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Abstract: The paper suggests a radio mode identification 
algorithm for spectrum sensing that utilizes time frequency analysis 
and digital image processing techniques to identify various 
transmission parameters of the primary users. Identification of the 
spectral holes within the frequency band under observation has been 
of major interest in the research on spectrum sensing techniques; 
however the proposed approach enables the cognitive radio to 
identify spectral behavior of the primary users in addition to 
identifying the spectrum holes with greater accuracy. The identified 
parameters can be utilized to decide the suitability of the detected 
spectrum holes and predict pattern of spectrum usage in near future. 
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1. Introduction 
The capability of a cognitive radio to best suit its 
surroundings greatly depends on the amount and accuracy of 
information it can acquire about its radio environment. The 
process by which the cognitive radio becomes aware of its 
surroundings is termed as spectrum sensing and is a key 
challenge in cognitive radio design. Radio mode 
identification is a comprehensive spectrum sensing algorithm 
that provides the cognitive radio with elaborate spectral 
information about the primary users. The approach has not 
been explored extensively due to its complexity and 
difficulties in real time implementation. However the recent 
advancements in the field of signal processing render the 
complexity problems negotiable if the returns are substantial 
as elaborated in this paper. Rapidly evolving wireless 
communication industry has caused an apparent spectrum 
scarcity whereby, the available spectrum has already been 
allocated to various users by governing agencies under 
monetary agreements. Analysis has revealed that this 
apparent scarcity is attributable to the inefficient fixed 
spectrum allocation techniques. These techniques are simple 
to implement but result in major portion of spectrum being 
underutilized. For example, federal communication 
commission places the spectrum usage in USA between the 
ranges 15% � 85% at all times [18]. This has opened a new 
avenue in research to explore more efficient but complex 
dynamic spectrum access techniques. Dynamic spectrum 
access envisions the use of licensed spectral bands by smart 
unlicensed cognitive users that can exploit any opportunities 
that may exist in the form of temporal or spatial holes. A 
spectrum hole is that part of the spectrum where the primary 
users’ transmission strength falls below a certain regulated 
level termed as interference cap by federal communication 
commission [18]. The smart nodes that constitute the 
secondary users are called cognitive radios. A cognitive 

radio is an evolved software defined radio that in addition to 
reconfiguration capability also possesses the ability to 
analyze its surrounding radio environment. This allows the 
cognitive radio to decide how best to reconfigure itself in 
existing radio conditions. Section 2 of this paper reviews 
various spectrum sensing approaches highlighting the 
strength and weaknesses of each. Section 3 lays down the 
analytical framework for the proposed algorithm and 
introduces the proposed radio mode identification algorithm. 
The simulation and results to support the analytical 
framework are included in section 4. 

2. Related Work 
Spectrum sensing algorithms generally offer a compromise 
between accuracy and complexity. The attribute of accuracy 
is not only critical from a secondary user’s perspective 
enabling it to optimally utilize the available opportunities but 
also for the primary user, minimizing the interference due to 
secondary users. Conversely the complexity of spectrum 
sensing algorithm has to be kept to minimum in order to 
allow real time operation of cognitive radio. Energy 
detection [2] is a simple spectrum sensing technique. The 
received signal strength in a certain channel is compared 
against a carefully selected sensing threshold to ascertain the 
presence or absence of primary user in that channel. The 
sensing threshold [6] is defined on the basis of noise floor 
and is a critical challenge. This results in poor performance 
at low SNR and/or very small buffer sizes. Energy detection 
is desirable because of its simplicity and its non-parametric 
nature .i.e. it is independent of the type of primary user. The 
waveform based detection [11] is carried out by identifying 
the preambles and cyclic prefixes that are generally used 
with various types of transmissions. This approach 
outperforms energy detection in convergence time and 
accuracy, but is dependent on the type of primary user 
transmission. The major drawback of the algorithm is its 
parametric nature. Cyclostationary feature detectors [8] make 
use of the inherent periodicity in the radio signals. The 
correlation function is used to measure the periodicity of the 
received signal. The algorithm is computationally complex 
but the cyclic frequencies can also be used for signal 
classification. Improvement in energy detection performance 
based on Bayesian sequential testing considering previous 
spectrum states has been discussed in [21]. The most 
elaborate survey of spectrum sensing techniques has been 
carried out in [5]. The broad categorization of these 
techniques is done and a comparison for varying condition of 
SNR, noise models and buffer size has been carried out. The 



