
203
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Detecting Zero-day Polymorphic Worms with
Jaccard Similarity Algorithm

Malak Abdullah I. Almarshad1, Mohssen M. Z. E. Mohammed1 and Al-Sakib Khan Pathan2

1College of Computer and Information Sciences, Al-Imam Muhammad Ibn Saud Islamic University, Saudi Arabia

2Department of Computer Science and Engineering, Southeast University, Bangladesh
malakalmarshad@gmail.com, m_zin44@hotmail.com, and spathan@ieee.org

Abstract: Zero-day polymorphic worms pose a serious threat to
the security of Mobile systems and Internet infrastructure. In many
cases, it is difficult to detect worm attacks at an early stage. There is
typically little or no time to develop a well-constructed solution
during such a worm outbreak. This is because the worms act only to
spread from node to node and they bring security concerns to
everyone using Internet via any static or mobile node. No system is
safe from an aggressive worm crisis. However, many of the
characteristics of a worm can be used to defeat it, including its
predictable behavior and shared signatures. In this paper, we
propose an efficient signature generation method based on string
similarity algorithms to generate signatures for Zero-day
polymorphic worms. Then, these signatures are practically applied
to an Intrusion Detection System (IDS) to prevent the network from
such attacks. The experimental results show the efficiency of the
proposed approach compared to other existing mechanisms.

Keywords: Algorithm, Attack, Internet, Matching, Mobile,
Polymorphic, Signature, String, Worm, Zero-day.

1. Introduction

Computer worms are considered to be a major threat to any
type of network. As nowadays, thousands of users use
mobile devices like laptops, notebooks, tablet computers,
smartphones and so on to browse Internet or even to do
sensitive electronic transactions, the stakes are indeed high.
Unlike ordinary viruses or other types of malicious programs
[1], worms [2], [3], [4], [5], [6], [7] have the ability to
replicate themselves without any human intervention.
Worms that use the Internet as a propagation media, such as
Code Red, Sapphire, and MS Blaster [8] spread very quickly
and can cover a thousand of hosts in a matter of minutes or
even seconds.
Polymorphic worms [9], [10] are special kind of worms that
change their appearance dynamically by scrambling their
payload. Each instance of this type of worm looks different
from the previous ones, but works exactly the same way.
This feature makes detection and prevention from such a
worm hard to implement and maintain. Some of the
polymorphic worms even use encryption to hide their real
intent; which makes the situation even worse for the
detection systems. Since the invention of Morris worm [11],
which gained huge media attention during that time, fighting
worms has become an open research area for experts to dig
in. Malicious codes and worms cause huge harm not only for
individuals, but also for organizations and government
resources. In fact, worm attacks against critical government
institutions, security services, military infrastructures,
intelligence agencies could have enormous impact on a
country’s homeland security.
There are various approaches to tackling worm attacks. In
the traditional techniques, the security administrator takes
each worm instance, studies its signature, and stores it in the

Intrusion Detection System (IDS) database manually, so the
IDS can identify the worm later by filtering the network
traffic. However, this traditional method is often ineffective
and unreliable against the fast separation of modern Zero-day
worms1. In fact, they do not fit well against obfuscated
worms, they do not use program semantics, and they require
human intervention to update signature database effectively.
On the other hand, some modern security systems focus on
automating the detection and prevention. This can overcome
the delay and mistakes caused by human beings. Because of
the significance of the issue, in the recent years, quite a good
number of efforts have been made by researchers to gain in
the race between worm’s spreading and detection.
Nazario [8] classifies the detection and defense methods as
follows:
Detection mechanisms include traffic analysis, honeypots
and dark (black hole) network monitors and signature-based
detection.
Defense mechanisms are classified as host-based defense,
firewall and network, proxy-based and attaching the worm
network.
Indeed, one of the most critical fields in computer science is
network security. Even within the area of network security,
polymorphic worm attack defense is considered as one of the
most challenging fields. Following are the serious challenges
in this area that have been discovered during our survey:
Lack of general knowledge: Information about worms is
often the monopoly of big anti-malware companies. They
reveal what would serve their own interest and cover up what
could be used against them. Crumbs are only left to the rest
of the researchers.
Attack is cheap, while defense is expensive: A teenager can
launch a fast corrupting worm, while a complete team of
professionals would be needed to defeat it.
Lack of measurements: There is no universally accepted
standard to assess the quality of the security solutions. The
quality issue is often considered based on a particular
context. While false positive2 and false negative3 ratios are
used in most of the research works as common metrics,
many other factors can have considerable effect on the final
evaluation like for instance, the type of worm used, the size
of the normal traffic, signature width, and so on.
Fuzziness in the literature: Many publications (as research
papers) in this area tend to describe their means in an

1Zero-day worm means a new kind of worm that has not passed through

an IDS before - thus it is completely new to that IDS.
2Number of incorrectly identified unharmful code as malicious code.

Detector generates alarm when there is no real attack.
3Number of incorrectly missed malicious code. Detector fails to detect

real attack and no alarm is generated.

