a node belongs to only one sub-tree. Each node also
has links to other nodes of other sub-trees. Each node
maintains two kinds of connections: connection belonging to
a sub-tree (push link) and connections of nodes in different
sub-trees (pull link-see in Figure 4).
Broadcaster sends live video to each sub-tree using push
mechanism. Live video is divided into many chunks. Each
node will receive from its parent at least one chunk in the
pushing phase. Then, node pulls other chunks from other
nodes in same level to get completed video and improve the
quality of service [8]. Consider that a local network
consisting of 7 users: Broadcaster captures live video and
then broadcasting this video on P2P network. We assume that
this video is split into three chunks c1, c2, and c3. Broadcaster
pushes three chunks to users 1, 2, and 3 with respectively.
After finishing receiving each chunk, then users 1, 2, or 3
send requests to each other for remain chunks of video using

pull requests. For example, user 1 receives chunk c1 from
broadcaster and then it sends pull request to user 2 and 3 to
get chunk c2 and c3 of video. Now, user 1 is watching a
chunk c1 which receives from broadcaster and also can
broadcast chunk c1 for users 2, 3 if they request. At the same
time, user 2 is also getting chunk c2, c3 from users 2, 3 and
continues watching whole live video. We can extend this
scenarios with many users, building tree overlay with a
number of chunks. In each sub-tree, push method is used like
the case broadcaster pushes data to users 1, 2 and 3. Besides
that, in each level, pull method is used like the case user 1
pull data from user 2 and 3. The processes shown in Figure 3,
once a peer joins, the application creates the overlay and
starts streaming. If the node leaves, the application is
stopped. When a node joins in P2P network and connects to
the tracker. The tracker replies with information on the
chosen sub-stream and the initial neighborhood for the peer.
Based on the information, the peer selects the level depend
on the configuration of the peer: streaming user (using
mobile phone with 3G/4G connection) or storage user (using
PC with wired connection). After selecting the level and sub-
stream, the peer starts to download matching chunks into the
buffer. If a chunk is not available in the buffer at the time it is
supposed to be played, the user wait until the chunk has been
successfully downloaded. This process continues until the
peer leaves. This helps in preventing undesired effects, such
as dynamic behavior of the network, other peers can pull
missing data from another peers in same level instead of
pulling data from peer which dropt out.
As shown in Figure 4, at the pushing phase, broadcaster
pushes three chunks to nodes at level 1. These nodes
continue to push these parts to other child nodes in their sub-
trees. As the result, through the pushing phase, nodes have
minimum data required to display. At the pulling phase, a
node will send pull request to other node with same level to
receive remain parts of video. The user requires pulling
requests of other users which belong to other sub-trees. If this
user didn’t respond pulling requests of other users, it will
inform other users about its rejection. These users must look
up other users that can send data to them. If it doesn’t send
data to any user in a sub-tree, it may not able to pull data
from any user in other sub-tree. So, streaming data is
distributed to every node in the overlay network by both
pushing and pulling methods

 3.2 Simulation Setting and Implementation

The tree length can be too high if there are a large number of
nodes. We expect a topology, in which both the length and
the number of nodes in each level grow linearly.
If level 1 has 2k nodes, then the number of nodes at level i
has 2k-i.
Thus, total number of nodes from level 1 to level i is:

1

1

2
i

k j

i

j

N − +

=

= ∏ (1)

Also, the total number of nodes in the network can be
calculated as:

1

k

i

i

N N
=

=∑ (2)

Then, from the number of users join to P2P network, we can
calculate both the number of levels and number of node in

90
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

each level for design topology structure. For the example
gives in Table 2 with 100 peers.
As (1), number of peers of each layer following:

1
3 1

1

1

2 8j

j

N − +

=

= =∏

2
3 1

2

1

2 8 4 32j

j

N − +

=

= = × =∏

3
3 1

3

1

2 8 4 2 64j

j

N − +

=

= = × × =∏

As (2), the total number of nodes in the network:
3

1 2 3

1

104 100
i

i

N N N N N
=

= = + + = >∑

So, number of node in level 1 is 8 (k=3), number of levels is
3 (i=3).