 87 

International Journal of Communication Networks and Information Security (IJCNIS)                Vol. 4, No. 2, August 2012 

various performance metrics that could be used for 
comparison have also been summarized. Haykin has 
advocated use of multi-taper method [4] for spectrum 
sensing considering spatial, temporal and spectral 
dimensions simultaneously. Radio mode identification [2], 
[20] enables the cognitive radio to identify various useful 
parameters of primary user transmission such as modulation 
scheme, transmission technology, frame size and 
multiplexing technique etc. This can be utilized by the 
cognitive radio for optimizing spectrum sensing. In [13] and 
[14] the radio mode identification approach has been 
explored. The papers suggest using the instantaneous 
frequency and delay spread obtained through time frequency 
analysis. Variable reduction is carried out and neural 
networks are used to predict which transmission scheme is 
present in the received signal. However the approach is 
limited only to identifying the modulation scheme of the 
primary user. In this paper we suggest a framework that in 
addition to identifying the modulation scheme may also be 
used to detect various features of the primary user 
transmission. 

3. Proposed Radio Mode Identification based 
Spectrum Sensing Algorithm 

The proposed algorithm is a two step approach. The time 
frequency distribution of the received signal is subjected to 
image processing techniques in order to identify transmission 
parameters of the primary user as displayed in Figure 1. The 
result is simpler but accurate and elaborate spectrum 
estimation. Many additional transmission parameters such as 
modulation scheme, frame size, mean occupation time etc 
have been computed in addition to spectrum hole 
identification. 

3.1  Time Frequency Analysis 
The justification for use of time frequency analysis tools for 
spectrum sensing comes from the realization that while 
performing the spectrum sensing, the observation window 
applied to the received signals in order to localize them in 
terms of time also causes the smearing of the spectrum in 
frequency domain. This is in accordance with the 
phenomenon known as Uncertainty relationship which 
describes the trade-off between the spectral and temporal 
resolution. As per the uncertainty relationship the temporal 
window size (observation time) has to be increased to 
improve the resolution in frequency domain. On the other 
hand as the window size has a direct bearing on the time 
taken to identify the presence of primary user and hence has 
to be kept as small as possible to cause minimum 
interference to the primary users . A simple time frequency 
analysis tool Pseudo-Wigner distribution (PWD) has been 
used in this paper. If the signal  is assumed to be 
widowed by , then its PWD is given 
by . 
 

 

     (1) 

 
Figure 1. TFA based Radio Mode Identification 

3.2  Thresholding and Image Morphing 
The resulting time frequency distribution is subjected to 
thresholding by comparison against a sensing threshold. The 
sensing threshold is selected assuming two overlapping 
distribution of signal and noise power probability density 
functions [19]. The choice of sensing threshold has been 
made so as to simultaneously minimize the false positive and 
false negative probabilities thereby reducing overall sensing 
error floor. The effects of noise are reduced from the 
resulting binary image by performing image morphing. The 
image is first dilated and then eroded to obtain finely shaped 
peaks and remove any individual noise pixels. Erosion 
implies that lowest value in a pixel’s neighborhood is 
selected for it while dilation chooses the maximum value. 
Therefore instead of complex and time taking signal 
processing techniques for noise removal, we have used a 
very simple and effective image processing tool that 
eliminates effects of noise from the received signal. The 
process is elaborated in Figure 2. The time frequency 
distribution of a frequency hopping spread spectrum (FHSS) 
signal is subjected to thresholding and the resulting binary 
image has been morphed to remove noise effects. 
 