204
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

abstract or general way. Detailed or clear defense mechanism
is a hard thing to find.
Deployment difficulty: Most of the detection and defense
systems are proven theoretically and not evaluated on the
Internet with real-life scenarios. Deployment difficulty
comes from the sensitivity of this field. Of course, we are not
allowed to test a harmful worm in an open network!
Considering all these issues mentioned above, we are
motivated to propose a practical mechanism to defend
against Zero-day polymorphic worms. Our method primarily
uses Jaccard similarity algorithm to extract signature from
the worm instances without finding exact match. In the
testing level, Jaccard algorithm can return similarity
percentage between a worm signature and a suspicious
packet. Due to the similarity algorithm’s nature, since it is
not based on the exact match, this would allow maintaining
different levels of security. Network administrator can
control the security level from low to strict. As the security
level chosen by the administrator reflects the network policy,
sensitive networks like bank or government LANs (Local
Area Networks) can guarantee high level of security.
Individuals’ networks that do not have very sensitive
information, can allow more network traffic to flow with
relatively lower security level. The proposed mechanism is
network-based and host-based at the same time (i.e.,
platform-independent) and it is a signature-based one. Our
main focus is the efficiency and accuracy of the proposed
string similarity algorithm in its ability to catch most of the
Zero-day polymorphic worm instances.
The rest of the paper is organized as follows: Section 2
presents the related works in this area that motivated us to
devise our mechanism, Section 3 gives some background
information about the string similarity algorithms, Section 4
presents the design and implementation of our scheme.
Experimental results and comparative analysis based on real-
life cases are presented in Section 5 and finally, Section 6
concludes the paper with possible future works.

2. Related Works and Motivation

Polygraph [12] is a content-based automated signature
generator for polymorphic worms. It is deployed at network
level. Polygraph categorizes worms’ signature into three
classes: set of tokens, sequences of tokens, and weighted set
of tokens. Three algorithms are proposed to generate
signatures for each class. This gives the system the ability to
deal with worms that use payload encryption. The results of
the work show that it can generate high-quality signatures
even under critical conditions like the presence of
unclassified noise flows, or the presence of multiple kinds of
worms at the same time. Polygraph can generate quality
signature for noise flows under 80%. However, the negative
side of this is that multiple fixed substrings should be found
in all polymorphic worm instances, which is a difficult task.
Polygraph and another scheme, Hamsa [13] work on the
network-level to detect Zero-day polymorphic worms [30],
[31] and they generate multiple tokens as signatures, but
Hamsa claims that it has a significant improvement in terms
of speed and attack flexibility over Polygraph. Hamsa
focuses on content-based signatures. Both of these schemes
have the same token-based approach, but instead of
relatively slow suffix tree method of token extraction, Hamsa
uses a lightweight suffix array method. This improves the
speed of token generation process up to 100 times. A greedy

algorithm is used to extract multiple token signatures.
Presence of noise changes the computational complexity of
the problem, and affects the final quality of the produced
signature. Average and maximum false positive rate have
been shown as 0.095 and 0.75 respectively. However, the
resulted signature in this scheme could be affected by the
size of the suspicious traffic. In fact, for a working scheme,
100 samples of a worm would be needed as minimum.
LISABETH [14] is an automated content-based signatures
generator for Zero-day polymorphic worms. It recognizes
fixed bytes of traffic content, as originally proposed in
Polygraph [12] and improved by Hamsa [13]. Signature
generation takes 20% less time than that of Hamsa. It creates
reliable signature with low false positive in presence of
noise. It reduces computational overhead by avoiding
redundant signature generation. Still, the drawbacks of this
approach are the same as of Hamsa. Position-aware
distribution signature (PADS) [15], [16] is designed to fill
the gap between signature-based IDS and anomaly-based
IDS. This system is based on double honeypot. It is able to
automatically detect the presence of a new worm in the
normal traffic. PADS inherits the positive aspects from both
anomaly and signature based schemes. Its signature
generation is based on counting frequency of occurrence of a
specific byte in a specific position. Instead of using a fixed
string like that is used in signature based approach, it uses
flexible string to catch more worm variants. It is claimed
that, it is much accurate than the position-unaware statistical
signatures. However, the drawbacks are clear as it is not
capable of detecting advanced worms, it cannot be merged
with other IDSs like for instance: Snort [17], and it does have
high computational overhead. In [18], the authors propose
TaintCheck, which is an automated dynamic taint analysis to
detect polymorphic attacks. The main functionality of
TaintCheck is performed during the run time, so it does not
need any code modification on the IDS. Any passing of
traffic that is generated by unknown resource is marked as
tainted. Tainted data are monitored during program
execution. TaintCheck states that it can reliably detect most
overwrite worms (those cause overwriting operation/attack).
This scheme is vulnerability-based and host-based. It can be
used to provide exhaustive information about the attack
characteristics. No false positive was found while testing
TaintCheck as it has been reported in the work. However, in
this scheme, signature generation process cannot be achieved
automatically and it is very much application-specific - a
particular type of server must be used. COVERS (COntext-
based, VulnERability-oriented Signature) [19] generates
signatures to capture attacks that are targeted to the same
previous vulnerability (as it might have had been exploited
before). This makes the approach effective against
polymorphic worms. Unlike network-based techniques,
COVERS approach is able to produce signatures from single
polymorphic worm instances, using correlation and input
context identification. One of the advantages of COVERS
that it introduces is low overhead. In addition to that,
deployment of this approach does not require any
modification to the IDS, or access to its source code. The
experimental results for all evaluated attacks showed no false
positive and low false negative. In spite of the noticeable
advantages, the down sides of the approach are: it cannot be
used by IDSs or firewalls; it is not for general purpose
implementation as it is application specific; it requires
manual involvement; and it depends on application’s source

