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Abstract: Zero-day polymorphic worms pose a serious threat to 
the security of Mobile systems and Internet infrastructure. In many 
cases, it is difficult to detect worm attacks at an early stage. There is 
typically little or no time to develop a well-constructed solution 
during such a worm outbreak. This is because the worms act only to 
spread from node to node and they bring security concerns to 
everyone using Internet via any static or mobile node. No system is 
safe from an aggressive worm crisis. However, many of the 
characteristics of a worm can be used to defeat it, including its 
predictable behavior and shared signatures. In this paper, we 
propose an efficient signature generation method based on string 
similarity algorithms to generate signatures for Zero-day 
polymorphic worms. Then, these signatures are practically applied 
to an Intrusion Detection System (IDS) to prevent the network from 
such attacks. The experimental results show the efficiency of the 
proposed approach compared to other existing mechanisms.  
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1. Introduction 
 

Computer worms are considered to be a major threat to any 
type of network. As nowadays, thousands of users use 
mobile devices like laptops, notebooks, tablet computers, 
smartphones and so on to browse Internet or even to do 
sensitive electronic transactions, the stakes are indeed high. 
Unlike ordinary viruses or other types of malicious programs 
[1], worms [2], [3], [4], [5], [6], [7] have the ability to 
replicate themselves without any human intervention. 
Worms that use the Internet as a propagation media, such as 
Code Red, Sapphire, and MS Blaster [8] spread very quickly 
and can cover a thousand of hosts in a matter of minutes or 
even seconds. 
Polymorphic worms [9], [10] are special kind of worms that 
change their appearance dynamically by scrambling their 
payload. Each instance of this type of worm looks different 
from the previous ones, but works exactly the same way. 
This feature makes detection and prevention from such a 
worm hard to implement and maintain. Some of the 
polymorphic worms even use encryption to hide their real 
intent; which makes the situation even worse for the 
detection systems. Since the invention of Morris worm [11], 
which gained huge media attention during that time, fighting 
worms has become an open research area for experts to dig 
in. Malicious codes and worms cause huge harm not only for 
individuals, but also for organizations and government 
resources. In fact, worm attacks against critical government 
institutions, security services, military infrastructures, 
intelligence agencies could have enormous impact on a 
country’s homeland security. 
There are various approaches to tackling worm attacks. In 
the traditional techniques, the security administrator takes 
each worm instance, studies its signature, and stores it in the 

Intrusion Detection System (IDS) database manually, so the 
IDS can identify the worm later by filtering the network 
traffic. However, this traditional method is often ineffective 
and unreliable against the fast separation of modern Zero-day 
worms1. In fact, they do not fit well against obfuscated 
worms, they do not use program semantics, and they require 
human intervention to update signature database effectively. 
On the other hand, some modern security systems focus on 
automating the detection and prevention. This can overcome 
the delay and mistakes caused by human beings. Because of 
the significance of the issue, in the recent years, quite a good 
number of efforts have been made by researchers to gain in 
the race between worm’s spreading and detection.  
Nazario [8] classifies the detection and defense methods as 
follows:  
Detection mechanisms include traffic analysis, honeypots 
and dark (black hole) network monitors and signature-based 
detection.  
Defense mechanisms are classified as host-based defense, 
firewall and network, proxy-based and attaching the worm 
network. 
Indeed, one of the most critical fields in computer science is 
network security. Even within the area of network security, 
polymorphic worm attack defense is considered as one of the 
most challenging fields. Following are the serious challenges 
in this area that have been discovered during our survey: 
Lack of general knowledge: Information about worms is 
often the monopoly of big anti-malware companies. They 
reveal what would serve their own interest and cover up what 
could be used against them. Crumbs are only left to the rest 
of the researchers. 
Attack is cheap, while defense is expensive: A teenager can 
launch a fast corrupting worm, while a complete team of 
professionals would be needed to defeat it. 
Lack of measurements: There is no universally accepted 
standard to assess the quality of the security solutions. The 
quality issue is often considered based on a particular 
context. While false positive2 and false negative3 ratios are 
used in most of the research works as common metrics, 
many other factors can have considerable effect on the final 
evaluation like for instance, the type of worm used, the size 
of the normal traffic, signature width, and so on. 
Fuzziness in the literature: Many publications (as research 
papers) in this area tend to describe their means in an 

 
1Zero-day worm means a new kind of worm that has not passed through 

an IDS before - thus it is completely new to that IDS. 
2Number of incorrectly identified unharmful code as malicious code. 

Detector generates alarm when there is no real attack. 
3Number of incorrectly missed malicious code. Detector fails to detect 

real attack and no alarm is generated. 
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abstract or general way. Detailed or clear defense mechanism 
is a hard thing to find. 
Deployment difficulty: Most of the detection and defense 
systems are proven theoretically and not evaluated on the 
Internet with real-life scenarios. Deployment difficulty 
comes from the sensitivity of this field. Of course, we are not 
allowed to test a harmful worm in an open network! 
Considering all these issues mentioned above, we are 
motivated to propose a practical mechanism to defend 
against Zero-day polymorphic worms. Our method primarily 
uses Jaccard similarity algorithm to extract signature from 
the worm instances without finding exact match. In the 
testing level, Jaccard algorithm can return similarity 
percentage between a worm signature and a suspicious 
packet. Due to the similarity algorithm’s nature, since it is 
not based on the exact match, this would allow maintaining 
different levels of security. Network administrator can 
control the security level from low to strict. As the security 
level chosen by the administrator reflects the network policy, 
sensitive networks like bank or government LANs (Local 
Area Networks) can guarantee high level of security. 
Individuals’ networks that do not have very sensitive 
information, can allow more network traffic to flow with 
relatively lower security level. The proposed mechanism is 
network-based and host-based at the same time (i.e., 
platform-independent) and it is a signature-based one. Our 
main focus is the efficiency and accuracy of the proposed 
string similarity algorithm in its ability to catch most of the 
Zero-day polymorphic worm instances. 
The rest of the paper is organized as follows: Section 2 
presents the related works in this area that motivated us to 
devise our mechanism, Section 3 gives some background 
information about the string similarity algorithms, Section 4 
presents the design and implementation of our scheme. 
Experimental results and comparative analysis based on real-
life cases are presented in Section 5 and finally, Section 6 
concludes the paper with possible future works. 