 
Figure 2. Image Morphing 

 

3.3 Vertical and Horizontal Scanning 
The image is now scanned vertically (parallel to the 
frequency axis of the time frequency distribution) and 
horizontally (parallel to the time axis) to identify the 
locations of the individual peaks as shown in Figure 3. The 
various features of the modulation schemes that are 
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identified in this step include instantaneous frequency, 
bandwidth, occupation time and duration of occupation of 
each occupied slot. The scanning process is simplified by 
identifying the differences in two consecutive frames rather 
than scanning each frame separately. This again achieves 
substantial simplicity without any loss of accuracy. 
 

 
Figure 3. Vertical and Horizontal Scanning 

3.4  Vertical and Horizontal Projection 
In the final step the binary image is projected on the 
horizontal and vertical axes. The aim is to identify the 
horizontal/vertical lines that might exist in the image due to 
the guard bands/ guard time in the time frequency 
distributions of FDMA/ TDMA based signals. In Figure 4, a 
TDMA based OFDM signal is subjected to this process. The 
peaks above a carefully selected threshold clearly show the 
TDMA nature of the received signal. The inter peak distance 
implies the time slot for each user and may be used by the 
cognitive radio for identifying number of primary users, 
frame size etc. Based on all the parameters identified, a fair 
estimate of the type of modulation scheme can be made and 
it can be decided that whether the spectrum users are 
licensed primary users or competing secondary users. In 
addition, the transmission characteristics of the various users 
can be utilized to predict suitability of identified spectrum 
holes. 
 

 
Figure 4. Vertical and Horizontal Projection 

4. Simulations and Results 
Two types of primary users have been simulated. One is a 
narrow band FHSS signal (IEEE 802.15) and other is a wide 
band OFDM signal (IEEE 802.11). The selection of these 
primary users has been done because they are from the same 
family of IEEE standards as the proposed cognitive radio 

standard (IEEE 802.22). Selection of a narrow band and a 
wide band primary user allows better understanding of the 
proposed algorithm’s performance. These primary users co-
exist in the industrial, scientific and medical radio band and 
any experimental implementation of cognitive radio can be 
suitably made. The sensing is carried out in SNR values 
changing from -45 to 0 dB. The reason for considering high 
noise levels is that for higher values of SNR, all sensing 
algorithms seem to work equally well. Moreover, the 
practical consideration of causing minimum interference to 
the primary users necessitates its detection even at very low 
values of SNR. Two TFA based techniques spectrogram and 
Wigner-Ville are being compared for performance against 
two classical spectrum sensing techniques, energy detection 
and cyclostationary feature detection. In all displayed results 
FFT stands for energy detection based spectrum sensing, SP 
implies spectrogram based spectrum sensing, WV means 
Wigner-Ville based spectrum sensing and AC (auto-
correlation) implies cyclostationary based detection. 
Probability of false detection (PFD), probability of loss of 
detection (PLD), SNR and receiver operating curves (ROC) 
are considered as the performance metrics for comparison 
[5]. PFD is a measure of missed opportunities. This is 
important from a secondary user perspective as it indicates 
how many times the CR failed to identify presence of a 
spectrum hole, while actually it did exist. PLD is a measure 
of how many times the CR has failed to identify the presence 
of a primary user in a channel whereas it did exist. This is 
important from a primary user perspective. ROCs are a good 
criterion to judge the performance of spectrum sensing 
algorithm. It is the probability of loss of detection PLD 
plotted against probability of false detection PFD. ROCs are 
very useful not only in understanding the performance of a 
sensing technique but also to decide a suitable sensing 
threshold. 

4.1  Simulation results for FHSS 

 
Figure 5. PFD and PLD vs. SNR for FHSS signal 

Each hop in FHSS transmission comprises 62500 samples in 
0.625 milliseconds. The comparison has been made 
assuming a buffer size of 2084 samples that relates to a 
sensing time of 0.02 milliseconds. As expected, the PFD and 
PLD both improve with improving SNR for all spectrum 
sensing techniques as displayed in Fig. 5. However, the PFD 
and PLD for Wigner - Ville based spectrum sensing almost 
approaches to zero for the SNR regime under observation. 
ROC has been displayed in Figure 6. The simulation has 
been done assuming AWGN noise. The SNR is kept -25 dB 
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and buffer size used is 1250 samples (a sensing time of 
0.0125 milliseconds). 