205
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

code.
ARBOR [20] implements a new approach that can identify
the characteristics of a particular worm, and then filter future
traffic from instances of the same worm or its variants. By
using this method, the availability of main network server
will be significantly increased. ARBOR claims that it is
completely automatic and does not need any human
intervention. There is no need for IDS source code, and it has
low runtime overhead. During experiments, it was effective
against most worms and showed no false positive. Our
analysis shows that this scheme still cannot evade attacks
that are fragmented through multiple packets.
Vigilante [21] introduces an end-to-end architecture to
automate worm detection. Vigilante analyzes dynamic data-
flow instead of analyzing worm behavior or worm body. It
simply detects infection attempts with broad coverage. This
can evade the three most common infection techniques used
by worms, including: edge injection, code injection, and data
injection. It does not require access to source code as well.
Under some conditions, it may produce false positive. Also
another drawback for Vigilante is that its signature may lead
to false negative. The success of this scheme depends on the
threads scheduling order. Another work Double-honeynet as
reported in [22], produces accurate worm signatures. The
method works both as network-based and host-based.
However, long deployment time for the honeynets is a real
drawback of this work.
Considering all the pros and cons of various existing
schemes and understanding the significance of the research
issue, we have come up with our proposal that would solve
almost all the negative issues as noted in this section. The
subsequent sections would describe our approach in detail.

3. String Similarity Algorithms

String approximate matching algorithms play a rising role in
string related research and applications. An unlimited
number of applications depend on this type of processing,
such as search engines, post classification, document
clustering, topic detection, topic tracking, question
generation, question answering, post scoring, short answer
scoring, automated translation, text summarization, movies
and music classification, finding plagiarized documents and
so on. Similarity finding between two words is a
fundamental part of string similarity which is then used as a
primary stage for sentence, paragraph, and document
similarity tests.
String similarity is classified into two main categories:
character based and semantic based. Character based is used
to measure the similarity between two strings which depends
on their character structures, while semantic based similarity
is based on the meaning of the two words. One of our
objectives in this work is about character based methods, to
determine the degree of similarity between two instances of
polymorphic worms. A similarity function outputs how
similar two strings are and returns a value within [0,1].
Typically, the smaller the value, the more differences are
between the two strings. If the similarity value between the
two strings is zero, it means that they do not have any
common substring [23]. Many similarity algorithms have
been developed among which, Dice, Jaccard, and Cosine
[24], [25] are the most commonly used. For our work, we
have chosen the Jaccard, since it is more suitable for long
paragraphs or whole document.

Figure 1. Two sets with Jaccard similarity, 4/9.

 3.1 Jaccard Similarity

The Jaccard similarity value of two sets S and T is:
 SIM(S,T) = |S ∩ T |/|S ∪ T |
that is, the ratio of the size of the intersection of S and T to
the size of their union [24]. And, for string similarity,
Jaccard is computed as the number of shared terms over the
number of all unique terms in both strings. For instance, in
Figure 1, we see two sets: S and T. There are four elements
in their intersection and a total of nine elements that appear
in S and T both. Thus, SIM(S,T) = 4/9.

 3.2 Worm Instances to Sets

The critical question is: How to apply this set machinery to
polymorphic worms’ samples? Originally, Jaccard similarity
algorithm was used to find the likeness ratio between two
sets. But, we would apply it to find the perfect signature
among different polymorphic instances.
A commonly used approach is to shingle the document, and
we will use it to process the worm sample. This method takes
a group of characters and considers them as a single object.
A k-shingle is basically a consecutive set of k words. The
following example demonstrates the concept of shingles
division using a normal document (not a worm sample).
 D_1: I am Norah.
 D_2: Norah I am.
 D_3: I do not like beef and red fish.
 D_4: I do not like them, Norah I am.
 The (k = 1)-shingles of D_1∪D_2∪D_3∪D_4 are: {[i],
[am], [Norah], [do], [not], [like], [beef], [and], [red], [fish],
[them]}.
 The (k = 2)- shingles of D_1∪D_2∪D_3∪D_4 are: {[I
am], [am Norah], [Norah Norah], [Norah I], [am I], [I do],
[do not], [not like], [like beef], [beef and], [and red], [red
fish], [like them], [them Norah]}.
k-shingles can also be created at the character level. The (k =
3)-character shingles of D_1∪D_2 are: {[iam], [amn],
[mno], [nor], [ora], [rah], [ahn], [hno], [ahi], [hia]}.
k is a constant and can be picked as desired from the positive
numbers set. However, if we choose k to be too small, then
most sequences of k characters will appear in most of the
documents. In that case, Jaccard similarity will be high, and
this is not logically sound. This leads to an important
question that is: How large should k be? The answer depends
on how long the used documents are. And, how large the set
of typical characters is [24].
For worm instances, choosing k is very critical - if k is too
small, this will produce high false positive, while choosing
large k produces high false negative.
Many modeling choices should be taken into account when
dealing with worm samples. Here is a list of the important
ones:
 White characters: e.g., I am Norah. vs. I am (new line)

206
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Norah.
 Case sensitivity: Norah vs. norah.
 Punctuation: e.g. them, Norah vs. them Norah.
 Number of occurrences: Should we count the number of
replicas of shingles or not?
 Articles, pronouns, and conjunctions: Words like (you,
for, the, to, and, that, it, is, ... etc.) are very common. Should
we omit these words or not?