2. Related Works and Motivation 

Polygraph [12] is a content-based automated signature 
generator for polymorphic worms. It is deployed at network 
level. Polygraph categorizes worms’ signature into three 
classes: set of tokens, sequences of tokens, and weighted set 
of tokens. Three algorithms are proposed to generate 
signatures for each class. This gives the system the ability to 
deal with worms that use payload encryption. The results of 
the work show that it can generate high-quality signatures 
even under critical conditions like the presence of 
unclassified noise flows, or the presence of multiple kinds of 
worms at the same time. Polygraph can generate quality 
signature for noise flows under 80%. However, the negative 
side of this is that multiple fixed substrings should be found 
in all polymorphic worm instances, which is a difficult task. 
Polygraph and another scheme, Hamsa [13] work on the 
network-level to detect Zero-day polymorphic worms [30], 
[31] and they generate multiple tokens as signatures, but 
Hamsa claims that it has a significant improvement in terms 
of speed and attack flexibility over Polygraph. Hamsa 
focuses on content-based signatures. Both of these schemes 
have the same token-based approach, but instead of 
relatively slow suffix tree method of token extraction, Hamsa 
uses a lightweight suffix array method. This improves the 
speed of token generation process up to 100 times. A greedy 

algorithm is used to extract multiple token signatures. 
Presence of noise changes the computational complexity of 
the problem, and affects the final quality of the produced 
signature. Average and maximum false positive rate have 
been shown as 0.095 and 0.75 respectively. However, the 
resulted signature in this scheme could be affected by the 
size of the suspicious traffic. In fact, for a working scheme, 
100 samples of a worm would be needed as minimum. 
LISABETH [14] is an automated content-based signatures 
generator for Zero-day polymorphic worms. It recognizes 
fixed bytes of traffic content, as originally proposed in 
Polygraph [12] and improved by Hamsa [13]. Signature 
generation takes 20% less time than that of Hamsa. It creates 
reliable signature with low false positive in presence of 
noise. It reduces computational overhead by avoiding 
redundant signature generation. Still, the drawbacks of this 
approach are the same as of Hamsa. Position-aware 
distribution signature (PADS) [15], [16] is designed to fill 
the gap between signature-based IDS and anomaly-based 
IDS. This system is based on double honeypot. It is able to 
automatically detect the presence of a new worm in the 
normal traffic. PADS inherits the positive aspects from both 
anomaly and signature based schemes. Its signature 
generation is based on counting frequency of occurrence of a 
specific byte in a specific position. Instead of using a fixed 
string like that is used in signature based approach, it uses 
flexible string to catch more worm variants.  It is claimed 
that, it is much accurate than the position-unaware statistical 
signatures. However, the drawbacks are clear as it is not 
capable of detecting advanced worms, it cannot be merged 
with other IDSs like for instance: Snort [17], and it does have 
high computational overhead. In [18], the authors propose 
TaintCheck, which is an automated dynamic taint analysis to 
detect polymorphic attacks. The main functionality of 
TaintCheck is performed during the run time, so it does not 
need any code modification on the IDS. Any passing of 
traffic that is generated by unknown resource is marked as 
tainted. Tainted data are monitored during program 
execution. TaintCheck states that it can reliably detect most 
overwrite worms (those cause overwriting operation/attack). 
This scheme is vulnerability-based and host-based. It can be 
used to provide exhaustive information about the attack 
characteristics. No false positive was found while testing 
TaintCheck as it has been reported in the work. However, in 
this scheme, signature generation process cannot be achieved 
automatically and it is very much application-specific - a 
particular type of server must be used. COVERS (COntext-
based, VulnERability-oriented Signature) [19] generates 
signatures to capture attacks that are targeted to the same 
previous vulnerability (as it might have had been exploited 
before). This makes the approach effective against 
polymorphic worms. Unlike network-based techniques, 
COVERS approach is able to produce signatures from single 
polymorphic worm instances, using correlation and input 
context identification. One of the advantages of COVERS 
that it introduces is low overhead. In addition to that, 
deployment of this approach does not require any 
modification to the IDS, or access to its source code. The 
experimental results for all evaluated attacks showed no false 
positive and low false negative. In spite of the noticeable 
advantages, the down sides of the approach are: it cannot be 
used by IDSs or firewalls; it is not for general purpose 
implementation as it is application specific; it requires 
manual involvement; and it depends on application’s source 
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code. 
ARBOR [20] implements a new approach that can identify 
the characteristics of a particular worm, and then filter future 
traffic from instances of the same worm or its variants. By 
using this method, the availability of main network server 
will be significantly increased. ARBOR claims that it is 
completely automatic and does not need any human 
intervention. There is no need for IDS source code, and it has 
low runtime overhead. During experiments, it was effective 
against most worms and showed no false positive. Our 
analysis shows that this scheme still cannot evade attacks 
that are fragmented through multiple packets.  
Vigilante [21] introduces an end-to-end architecture to 
automate worm detection. Vigilante analyzes dynamic data-
flow instead of analyzing worm behavior or worm body. It 
simply detects infection attempts with broad coverage. This 
can evade the three most common infection techniques used 
by worms, including: edge injection, code injection, and data 
injection. It does not require access to source code as well. 
Under some conditions, it may produce false positive. Also 
another drawback for Vigilante is that its signature may lead 
to false negative. The success of this scheme depends on the 
threads scheduling order. Another work Double-honeynet as 
reported in [22], produces accurate worm signatures. The 
method works both as network-based and host-based. 
However, long deployment time for the honeynets is a real 
drawback of this work. 
Considering all the pros and cons of various existing 
schemes and understanding the significance of the research 
issue, we have come up with our proposal that would solve 
almost all the negative issues as noted in this section. The 
subsequent sections would describe our approach in detail. 