Fi
gure 6. ROC for FHSS (AWGN) 

4.2  Simulation results for OFDM 

 
Figure 7. PFD and PLD vs. SNR (OFDM) 

 
In Figure 7 we display the comparison of PFD and PLD for 
the various spectrum sensing techniques using OFDM 
primary user. The SNR changes from -45 to 0 dB. The 
Wigner-Ville distribution out-performs even the 
cyclostationarity based detectors. The buffer size is assumed 
as 6 OFDM symbols (relating to 0.5 microseconds). For 
ROC (Figure 8) the SNR is kept at -25 dB and used buffer 
size is of 6 OFDM symbols (relating to 0.5 microseconds). 
The proposed TFA based sensing algorithm performs very 
similar to the auto-correlation based sensing. When 
compared to energy detection the proposed algorithm results 
in slightly higher PFD but lower PLD. 

4.3 Simulation results for mode identification 
The cross terms are minimized by selecting the observation 
window so as to keep the received signal as mono-
component. The sensing is carried out under AWGN with 
SNR values changing from 0 to 30 dBs. Four equally 
probable scenarios  are simulated where . 
The presence or absence of an FHSS primary user is 
represented by  and  respectively. Likewise presence or 
absence of OFDM primary user is represented by  and . 
The four equally likely models are represented as: 

 

 

 

 

 
Figure 8. ROC for OFDM (AWGN) 

 

The spectrum sensing is carried out on the simulated signals 
with these four scenarios alternating randomly. In order to 
judge the performance of the proposed algorithm, the 
probability of correct mode identification  is considered 
as the performance metrics. is defined as the probability 
that the algorithm has successfully detected the presence or 
absence of a certain transmission mode whether it existed 
alone or overlapped. Assuming that  and  are the 
hypotheses that FHSS signal is detected in the received 
signal or not and that the four scenarios are equally 

likely  , 

   (3) 

 

          (4) 

          (5) 
The hypotheses of presence or absence of OFDM primary 
user has been represented as  and  respectively. The 
simulation results are shown in Figure 9. The proposed 
algorithm is able to detect the FHSS and OFDM primary 
users at low values of SNR. 

4.4 Discussion on Simulation Results 
The simulation results clearly exhibit that the proposed 
algorithms outperforms the classical spectrum sensing 
techniques (energy detection and auto-correlation based 
detection) under all SNR and buffer sizes, giving much 
improved PFD, PLD and ROC. The performance gain is 
negligible for Spectrogram which is only a change in 
temporal filtering technique. However the gains become 
considerable as we switch to a more sophisticated TFA 
technique like Wigner-Ville. The performance of the 
algorithm is more accurate for FHSS primary user in 
comparison to OFDM primary user. This is because of the 
difficulties in differentiating the low amplitude wide band 
signal from the background noise, at low SNR values. 
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However, for the narrow band primary user the algorithm 
achieves accurate results even at extremely low SNR values. 
In addition, the algorithm has successfully identified various 
useful parameters of the primary user transmission such as 
frame size, multiplexing technique, number of users at each 
instant, primary user bandwidth etc. These deductions are 
very critical for any cognitive radio to decide the suitability 
of the spectrum holes that have been identified and predict 
future behavior of the primary user. 

 
Figure 9. Probabilities of correct mode Identification for 

FHSS and OFDM 

5. Conclusion 

The paper discusses use of radio mode identification for 
spectrum sensing in cognitive radios. The focus is on 
identifying the spectral behavior of the primary user rather 
than the classical approach of identifying the spectrum holes. 
Time frequency analysis and digital image processing tools 
have been used for mode identification. The proposed 
algorithm outperforms the classical spectrum sensing 
techniques by giving improved PFD and PLD. In addition 
the algorithm helps in deducing various useful parameters of 
the primary user transmission. This gives a marked 
improvement in spectrum access functionality of the 
cognitive radio whereby the cognitive radio can decide about 
the suitability of the identified spectrum holes. The approach 
is much simpler to implement than the currently proposed 
radio mode identification based spectrum sensing techniques 
and more accurate and elaborate than classical spectrum 
sensing techniques. 
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