3.3 Jaccard with Shingles

Let us consider the (k=2)-shingles for each of D_1, D_2,
D_3, and D_4:
 D_1: [I am], [am Norah]
 D_2: [Norah I], [I am]
 D_3: [I do], [do not], [not like], [like beef], [beef and],
[and red], [red fish]
 D_4: [I do], [do not], [not like], [like them], [them
Norah], [Norah I], [I am]
The Jaccard similarities are as follows:
 JS(D1, D2) = 1/3 ≈ 0.333
 JS(D1, D3) = 0
 JS(D1,D4) = 1/8 = 0.125
 JS(D2, D3) = 0
 JS(D3, D4) = 2/7 ≈ 0.286
 JS(D3, D4) = 3/11 ≈ 0.273

4. Design and Implementation of Our
Proposed Scheme

 4.1 Design Phase

Our detection algorithm is designed in a way to detect most
of the polymorphic worm [34] instances. MATLAB [26]
interactive environment is used to implement the technique
practically. With the work, we will examine sufficient
number of polymorphic worms mixed within a normal
packet traffic. False positive and false negative will also be
determined to measure the proposed technique’s accuracy. In
general, the final signature will be generated based on the
most common substrings between worm instances. As shown
in Figure 2, substrings formulate the signature which can be
found in two or more worm instances. However, this does
not mean that the signature substrings can be found in all of
the worm instances.

Figure 2. General format of the produced signature.

The proposed solution is implemented with four phases:
1. Shingles divider
2. Signature extractor

3. Signature reducer
4. Flow checker

The following sub-section will describe the design in a
general form. After that, we will discuss each phase in detail.

Figure 3. Polymorphic worm detection system overview.

 4.2 Detection System Overview

An overview of our polymorphic worm detection system is
shown in Figure 3. The system contains four components:
shingles divider, signature extractor, signature reducer, and
flow checker. Here, different worm instances belong to one
kind of polymorphic worm and a mixed network traffic
comes form the system input. The system output is the
manager’s risk report.

(a)

(b)

Figure 4. (a) Segment of a worm. (b) Segment of a worm
after fragmentation.

207
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

First phase is the shingles dividing process, where each
worm instance is divided into diverse shingles. The worm
instances should be from the same type of worm; for
instance, all of the instances are Sasser worm [4], [27].
However, the instances may have different sizes.
Second phase is the signature generation process, where
common shingles among different instances are considered
as the polymorphic worm signature, which should be
achieved after computing the intersection result between
different shingles.
Third phase is the signature reduction process. After
generating worm signature from the previous phase, the
signature still has rubbish data that need clipping. The
signature will passes through three filters to be completely
polished. After these three filters, the signature will be ready
for use for the following phase.
Fourth phase is a network traffic checker, where the usual
network traffic (i.e., innocuous packets) is examined against
worm signature. Risk report will be generated to provide the
network administrator with the level of danger.

 4.3 Design Specification Details and Experiments

In this section, we describe each system component in
details.
Phase (1) - Shingles Divider: The worm instance is
constructed from a set of characters, like any type of
document. There is no benefit from calculating Jaccard at
character level, since the intersection between the instances
becomes equal to the union. Therefore, Jaccard value will be
equal to one, indicating that all instances are the same, which
is logically false.
Shingling is the first step to find document similarity in
natural language processing (NLP) [24]. It is the process to
divide documents to a series of tokens based on a fixed size
and/or special delimiter(s).
Fragment worm instance to shingles: The same concept that
is used for ordinary documents will be used on polymorphic
worms’ instances. The provided polymorphic worm samples
are basically a set of characters converted to the
corresponding Unicode integer values. A segment of a worm
is shown in Figure 4(a).
The fragmentation will be delimiter based. Newline, vertical
tab, horizontal tab and space characters are used as
delimiters. They have the following Unicode representations
respectively (10, 11, 9, 32). After processing the segment in
Figure 4(a), the fragmentation will be as shown in Figure
4(b), where the segment is divided into nine tokens.
The following pseudo code describes the fragmentation
process:

for each worm instance do

 W=worm instance

 W′=W.split(' 32 ', ' 10 ', ' 09 ', ' 11 ')

 Store W′

end

Phase (2) - Signature Extractor: The main objective of this
phase in the system is to generate a shared worm signature. It
should meet the following conditions:

1. The signature is common among the worm
instances as much as possible.

2. The generated signature should be long enough to
avoid false positive, and short enough to avoid
false negative.

3. The signature must be flexible enough to defend
against polymorphic worms that change their
payloads in every infection attempt. So,
considering single substring as the unique
signature may not be invariant across worm
instances.