3. String Similarity Algorithms 

String approximate matching algorithms play a rising role in 
string related research and applications. An unlimited 
number of applications depend on this type of processing,  
such as search engines, post classification, document 
clustering, topic detection, topic tracking, question 
generation, question answering, post scoring, short answer 
scoring, automated translation, text summarization, movies 
and music classification, finding plagiarized documents and 
so on. Similarity finding between two words is a 
fundamental part of string similarity which is then used as a 
primary stage for sentence, paragraph, and document 
similarity tests. 
String similarity is classified into two main categories: 
character based and semantic based. Character based is used 
to measure the similarity between two strings which depends 
on their character structures, while semantic based similarity 
is based on the meaning of the two words. One of our 
objectives in this work is about character based methods, to 
determine the degree of similarity between two instances of 
polymorphic worms. A similarity function outputs how 
similar two strings are and returns a value within [0,1]. 
Typically, the smaller the value, the more differences are 
between the two strings. If the similarity value between the 
two strings is zero, it means that they do not have any 
common substring [23]. Many similarity algorithms have 
been developed among which, Dice, Jaccard, and Cosine 
[24], [25] are the most commonly used. For our work, we 
have chosen the Jaccard, since it is more suitable for long 
paragraphs or whole document. 

 
Figure 1. Two sets with Jaccard similarity, 4/9. 

 3.1 Jaccard Similarity 
 

The Jaccard similarity value of two sets S and T is: 
                        SIM(S,T) = |S ∩ T |/|S ∪  T | 
that is, the ratio of the size of the intersection of S and T to 
the size of their union [24]. And, for string similarity, 
Jaccard is computed as the number of shared terms over the 
number of all unique terms in both strings. For instance, in 
Figure 1, we see two sets: S and T. There are four elements 
in their intersection and a total of nine elements that appear 
in S and T both. Thus, SIM(S,T) = 4/9. 
 

 3.2 Worm Instances to Sets 
 

The critical question is: How to apply this set machinery to 
polymorphic worms’ samples? Originally, Jaccard similarity 
algorithm was used to find the likeness ratio between two 
sets. But, we would apply it to find the perfect signature 
among different polymorphic instances. 
A commonly used approach is to shingle the document, and 
we will use it to process the worm sample. This method takes 
a group of characters and considers them as a single object. 
A k-shingle is basically a consecutive set of k words. The 
following example demonstrates the concept of shingles 
division using a normal document (not a worm sample). 
    D_1: I am Norah. 
    D_2: Norah I am. 
    D_3: I do not like beef and red fish. 
    D_4: I do not like them, Norah I am. 
    The (k = 1)-shingles of D_1∪D_2∪D_3∪D_4 are: {[i], 
[am], [Norah], [do], [not], [like], [beef], [and], [red], [fish], 
[them]}. 
    The (k = 2)- shingles of D_1∪D_2∪D_3∪D_4 are: {[I 
am], [am Norah], [Norah Norah], [Norah I], [am I], [I do], 
[do not], [not like], [like beef], [beef and], [and red], [red 
fish], [like them], [them Norah]}. 
k-shingles can also be created at the character level. The (k = 
3)-character shingles of D_1∪D_2 are: {[iam], [amn], 
[mno], [nor], [ora], [rah], [ahn], [hno], [ahi], [hia]}. 
k is a constant and can be picked as desired from the positive 
numbers set. However, if we choose k to be too small, then 
most sequences of k characters will appear in most of the 
documents. In that case, Jaccard similarity will be high, and 
this is not logically sound. This leads to an important 
question that is: How large should k be? The answer depends 
on how long the used documents are. And, how large the set 
of typical characters is [24]. 
For worm instances, choosing k is very critical - if k is too 
small, this will produce high false positive, while choosing 
large k produces high false negative. 
Many modeling choices should be taken into account when 
dealing with worm samples. Here is a list of the important 
ones: 
 White characters: e.g., I am Norah. vs. I am (new line) 
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Norah. 
 Case sensitivity: Norah vs. norah. 
 Punctuation: e.g. them, Norah vs. them Norah. 
 Number of occurrences: Should we count the number of 
replicas of shingles or not? 
 Articles, pronouns, and conjunctions: Words like (you, 
for, the, to, and, that, it, is, ... etc.) are very common. Should 
we omit these words or not? 
 

3.3 Jaccard with Shingles 
 

Let us consider the (k=2)-shingles for each of D_1, D_2, 
D_3, and D_4: 
    D_1: [I am], [am Norah] 
    D_2: [Norah I], [I am] 
    D_3: [I do], [do not], [not like], [like beef], [beef and], 
[and red], [red fish] 
    D_4: [I do], [do not], [not like], [like them], [them 
Norah], [Norah I], [I am] 
The Jaccard similarities are as follows: 
    JS(D1, D2) = 1/3 ≈ 0.333 
    JS(D1, D3) = 0  
    JS(D1,D4) = 1/8 = 0.125 
    JS(D2, D3) = 0  
    JS(D3, D4) = 2/7 ≈ 0.286 
    JS(D3, D4) = 3/11 ≈ 0.273 

4. Design and Implementation of Our 
Proposed Scheme 

 4.1  Design Phase 
 

Our detection algorithm is designed in a way to detect most 
of the polymorphic worm [34] instances. MATLAB [26] 
interactive environment is used to implement the technique 
practically. With the work, we will examine sufficient 
number of polymorphic worms mixed within a normal 
packet traffic. False positive and false negative will also be 
determined to measure the proposed technique’s accuracy. In 
general, the final signature will be generated based on the 
most common substrings between worm instances. As shown 
in Figure 2, substrings formulate the signature which can be 
found in two or more worm instances. However, this does 
not mean that the signature substrings can be found in all of 
the worm instances. 

 
Figure 2. General format of the produced signature. 

The proposed solution is implemented with four phases: 
1. Shingles divider 
2. Signature extractor 

3. Signature reducer 
4. Flow checker 

The following sub-section will describe the design in a 
general form. After that, we will discuss each phase in detail. 