Table 2. Parameters used in the simulation setup

Name Parameter Description

Simulation Length 3600s
Length of the simulated

scenario

Number of Peers 100 Total number of peers

Storage Peers 20 Number of storage users

Streaming Peers 80 Number of streaming users

Chunk size 256 Kb Size of each chunk

Video Files 2.048 Mb Number of video files

Topology level 3 Number of levels of overlay

Number of chunks which will be pushed into each sub-stream
given by equation:

_
_ _

_

Files File size
Number of Chunks

Chunk size

×
= (3)

From parameter given in table 2, we create 8 chunks
(2.048Mb/256Kb) as (3), and push each chunk into 8 sub-
stream (because from above calculation, the number of nodes
in level 1 is 8 nodes, it means existing 8 sub-trees for our
topology). The application is written in Java and runs on the
Java Platform for investigating peer-to-peer content
distribution with implementation requirement following our
topology design as shown in Figure 5. With using new
topology, processing time for receive complete video is much
faster than traditional transfer methods using pure mesh-
based or pure tree-based.
In evaluation, we use the typical metrics: startup delay,
packet loss to compare our solution with Overcast [1] (pure
tree-based) and CoolStreaming [3] (pure mesh-based)
overlays.

Startup delay time: For the beginning, the mesh-based
solution (CoolStreaming) performs worst, because it needs a
longer time to search and request for neighbor peers. The
Overcast performance took only 20 seconds to startup. Even
though, our solution need to aware of the coexistence of the
two types of nodes and explicitly prioritizes the service to the
streaming nodes but at the beginning our topology constructs

as tree overlay network. So, nodes need shorter time to
startup than the CoolStreaming and almost similar with
Overcast startup time.
Packet loss rate: CoolStreaming with the mesh-based
solution performs the best, because it is pull-based and thus
is resilient to the node dynamics. On the other hand, Overcast
with the pure tree-based solution performs the worst, because
the tree overlay is interrupted to suffer from the node
dynamics. Our solution combines pull-based and push-based,
it takes advantage of both solutions, so it performs much
better than the pure tree-based solution and little less than
mesh-based solution. By using hybrid of overlay structure
and combine design storage nodes are close broadcaster, our
solution can achieve the performance of the mesh-based
solution.

4. Conclusions

This paper, we recognized existence of the two types of users
for video streaming - there are wired Internet users and
wireless mobile users. Specifically, Internet users have better
network connection, and thus they should be considered to be
located close to the broadcaster. Moreover, since mobile
users are usually charged for data usage, such users are not
always suitable for forwarding data. These requirements call
for suitable design of the architecture as shown in this paper
with new topology for P2P network with more stable,
minimize packet loss and provide better video streaming
quality compared to the pure mesh-based, pure tree-based
networks.

5. Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (NRF-2013R1A1A2013740) and also supported
by Chonnam National University, 2012.

References

[1] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O’Toole, “Overcast: Reliable
Multicasting with an Overlay Network,” In Proceedings of the
ACM Symposium on Operating System Design and
Implementation, vol.4, pp.14–29, 2000.

[2] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, and Atul Singh,
“SplitStream: High-Bandwidth Multicast in Cooperative
Environments,” In Proceedings of the ACM Symposium on
Operating Systems Principles, pp.298–313, 2003.

[3] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing Peter
Yum, “CoolStreaming/DONet: a Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming,” In
Proceedings of the Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol.3, pp.2102–
2111, 2005.

[4] Nazanin Magharei and Reza Rejaie, “PRIME: Peer-to-Peer
Receiver-driven Mesh-based Streaming,” IEEE/ACM
Transactions on Networking, vol.17, no.4, pp.1052–1065,
2009.

[5] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu,
Chuang Lin, Hui Zhang, and Bo Li, “Design and Deployment
of a Hybrid CDN-P2P System for Live Video Streaming:
Experiences with LiveSky,” In Proceedings of the ACM
International Conference on Multimedia, pp. 25–34, 2009

91
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

[6] Suphakit Awiphan, Zhou Su, and Jiro Katto, “ToMo: A Two-

Layer Mesh/Tree Structure for Live Streaming in P2P
Overlay Network,” In Proceedings of the IEEE Consumer
Communications and Networking Conference, pages 1–5,
2010.

[7] Tran Thi Thu Ha, Yonggwan Won, and Jinsul Kim,
“Topology and Architecture Design for Peer to Peer Video
Live Streaming System on Mobile Broadcasting Social
Media,” International Conference on Information Science and
Applications, pp. 1-4, 2014

[8] M. Sanna, and E. Izquierdo, “Live Scalable Video Streaming
on Peer-to-Peer Overlays with Network Coding,” IEEE Latin
America Transactions, vol. 11, no.3, pp. 962–968, 2013.

92
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

Figure 1. Message sequence charts for push (left) and pull methods (right)

Figure 2. Overlay construction and pushing data to sub-trees

Figure 3. The life circle of peer in the network

93
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 7, No. 2, August 2015

Figure 4. Peer pull missing data from node in other subtrees

Figure 5. Comparison of processing time for transferring whole file and chunk