4. The signature must be reliable enough to detect
wide variety of Zero-day attacks.

5. It should take into account the system resource
limitation and computation overhead such as;
CPU (Central Processing Unit) time of generating
signature and comparing them with the network
traffic. In addition, signature storage space must
not be stressed.

The last point will not be covered in this context. The
signature extractor will be rather divided into multiple stages
to make it simple and more efficient.
Jaccard similarity calculation: As first step of signature
extraction process, Jaccard similarity will be calculated
between each pair of worm instances. The calculation will be
as follows:
Jaccard similarity of two worm instances W1 and W2 is:

 �� =
|���	
� �
 ������
� �� �� ∩ ���	
� �
 ������
� �� �� |

|���	
� �
 ������
� �� �� ∪ ���	
� �
 ������
� �� ��|
 (1)

This will be calculated for each instance pairs. So JS(W1,
W1), JS(W1, W2), JS(W1, W3),…JS(W1, Wn), JS(W2, W1),
JS(W2, W2), JS(W2, W3),… JS(W2, Wn),…JS(Wn, Wn) are
calculated for n worm instances. For simplicity, the result
could be represented with a two dimensional matrix as
shown in Table 1.

wormFile=import all worm instances after fragmentation

% nested For loop to traverse two dimensional matrix, that is used

to store Jaccard similarity values

% Loop starts from 1 to the end of folder that contains the worm

instances

for i = 1:size(wormFile);

 for j = 1:size(wormFile);

% JacFor2Doc function takes 2 worm instances as input and returns

the similarity between them and the intersected segments as a

vector

[intersectVec,jacMatrix(i,j)]=JacFor2Doc(wormFile(i),wormFile(j));

% intersectMatrix to store the intersectVector for each iteration

 intersectMat{i,j}=intersectVec;

 end

end

Any element on the diagonal surely will be 1, since it is a
Jaccard comparison between the document and itself. To
reduce computational overhead to half, we can calculate
elements above the main diagonal only.
The following pseudocode describes the process of Jaccard
similarity calculation for a set of worm instances. Worm
instances in this step should pass the fragmentation process
which has been described before.
Presented below is a part of JacFor2Doc function
pseudocode, which compares two worm samples (after
fragmentation process) and returns Jaccard value for them. In
addition, it returns the intersected parts as a vector of
segments:

208
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

JacFor2Doc(W1′,W2′)

% intersection of two worm instances stored as a vector

int=intersect(W1′,W2′);

% union of two worm instances stored as a vector

uni=union(W1′,W2′)

L = length(int);

L2 = length(uni);

%percentage between length of the intersection vector and unit

vector is Jaccard value

jaccardValue=L/L2;

return (int,jaccardValue);

Table 1. Representation of JS for all instances of one type of

worm.
 W1 W2 W3 . Wn

W1 JS(W1, W1)=1
1≥JS(W1, W2)

≥0

1≥JS(W1, W3)

≥0
.

1≥JS(W1, Wn)

≥0

W2
1≥JS(W2, W1)

≥0
JS(W2, W2)=1

1≥JS(W2, W3)

≥0
.

1≥JS(W2, Wn)

≥0

W3
1≥JS(W3, W1)

≥0

1≥JS(W3, W2)

≥0
JS(W3, W3)=1 .

1≥JS(W3, Wn)

≥0

.

Wn
1≥JS(Wn, W1)

≥0

1≥JS(Wn, W2)

≥0

1≥JS(Wn, W3)

≥0
. JS(Wn, Wn)=1

i. Jaccard for Blaster worm: We have calculated Jaccard
similarity for 42 instances of Blaster worm [6], [7].
MATLAB®interactive environment has been used for the
implementation. The result is shown with the bar chart in
Figure 5(a). The bar chart clearly shows that the diagonal
elements have 1 for Jaccard value, since worm sample has
compared with itself. Elements around the diagonal with
opposite position have the same Jaccard similarity.
Therefore, obviously JS(W3, W2) =JS(W2, W3). So, we can
conclude that Jaccard algorithm is a commutative relation.
Detailed Jaccard similarity values are shown in Table 2. For
brevity, 10 samples are shown from the 42.
ii. Jaccard for Sasser worm: Like the previous one, Jaccard
similarity has been also calculated for 50 instances of Sasser
worm. The same MATLAB®interactive environment has
been used for simulation. The result is shown in the bar chart
as in Figure 5(b). Again, the bar chart clearly shows that the
diagonal elements have 1 for Jaccard value, since worm
sample has compared with itself. Elements around the
diagonal with opposite position have the same Jaccard
similarity. Therefore, here also, JS(W3, W2) =JS(W2, W3).
Detailed Jaccard similarity values are shown in Table 3 (10
samples are shown out of the 50). It should be noted here
that the polymorphic worm samples used in this work were
obtained from the Institute Eurecom in the French Riviera.
We removed the signatures of the worms from the database
of IDS so that these polymorphic worms play as Zero-day
polymorphic worms.
Choosing the superior Jaccard value: After producing
Jaccard matrix for all worm instances of the same type, it is
time to choose the best results and eliminate poor ones. For
each row of Jaccard matrix, the maximum Jaccard value will
be chosen as the best match. Apparently, any cell with equal
to value 1 will be discarded since it indicates that the worm
compared with itself.
Only the upper half of the matrix main diagonal will be
considered at this stage to avoid redundant values, which will

affect the final results. Figure 6 shows a general format of
the process.