 

 
Figure 3. Polymorphic worm detection system overview. 

 4.2 Detection System Overview 
 

An overview of our polymorphic worm detection system is 
shown in Figure 3. The system contains four components: 
shingles divider, signature extractor, signature reducer, and 
flow checker. Here, different worm instances belong to one 
kind of polymorphic worm and a mixed network traffic 
comes form the system input. The system output is the 
manager’s risk report. 
 

 
(a)  

 
(b) 

Figure 4. (a) Segment of a worm. (b) Segment of a worm 
after fragmentation. 
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First phase is the shingles dividing process, where each 
worm instance is divided into diverse shingles. The worm 
instances should be from the same type of worm; for 
instance, all of the instances are Sasser worm [4], [27]. 
However, the instances may have different sizes. 
Second phase is the signature generation process, where 
common shingles among different instances are considered 
as the polymorphic worm signature, which should be 
achieved after computing the intersection result between 
different shingles. 
Third phase  is the signature reduction process. After 
generating worm signature from the previous phase, the 
signature still has rubbish data that need clipping. The 
signature will passes through three filters to be completely 
polished. After these three filters, the signature will be ready 
for use for the following phase. 
Fourth phase is a network traffic checker, where the usual 
network traffic (i.e., innocuous packets) is examined against 
worm signature. Risk report will be generated to provide the 
network administrator with the level of danger. 
 

 4.3 Design Specification Details and Experiments 
 

In this section, we describe each system component in 
details. 
Phase (1) - Shingles Divider: The worm instance is 
constructed from a set of characters, like any type of 
document. There is no benefit from calculating Jaccard at 
character level, since the intersection between the instances 
becomes equal to the union. Therefore, Jaccard value will be 
equal to one, indicating that all instances are the same, which 
is logically false. 
Shingling is the first step to find document similarity in 
natural language processing (NLP) [24]. It is the process to 
divide documents to a series of tokens based on a fixed size 
and/or special delimiter(s). 
Fragment worm instance to shingles: The same concept that 
is used for ordinary documents will be used on polymorphic 
worms’ instances. The provided polymorphic worm samples 
are basically a set of characters converted to the 
corresponding Unicode integer values. A segment of a worm 
is shown in Figure 4(a).  
The fragmentation will be delimiter based. Newline, vertical 
tab, horizontal tab and space characters are used as 
delimiters. They have the following Unicode representations 
respectively (10, 11, 9, 32). After processing the segment in 
Figure 4(a), the fragmentation will be as shown in Figure 
4(b), where the segment is divided into nine tokens. 
The following pseudo code describes the fragmentation 
process: 
 

for each worm instance do 

     W=worm instance 

     W′=W.split(' 32 ', ' 10 ', ' 09 ', ' 11 ') 

     Store W′ 

end 

Phase (2) - Signature Extractor: The main objective of this 
phase in the system is to generate a shared worm signature. It 
should meet the following conditions: 

1. The signature is common among the worm 
instances as much as possible. 

2. The generated signature should be long enough to 
avoid false positive, and short enough to avoid 
false negative. 

3. The signature must be flexible enough to defend 
against polymorphic worms that change their 
payloads in every infection attempt. So, 
considering single substring as the unique 
signature may not be invariant across worm 
instances. 

4. The signature must be reliable enough to detect 
wide variety of Zero-day attacks. 

5. It should take into account the system resource 
limitation and computation overhead such as; 
CPU (Central Processing Unit) time of generating 
signature and comparing them with the network 
traffic. In addition, signature storage space must 
not be stressed. 

The last point will not be covered in this context. The 
signature extractor will be rather divided into multiple stages 
to make it simple and more efficient. 
Jaccard similarity calculation: As first step of signature 
extraction process, Jaccard similarity will be calculated 
between each pair of worm instances. The calculation will be 
as follows: 
Jaccard similarity of two worm instances W1 and W2 is: 
                             

     �� =  
|���	
� �
 ������
� �� �� ∩ ���	
� �
 ������
� �� �� |

|���	
� �
 ������
� �� �� ∪ ���	
� �
 ������
� �� ��|
     (1) 

 
This will be calculated for each instance pairs. So JS(W1, 
W1), JS(W1, W2), JS(W1, W3),…JS(W1, Wn), JS(W2, W1), 
JS(W2, W2), JS(W2, W3),… JS(W2, Wn),…JS(Wn, Wn) are 
calculated for n worm instances. For simplicity, the result 
could be represented with a two dimensional matrix as 
shown in Table 1. 
 
wormFile=import all worm instances after fragmentation 

% nested For loop to traverse two dimensional matrix, that is used 

to store Jaccard similarity values 

% Loop starts from 1 to the end of folder that contains the worm 

instances 

for i = 1:size(wormFile); 

    for j = 1:size(wormFile); 

 

% JacFor2Doc function takes 2 worm instances as input and returns 

the similarity between them and the intersected segments as a 

vector 

         

[intersectVec,jacMatrix(i,j)]=JacFor2Doc(wormFile(i),wormFile(j)); 

% intersectMatrix to store the intersectVector for each iteration 

                intersectMat{i,j}=intersectVec; 

    end 

end 

 

Any element on the diagonal surely will be 1, since it is a 
Jaccard comparison between the document and itself. To 
reduce computational overhead to half, we can calculate 
elements above the main diagonal only. 
The following pseudocode describes the process of Jaccard 
similarity calculation for a set of worm instances. Worm 
instances in this step should pass the fragmentation process 
which has been described before. 
Presented below is a part of JacFor2Doc function 
pseudocode, which compares two worm samples (after 
fragmentation process) and returns Jaccard value for them. In 
addition, it returns the intersected parts as a vector of 
segments: 
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JacFor2Doc(W1′,W2′) 

% intersection of two worm instances stored as a vector 

int=intersect(W1′,W2′); 

% union of two worm instances stored as a vector 

uni=union(W1′,W2′) 

 

L = length(int); 

L2 = length(uni); 

 

%percentage between length of the intersection vector and unit 

vector is Jaccard value 

jaccardValue=L/L2; 

return (int,jaccardValue); 

 
Table 1. Representation of JS for all instances of one type of 

worm. 
 W1 W2 W3 . Wn 

W1 JS(W1, W1)=1 
1≥JS(W1, W2) 

≥0 

1≥JS(W1, W3) 

≥0 
. 