(a)

 (b)

Figure 5. 3D bar chart representing (a) Jaccard matrix for 42
samples from Blaster worm. (b) Jaccard matrix for 42

samples from Sasser worm.

Let Jaccard matrix dimensions be � × �. For each row �,
cells � with positions between (�, � + � + 1) and (�, �) will be
examined to choose the maximum value among them.
The following pseudocode shows the selection process:

IntersectMat contains the shared elements between each two

worm instances

% choosing the maximum value in each row of jacMatrix

for i = 1:size(wormFile);

 maxVal=0;

 for j = i+1 :size(wormFile);

 if (jacMatrix(i,j)) ~= 1 && jacMatrix(i,j) ~= 0)

 if(maxVal < jacMatrix(i,j))

 maxVal = jacMatrix(i,j);

 maxR=i;

 maxC=j;

% maxCell to store intersecting elements in each iteration from

original intersectMatrix

 maxCell(i)=intersectMat(maxR,maxC);

 maxInRow(i)=maxVal;

 end

 end

 end

end

Now, as we have the intersected elements for the
maximum Jaccard value in each row, we have to compute
the time of occurrence for each element. The element with

International Journal of Communication Networks and Information Security (IJCNIS)

the highest occurrence value will be considered as a part of
worm signature.
MATLAB tabulate function is used to create the
of data table (maxCell) which is presented in Table IV.
maxCell contains the intersected elements among worms’
samples with the highest Jaccard value.
sort the output of tabulate function in descending order. In
general, the table generated using tabulate
Table 4.

Table 2. Part of Jaccard matrix (for 10 samples) of blaster
worm.

Table 3. Jaccard matrix (for 10 samples) of blaster worm.

Table 4. General format of tabulate function table.

Value Count
The unique
values of x

The number of instances of
each value

Ex. 99 97 110
110 111 116

19

Ex. 1×37 char 23

The second row in Table 4 shows the occurrence frequency
for cell ‘99 97 110 110 111 116’, where 19 is the number of
its occurrence, and 0.0567 is the percentage of its occurrence
among other cells in maxCell. The third row shows the
occurrence frequency for the 1×37 char array of characters,
where 23 is the number of its occurrence, and 0.1008 is the
percentage of its occurrence among other cells.
The complement value of count column in Table 4 can be
considered as false negative percentage if this substring is
chosen to be the worm signature. Example: If we have
worm instances from one type and that worm has a common
substring � with count value #, # $ %. If
signature, (% & #)/100 is the false negative percentag

Figure 6. Choosing the superior JS value in each row.

We have tested the method of choosing the superior Jaccard
values both for Blaster worm and Sasser worm. To put some

International Journal of Communication Networks and Information Security (IJCNIS)

the highest occurrence value will be considered as a part of

unction is used to create the frequency
) which is presented in Table IV.

contains the intersected elements among worms’
samples with the highest Jaccard value. sortrows is used to
sort the output of tabulate function in descending order. In

tabulate will look like

Part of Jaccard matrix (for 10 samples) of blaster

matrix (for 10 samples) of blaster worm.

General format of tabulate function table.

Percentage
The percentage of

each value

0.0567

0.1008

The second row in Table 4 shows the occurrence frequency
for cell ‘99 97 110 110 111 116’, where 19 is the number of
its occurrence, and 0.0567 is the percentage of its occurrence

. The third row shows the
occurrence frequency for the 1×37 char array of characters,
where 23 is the number of its occurrence, and 0.1008 is the
percentage of its occurrence among other cells.
The complement value of count column in Table 4 can be

entage if this substring is
chosen to be the worm signature. Example: If we have %
worm instances from one type and that worm has a common

. If � is chosen as a
is the false negative percentage.

Choosing the superior JS value in each row.

We have tested the method of choosing the superior Jaccard
values both for Blaster worm and Sasser worm. To put some

examples, Figures 7(a) and 7(b) show parts of the
table for Blaster worm before and after sorting, respectively.
Similar snapshots could also be presented for Sasser worm.
Phase (3) - Signature Reducer:
common signature for specific polymorphic worm, we notice
that there are many common
part of the signature. In other words, the common signature
contains many substrings, and dealing with big amount of
shingles/substrings can be difficult and ineffective in the next
phase. It will take a huge amount of time
normal data flow from those shingles/substrings.

 (a)
Figure 7. Part of tabulate table for Blaster worm (a) before

sorting, (b) after sorting.

As a rule of thumb, to choose among multiple shared
shingles/substrings, two conditions must be taken into
account:

1. The chosen signature should be the most
common shingles/substrings between worm
instances as much as possible.

2. The chosen signature must be long enough
avoid false positive.

The first condition is already achieved (in section 4.3) by
calculating the Jaccard values between worm instances to
generate the signature. The second condition can be achieved
by deleting those cells that contain short strings f
final signature (see Figure 8).
Another effective step will be added to assure signature
efficiency. This step is to compare the resulted signature
parts with a known pure normal traffic. This step basically
searches for the signature shingles/subs
pure normal traffic and if any part of the signature is found in
the normal traffic, that part will be eliminated from the
signature.
The main benefit of the latter step is that we can assure that
any common part shared in specific type of files will be
eliminated from the signature. For example, the header part
of any .exe file is the same whether it is a worm file or a
normal file. Another example is the beginning of any JAVA
program, e.g., the same “public class … {public static void
main(String[] args) {…”. Hence, this step will guarantee that
any kind of common string will not be excluded from the
signature, and this will give a stro

209
 Vol. 8, No. 3, December 2016

examples, Figures 7(a) and 7(b) show parts of the tabulate
table for Blaster worm before and after sorting, respectively.
Similar snapshots could also be presented for Sasser worm.

Signature Reducer: After generating the
for specific polymorphic worm, we notice

on shingles to be considered as
signature. In other words, the common signature

contains many substrings, and dealing with big amount of
shingles/substrings can be difficult and ineffective in the next
phase. It will take a huge amount of time to search and filter
normal data flow from those shingles/substrings.

 (b)

Part of tabulate table for Blaster worm (a) before
sorting, (b) after sorting.

humb, to choose among multiple shared
shingles/substrings, two conditions must be taken into

The chosen signature should be the most
common shingles/substrings between worm
instances as much as possible.
The chosen signature must be long enough to
avoid false positive.

The first condition is already achieved (in section 4.3) by
calculating the Jaccard values between worm instances to
generate the signature. The second condition can be achieved
by deleting those cells that contain short strings from the

Another effective step will be added to assure signature
efficiency. This step is to compare the resulted signature
parts with a known pure normal traffic. This step basically
searches for the signature shingles/substrings in the known
pure normal traffic and if any part of the signature is found in
the normal traffic, that part will be eliminated from the

The main benefit of the latter step is that we can assure that
any common part shared in specific type of files will be
eliminated from the signature. For example, the header part

file is the same whether it is a worm file or a
ther example is the beginning of any JAVA

public class … {public static void
”. Hence, this step will guarantee that

any kind of common string will not be excluded from the
signature, and this will give a strong protection against the

210
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

false negative occurrences. Signature reduction process can
be done in any sequence which is illustrated in Figure 8.

Figure 8. Signature reduction process.

The signature reduction has been tested for two types of
worms as follows:
i. Signature reduction for Blaster worm: For Blaster
worm, signature reduction step is achieved by the following
sub-steps:

• From tabulate Table (see Figure 7), eliminate
cells with (count < 5).

• Eliminate cells with 1, 2 or 3 characters only
(value < 4).

• Eliminate any cell that can occur in normal
traffic.

Here, (count < 5) is considered because average word size in
English is about 5 letters, which is used in programming
languages, hence, the worm samples. Words shorter than 5
letters appear very frequently. So, to build a system that runs
as fast as possible, we can have a significant performance
boost by ignoring words less than 5 letters; therefore, the
worm signature will have less shingles and that can be
noticeable especially in Blaster worm’s case. In our
experiment, normal traffic is 123 MB of pure data in the
application layer tested against any type of malicious ware.
Figure 9 shows a dramatic decrease in Blaster worm
signature size from 20125 shingles/substrings to only 199.

Figure 9. Signature reduction process for Blaster worm.

ii. Signature reduction for Sasser worm: Same steps as
applied to Blaster worm’s case have been applied for Sasser
worm. Signature size after each reduction step is shown in
Figure 10.
Phase (4) - Flow Checker: This phase will filter out normal
traffic from polymorphic worms and will generate an alarm
to the network administrator. Flow checker stage is basically
a simulation module of what could happen in a real IDS
implementation. It also is a stage where the quality of the
generated signature can be tested. Parts of the flow checker

phase simulation results are shown in Figure 11. First
column determines the location of the scanned file. Second
column shows the degree of danger of each file. This
number indicates the number of discovered signature
substrings in the file.

Figure 10. Signature reduction process for Sasser worm.

High number means that the file is definitely a worm, which
requires a fast response from the network manager.
In this test case, first 80% of pure normal traffic and 20% of
worm instances are blended to form the mixed traffic.

)�*+, -�.//�� = 80 % 23�4.5 -�.//��

+ 20 % 73�4 8�9:.��+9
To ensure the fineness and reliability of the generated

signature, worm instances that are used in this phase are new
and completely different from those that were used to
generate the signature.

Figure 11. Snapshot from part of the flow checker stage

simulation in MATLAB.

After this step, mixed traffic will be scanned to detect worm
instances. The scanning process will be done using the final
reduced signature generated from the previous step. Let us
see some practically implemented and tested cases in the
following section.