1≥JS(W1, Wn) 

≥0 

W2 
1≥JS(W2, W1) 

≥0 
JS(W2, W2)=1 

1≥JS(W2, W3) 

≥0 
. 

1≥JS(W2, Wn) 

≥0 

W3 
1≥JS(W3, W1) 

≥0 

1≥JS(W3, W2) 

≥0 
JS(W3, W3)=1 . 

1≥JS(W3, Wn) 

≥0 

. . . . . . 

Wn 
1≥JS(Wn, W1) 

≥0 

1≥JS(Wn, W2) 

≥0 

1≥JS(Wn, W3) 

≥0 
. JS(Wn, Wn)=1 

 
i. Jaccard for Blaster worm: We have calculated Jaccard 
similarity for 42 instances of Blaster worm [6], [7]. 
MATLAB®interactive environment has been used for the 
implementation. The result is shown with the bar chart in 
Figure 5(a). The bar chart clearly shows that the diagonal 
elements have 1 for Jaccard value, since worm sample has 
compared with itself. Elements around the diagonal with 
opposite position have the same Jaccard similarity. 
Therefore, obviously JS(W3, W2) =JS(W2, W3). So, we can 
conclude that Jaccard algorithm is a commutative relation. 
Detailed Jaccard similarity values are shown in Table 2. For 
brevity, 10 samples are shown from the 42. 
ii. Jaccard for Sasser worm: Like the previous one, Jaccard 
similarity has been also calculated for 50 instances of Sasser 
worm. The same MATLAB®interactive environment has 
been used for simulation. The result is shown in the bar chart 
as in Figure 5(b). Again, the bar chart clearly shows that the 
diagonal elements have 1 for Jaccard value, since worm 
sample has compared with itself. Elements around the 
diagonal with opposite position have the same Jaccard 
similarity. Therefore, here also, JS(W3, W2) =JS(W2, W3). 
Detailed Jaccard similarity values are shown in Table 3 (10 
samples are shown out of the 50). It should be noted here 
that the polymorphic worm samples used in this work were 
obtained from the Institute Eurecom in the French Riviera. 
We removed the signatures of the worms from the database 
of IDS so that these polymorphic worms play as Zero-day 
polymorphic worms. 
Choosing the superior Jaccard value: After producing 
Jaccard matrix for all worm instances of the same type, it is 
time to choose the best results and eliminate poor ones. For 
each row of Jaccard matrix, the maximum Jaccard value will 
be chosen as the best match. Apparently, any cell with equal 
to value 1 will be discarded since it indicates that the worm 
compared with itself. 
Only the upper half of the matrix main diagonal will be 
considered at this stage to avoid redundant values, which will 

affect the final results. Figure 6 shows a general format of 
the process. 

 
(a) 

 
 (b) 

Figure 5. 3D bar chart representing (a) Jaccard matrix for 42 
samples from Blaster worm. (b) Jaccard matrix for 42 

samples from Sasser worm. 

Let Jaccard matrix dimensions be � × �. For each row �, 
cells � with positions between (�, � + � + 1) and (�, �) will be 
examined to choose the maximum value among them. 
The following pseudocode shows the selection process: 
 
IntersectMat contains the shared elements between each two 

worm instances 

% choosing the maximum value in each row of jacMatrix 

for i = 1:size(wormFile); 

         maxVal=0; 

         for j = i+1 :size(wormFile); 

               if (jacMatrix(i,j)) ~= 1 && jacMatrix(i,j) ~= 0) 

                   if(maxVal < jacMatrix(i,j)) 

                      maxVal = jacMatrix(i,j); 

                      maxR=i; 

                      maxC=j; 

% maxCell to store intersecting elements in each iteration from 

original intersectMatrix 

                      maxCell(i)=intersectMat(maxR,maxC); 

                      maxInRow(i)=maxVal; 

                   end 

               end 

         end 

end 

 

Now, as we have the intersected elements for the 
maximum Jaccard value in each row, we have to compute 
the time of occurrence for each element. The element with 
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the highest occurrence value will be considered as a part of 
worm signature.  
MATLAB tabulate function is used to create the 
of data table (maxCell) which is presented in Table IV. 
maxCell contains the intersected elements among worms’ 
samples with the highest Jaccard value. 
sort the output of tabulate function in descending order. In 
general, the table generated using tabulate
Table 4. 
 

Table 2. Part of Jaccard matrix (for 10 samples) of blaster 
worm. 

 

Table 3. Jaccard matrix (for 10 samples) of blaster worm.

 

Table 4. General format of tabulate function table.

Value Count 
The unique 
values of x 

The number of instances of 
each value 

Ex. 99 97 110 
110 111 116 

19 

Ex. 1×37 char 23 

 

The second row in Table 4 shows the occurrence frequency 
for cell ‘99 97 110 110 111 116’, where 19 is the number of 
its occurrence, and 0.0567 is the percentage of its occurrence 
among other cells in maxCell. The third row shows the 
occurrence frequency for the 1×37 char array of characters, 
where 23 is the number of its occurrence, and 0.1008 is the 
percentage of its occurrence among other cells.
The complement value of count column in Table 4 can be 
considered as false negative percentage if this substring is 
chosen to be the worm signature. Example: If we have 
worm instances from one type and that worm has a common 
substring � with count value #, # $ %. If 
signature, (% & #)/100 is the false negative percentag
 

Figure 6. Choosing the superior JS value in each row.

We have tested the method of choosing the superior Jaccard 
values both for Blaster worm and Sasser worm. To put some 
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the highest occurrence value will be considered as a part of 

unction is used to create the frequency 
) which is presented in Table IV. 

contains the intersected elements among worms’ 
samples with the highest Jaccard value. sortrows is used to 
sort the output of tabulate function in descending order. In 

tabulate will look like 

Part of Jaccard matrix (for 10 samples) of blaster 

 

matrix (for 10 samples) of blaster worm. 

 

General format of tabulate function table. 

Percentage 
The percentage of 

each value 

0.0567 

0.1008 

The second row in Table 4 shows the occurrence frequency 
for cell ‘99 97 110 110 111 116’, where 19 is the number of 
its occurrence, and 0.0567 is the percentage of its occurrence 

. The third row shows the 
occurrence frequency for the 1×37 char array of characters, 
where 23 is the number of its occurrence, and 0.1008 is the 
percentage of its occurrence among other cells. 
The complement value of count column in Table 4 can be 

entage if this substring is 
chosen to be the worm signature. Example: If we have % 
worm instances from one type and that worm has a common 

. If � is chosen as a 
is the false negative percentage. 

 

Choosing the superior JS value in each row. 

We have tested the method of choosing the superior Jaccard 
values both for Blaster worm and Sasser worm. To put some 

examples, Figures 7(a) and 7(b) show parts of the 
table for Blaster worm before and after sorting, respectively. 
Similar snapshots could also be presented for Sasser worm.
Phase (3) - Signature Reducer: 
common signature for specific polymorphic worm, we notice 
that there are many common 
part of the signature. In other words, the common signature 
contains many substrings, and dealing with big amount of 
shingles/substrings can be difficult and ineffective in the next 
phase. It will take a huge amount of time 
normal data flow from those shingles/substrings.
 

                            (a)                                    
Figure 7. Part of tabulate table for Blaster worm (a) before 

sorting, (b) after sorting.

As a rule of thumb, to choose among multiple shared 
shingles/substrings, two conditions must be taken into 
account:  

1. The chosen signature should be the most 
common shingles/substrings between worm 
instances as much as possible. 

2. The chosen signature must be long enough 
avoid false positive. 

The first condition is already achieved (in section 4.3) by 
calculating the Jaccard values between worm instances to 
generate the signature. The second condition can be achieved 
by deleting those cells that contain short strings f
final signature (see Figure 8). 
Another effective step will be added to assure signature 
efficiency. This step is to compare the resulted signature 
parts with a known pure normal traffic. This step basically 
searches for the signature shingles/subs
pure normal traffic and if any part of the signature is found in 
the normal traffic, that part will be eliminated from the 
signature. 
The main benefit of the latter step is that we can assure that 
any common part shared in specific type of files will be 
eliminated from the signature. For example, the header part 
of any .exe file is the same whether it is a worm file or a 
normal file. Another example is the beginning of any JAVA 
program, e.g., the same “public class … {public static void 
main(String[] args) {…”. Hence, this step will guarantee that 
any kind of common string will not be excluded from the 
signature, and this will give a stro
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examples, Figures 7(a) and 7(b) show parts of the tabulate 
table for Blaster worm before and after sorting, respectively. 
Similar snapshots could also be presented for Sasser worm. 

Signature Reducer: After generating the 
for specific polymorphic worm, we notice 

on shingles to be considered as 
signature. In other words, the common signature 

contains many substrings, and dealing with big amount of 
shingles/substrings can be difficult and ineffective in the next 
phase. It will take a huge amount of time to search and filter 
normal data flow from those shingles/substrings. 

 
                          (b) 

Part of tabulate table for Blaster worm (a) before 
sorting, (b) after sorting. 

humb, to choose among multiple shared 
shingles/substrings, two conditions must be taken into 

The chosen signature should be the most 
common shingles/substrings between worm 
instances as much as possible.  
The chosen signature must be long enough to 
avoid false positive.  

The first condition is already achieved (in section 4.3) by 
calculating the Jaccard values between worm instances to 
generate the signature. The second condition can be achieved 
by deleting those cells that contain short strings from the 

 
Another effective step will be added to assure signature 
efficiency. This step is to compare the resulted signature 
parts with a known pure normal traffic. This step basically 
searches for the signature shingles/substrings in the known 
pure normal traffic and if any part of the signature is found in 
the normal traffic, that part will be eliminated from the 

The main benefit of the latter step is that we can assure that 
any common part shared in specific type of files will be 
eliminated from the signature. For example, the header part 

file is the same whether it is a worm file or a 
ther example is the beginning of any JAVA 

public class … {public static void 
”. Hence, this step will guarantee that 

any kind of common string will not be excluded from the 
signature, and this will give a strong protection against the 
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false negative occurrences. Signature reduction process can 
be done in any sequence which is illustrated in Figure 8. 

 
Figure 8. Signature reduction process. 

The signature reduction has been tested for two types of 
worms as follows: 
i. Signature reduction for Blaster worm: For Blaster 
worm, signature reduction step is achieved by the following 
sub-steps: 

• From tabulate Table (see Figure 7), eliminate 
cells with (count < 5). 

• Eliminate cells with 1, 2 or 3 characters only 
(value < 4). 

• Eliminate any cell that can occur in normal 
traffic. 

Here, (count < 5) is considered because average word size in 
English is about 5 letters, which is used in programming 
languages, hence, the worm samples. Words shorter than 5 
letters appear very frequently. So, to build a system that runs 
as fast as possible, we can have a significant performance 
boost by ignoring words less than 5 letters; therefore, the 
worm signature will have less shingles and that can be 
noticeable especially in Blaster worm’s case. In our 
experiment, normal traffic is 123 MB of pure data in the 
application layer tested against any type of malicious ware. 
Figure 9 shows a dramatic decrease in Blaster worm 
signature size from 20125 shingles/substrings to only 199. 
 

 
Figure 9. Signature reduction process for Blaster worm. 

ii. Signature reduction for Sasser worm: Same steps as 
applied to Blaster worm’s case have been applied for Sasser 
worm. Signature size after each reduction step is shown in 
Figure 10. 
Phase (4) - Flow Checker: This phase will filter out normal 
traffic from polymorphic worms and will generate an alarm 
to the network administrator. Flow checker stage is basically 
a simulation module of what could happen in a real IDS 
implementation. It also is a stage where the quality of the 
generated signature can be tested. Parts of the flow checker 

phase simulation results are shown in Figure 11. First 
column determines the location of the scanned file. Second 
column shows the degree of danger of each file. This 
number indicates the number of discovered signature 
substrings in the file. 

 
Figure 10. Signature reduction process for Sasser worm. 

High number means that the file is definitely a worm, which 
requires a fast response from the network manager. 
In this test case, first 80% of pure normal traffic and 20% of 
worm instances are blended to form the mixed traffic. 

)�*+, -�.//�� =  80 % 23�4.5 -�.//�� 

+  20 % 73�4 8�9:.��+9 
To ensure the fineness and reliability of the generated 

signature, worm instances that are used in this phase are new 
and completely different from those that were used to 
generate the signature. 

 

 
Figure 11. Snapshot from part of the flow checker stage 

simulation in MATLAB. 

After this step, mixed traffic will be scanned to detect worm 
instances. The scanning process will be done using the final 
reduced signature generated from the previous step. Let us 
see some practically implemented and tested cases in the 
following section. 

5. Experimental Evaluation and Comparative 
Analysis 

The following cases have been tested using the flow checker: 
 

 5.1 Flow Checker for Blaster Worm  
 

In Table 5, we show the amount of normal traffic and worm 
instances that are used to generate mixed traffic, using 
number of files and total size of files in MB (Megabyte). The 
blending step was implemented using randomly chosen 
Blaster worms and randomly chosen files from the pure 
normal traffic. 
Number of the detected Blaster worms in the mixed traffic is 
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roughly comparable to the ideal case, where all Blaster worm 
instances are found. Apparently, worm instances that have 
the lowest Jaccard similarity values fail the test. Figure 12 
shows the number of detected Blaster worm instances from 
mixed traffic. 

 
Figure 12. Number of detected Blaster worm instances from 

mixed traffic. 

 
Figure 13. Number of detected Sasser worm instances from 

mixed traffic. 

 5.2 Flow Checker for Sasser Worm 
 

Just like the previous example, Table 6 is the case for Sasser 
worm. Similar method is used to test this as well. 
Number of detected Sasser worms in the mixed traffic is 
almost similar to the ideal case, where all Sasser worm 
instances are detected, without any false negative. Small 
amount of worm instances fail the test. Apparently, those 
have the lowest Jaccard similarity values. Figure 13 shows 
the number of detected Sasser worm instances from mixed 
traffic. 
 

 5.3 Percentages of False Positives and False Negatives  
 

A good worm scanner should have two core aspects. Firstly, 
it should avoid false negatives. A false negative is a case 
where the detection system declares that some traffic is free 
from worm infection, but in fact it is not. Secondly, the 
scanner should avoid false positives as well. A false positive 
is the opposite of false negative which is wrongly declaring 
that a traffic contains a worm, but it is actually clean. 
“Avoiding both types of mis-detections is a worthy goal for 
virus software, but has been proved to be theoretically 
impossible” [28], [32], [33]. Keeping a balance between 
them is needed. While a high level of false negatives is 
worse in the short term (since it leaves the system infected), 
high level of false positives means the network admin will be 
careless toward the IDS’s warnings, possibly causing to 
ignore a real alarm. But, false negatives imply that an actual 
worm is crossing the IDS without action. Therefore, the 
percentage of false positives and false negatives represent the 
system sensitivity [29]. False negatives give the worms the 

opportunity to escape defense, while false positives may 
cause network shortage by preventing normal traffic [21]. 
We could assure that our algorithm is false positive free. 
False negative percentage cannot exceed 23% in case of 
Blaster worm (Figure 14) and 10% for Sasser worm (Figure 
15). 
False positives and false negatives percentages are calculated 
as follows: 
                        

;<% =  
=>?@AB CD DEFAG ?EGHIJA=FK LAHAMHAL IG I NCB?

HCHIF I?C>=H CD O>BA =CB?IF HBIDDEM
 ×100   (2) 

                      

;2% =  
=>?@AB CD ?EGG_LAHAMHAL NCB? E=GHI=MAG

HCHIF =>?@AB CD NCB? E=GHI=MAG E= HQA ?ERAL HBIDDEM
 ×100 

                                                                                             (3) 

 5.4 Comparative Analysis 
 

The main advantage of our system is that it generates a 
flexible signature. This signature contains different strings, 
of which each string has a different probability to appear in 
the polymorphic worm body. Assigning different probability 
to each sub string breaks the rule that the majority of the 
existing systems follow; which mean that all the signature 
parts must exist in the polymorphic worm body. 
Different security levels can be maintained in a real-life 
application scenario. After the normal traffic passes through 
the IDS, our algorithm will give the network manager the 
presence percentage of a worm’s signature parts. 
The only disadvantage of our algorithm is the potential 
computational overhead. But, the effect of this disadvantage 
depends of many factors, such as the machine type, amount 
of the input, and the used programming language. Moreover, 
to ensure right level of security, any system could of course 
spend a bit of extra resources, if need be. 
 

Table 5. Amount of normal traffic and Blaster worm 
instances blended with generated mixed traffic. 

80 % Normal Traffic 20 % Worm Instances Mixed 
Traffic 

80 files (total size 104 
MB) 

20 files (total size 38 MB) 100 

72 files (total size 90 MB) 18 files (total size 26.1 
MB) 

90 

64 files (total size 67 MB) 16 files (total size 23.6 
MB) 

80 

56 files (total size 62.1 
MB) 

14 files (total size 15.9 
MB) 

70 

48 files (total size 45.2 
MB) 

12 files (total size 14.1 
MB) 

60 

40 files (total size 41 MB) 10 files (total size 7.22 
MB) 

50 

32 files (total size 29.3 
MB) 

8 files (total size 3.32 MB) 40 

24 files (total size 23.3 
MB) 

6 files (total size 3.27 MB) 30 

16 files (total size 14.3 
MB) 

4 files (total size 3.2 MB) 20 

8 files (total size 1.62 MB) 2 files (total size 2.46 MB) 10 
 

The comparative advantages and disadvantages for each 
polymorphic worm detection system are presented in Table 
7. Regarding the false negative and false positive values 
shown in this table, the numbers are according to each 
work’s reported data. Different systems used different 
metrics.  
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Table 6. Amount of normal traffic and Sasser worm 

instances blended with generated mixed traffic. 

80 % Normal Traffic 20 % Worm Instances Mixed 
Traffic 

80 files (total size 104 
MB) 

20 files (total size 2.92 
MB) 

100 

72 files (total size 90 MB) 18 files (total size 2.82 
MB) 

90 

64 files (total size 76 MB) 16 files (total size 2.25 
MB) 

80 

56 files (total size 62.2 
MB) 

14 files (total size 2.26 
MB) 

70 

48 files (total size 45.2 
MB) 

12 files (total size 1.38 
MB) 

60 

40 files (total size 41 MB) 10 files (total size 1.27 
MB) 

50 

32 files (total size 29.3 
MB) 

8 files (total size 1.16 MB) 40 

24 files (total size 23.2 
MB) 

6 files (total size 950KB) 30 

16 files (total size 14.2 
MB) 

4 files (total size 842KB) 20 

8 files (total size 1.62 MB) 2 files (total size 112KB) 10 

 
 

 
Figure 14. Blaster worm false positive and false negative 

percentages. 

 
Figure 15. Sasser worm false positive and negative 

percentages. 

There are many other factors that would influence the 
practical implementation cases as well. Some of them are: 
types of worms used in the experiments, amount of worm 
samples and percentage of odd samples, and so on. A 

standard performance testing platform is therefore needed to 
produce a more accurate comparison. We have tried to do the 
comparison as fairly as possible. Clearly, no detection 
system is fully safe, and all will have shortcomings. 
However, as we have tested several cases, we have found 
that our scheme performs pretty well compared to all other 
available solutions in this area. 

6. Conclusions and Future Work 

In this paper, we have shown that the network content-based 
methodology holds great promise for defending against Zero-
day polymorphic worms. Moreover, we have proven that 
applying Jaccard similarity algorithm is an effective way to 
generate a fixable signature for polymorphic worms. We 
have observed that it is inefficient to make the polymorphic 
worm signature rigid. Our solution contains four phases. 
While the first three phases are to generate a precise 
signature, the last phase is to evaluate the efficiency of the 
generated signature. We used two types of polymorphic 
worms to test the proposed algorithm. The resulted signature 
was accurate and produced no false alarm. The signature 
generated by our system can be deployed with commonly 
used IDSs with ease.  
Our main goal in the signature generation process was to 
achieve accurate signature that suits most of the polymorphic 
worm instances. There is a potential trade-off between 
computational overhead and generating a precise signature. 
For any kind of mobile system or any network with mobility, 
a critical issue would be the lower resource consumption. As 
stated in the subsection 4.3, we took into account the system 
resource limitation and computational overhead, which 
makes our design implementable in mobile networks and 
systems. 
The performance of our signature could further be improved 
by applying code optimization techniques. In future, we 
would like to work in this direction to improve the proposed 
mechanism and test it under various kinds of dynamic and 
mobile settings. 
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Table 7. Comparisons among polymorphic worm detection systems. 

 
Network/ 

Host 
based 

Content/ 
behavior 

based 

False 
Positive 

False 
Negative 

Pros Cons 

Polygraph [12] Network Content 

Low (between 
92.5% and 

0%, depends 
on the used 

method) 

Low 

• Applies greedy 
approach for signature 
generation process to 
minimize 
computational 
expense. 

• Multiple fixed 
substrings should be 
found in all 
polymorphic worm 
instances. 

Hamsa [13] Network Content 

Low (average 
= 0.09%, 

maximum = 
0.7%) 

Zero 

• The resulted 
signature does not get 
affected by the size of 
the normal traffic. 

• The resulted 
signature gets affected 
by the size of the 
suspicious traffic. 100 
samples of a worm as 
minimum. 

LISABETH [14] Network Content 
Low 

(Average= 
0.095%) 

Low 
• Signature generation 
process is less than by 
20% 

• Same as Hamsa. 

PADS [15] Host Content 
Low (did not 

exceed 
0.0003) 

Low (did 
not exceed 

0.0003) 

• Able to capture any 
possible value of the 
variable elements in a 
worm. 
 
 

• Not capable of 
detecting advanced 
worms. 
• Cannot be merged 
with other IDSs like 
for instance, Snort. 
• High computational 
overhead. 

TaintCheck [18] Host behavior Low (.0017%) Low 
• Capable of detecting 
any overwrite attack 

• Signature generation 
process cannot be 
achieved 
automatically. 
• Very much 
application-specific: a 
certain type of server 
must be used. 

COVERS [19] Host Content Low Low 
• Fast generation of 
signatures. 

• Cannot be used by 
IDSs or firewalls. 
• Not for general 
purpose - it is 
application-specific. 
• Need for manual 
involvement 
• Depends on 
application’s source 
code. 

ARBOR [20] Host behavior Zero 

Low  
(but more 

than 
COVERS) 

• Fully automatic 
signature generation. 

• Cannot evade attacks 
that are fragmented 
through multiple 
packets. 

Vigilante [21] Host behavior Zero Low 
• Can deal with three 
different worm 
infection mechanisms. 

• Depends on threads 
scheduling order. 

Double-honeynet 
[22] 

Both Content Zero 
Low 

(0.92%) 

• produces accurate 
worm signatures. 
• Network-based and 
Host-based. 

• Relatively long 
deployment time for 
the honeynets. 

Our Scheme Network Content Zero Low 

• Each sub-signature 
has a different 
occurrence 
probability. 
• Very accurate 
signature. 
• Different security 
levels. 

• Expected 
computational 
overhead4. 
 

 

 
4Refer to the future work section, where we suggest some solution. 