5. Experimental Evaluation and Comparative
Analysis

The following cases have been tested using the flow checker:

 5.1 Flow Checker for Blaster Worm

In Table 5, we show the amount of normal traffic and worm
instances that are used to generate mixed traffic, using
number of files and total size of files in MB (Megabyte). The
blending step was implemented using randomly chosen
Blaster worms and randomly chosen files from the pure
normal traffic.
Number of the detected Blaster worms in the mixed traffic is

211
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

roughly comparable to the ideal case, where all Blaster worm
instances are found. Apparently, worm instances that have
the lowest Jaccard similarity values fail the test. Figure 12
shows the number of detected Blaster worm instances from
mixed traffic.

Figure 12. Number of detected Blaster worm instances from

mixed traffic.

Figure 13. Number of detected Sasser worm instances from

mixed traffic.

 5.2 Flow Checker for Sasser Worm

Just like the previous example, Table 6 is the case for Sasser
worm. Similar method is used to test this as well.
Number of detected Sasser worms in the mixed traffic is
almost similar to the ideal case, where all Sasser worm
instances are detected, without any false negative. Small
amount of worm instances fail the test. Apparently, those
have the lowest Jaccard similarity values. Figure 13 shows
the number of detected Sasser worm instances from mixed
traffic.

 5.3 Percentages of False Positives and False Negatives

A good worm scanner should have two core aspects. Firstly,
it should avoid false negatives. A false negative is a case
where the detection system declares that some traffic is free
from worm infection, but in fact it is not. Secondly, the
scanner should avoid false positives as well. A false positive
is the opposite of false negative which is wrongly declaring
that a traffic contains a worm, but it is actually clean.
“Avoiding both types of mis-detections is a worthy goal for
virus software, but has been proved to be theoretically
impossible” [28], [32], [33]. Keeping a balance between
them is needed. While a high level of false negatives is
worse in the short term (since it leaves the system infected),
high level of false positives means the network admin will be
careless toward the IDS’s warnings, possibly causing to
ignore a real alarm. But, false negatives imply that an actual
worm is crossing the IDS without action. Therefore, the
percentage of false positives and false negatives represent the
system sensitivity [29]. False negatives give the worms the

opportunity to escape defense, while false positives may
cause network shortage by preventing normal traffic [21].
We could assure that our algorithm is false positive free.
False negative percentage cannot exceed 23% in case of
Blaster worm (Figure 14) and 10% for Sasser worm (Figure
15).
False positives and false negatives percentages are calculated
as follows:

;<% =
=>?@AB CD DEFAG ?EGHIJA=FK LAHAMHAL IG I NCB?

HCHIF I?C>=H CD O>BA =CB?IF HBIDDEM
 ×100 (2)

;2% =
=>?@AB CD ?EGG_LAHAMHAL NCB? E=GHI=MAG

HCHIF =>?@AB CD NCB? E=GHI=MAG E= HQA ?ERAL HBIDDEM
 ×100

 (3)

 5.4 Comparative Analysis

The main advantage of our system is that it generates a
flexible signature. This signature contains different strings,
of which each string has a different probability to appear in
the polymorphic worm body. Assigning different probability
to each sub string breaks the rule that the majority of the
existing systems follow; which mean that all the signature
parts must exist in the polymorphic worm body.
Different security levels can be maintained in a real-life
application scenario. After the normal traffic passes through
the IDS, our algorithm will give the network manager the
presence percentage of a worm’s signature parts.
The only disadvantage of our algorithm is the potential
computational overhead. But, the effect of this disadvantage
depends of many factors, such as the machine type, amount
of the input, and the used programming language. Moreover,
to ensure right level of security, any system could of course
spend a bit of extra resources, if need be.

Table 5. Amount of normal traffic and Blaster worm
instances blended with generated mixed traffic.

80 % Normal Traffic 20 % Worm Instances Mixed
Traffic

80 files (total size 104
MB)

20 files (total size 38 MB) 100

72 files (total size 90 MB) 18 files (total size 26.1
MB)

90

64 files (total size 67 MB) 16 files (total size 23.6
MB)

80

56 files (total size 62.1
MB)

14 files (total size 15.9
MB)

70

48 files (total size 45.2
MB)

12 files (total size 14.1
MB)

60

40 files (total size 41 MB) 10 files (total size 7.22
MB)

50

32 files (total size 29.3
MB)

8 files (total size 3.32 MB) 40

24 files (total size 23.3
MB)

6 files (total size 3.27 MB) 30

16 files (total size 14.3
MB)

4 files (total size 3.2 MB) 20

8 files (total size 1.62 MB) 2 files (total size 2.46 MB) 10

The comparative advantages and disadvantages for each
polymorphic worm detection system are presented in Table
7. Regarding the false negative and false positive values
shown in this table, the numbers are according to each
work’s reported data. Different systems used different
metrics.

212
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Table 6. Amount of normal traffic and Sasser worm

instances blended with generated mixed traffic.

80 % Normal Traffic 20 % Worm Instances Mixed
Traffic

80 files (total size 104
MB)

20 files (total size 2.92
MB)

100

72 files (total size 90 MB) 18 files (total size 2.82
MB)

90

64 files (total size 76 MB) 16 files (total size 2.25
MB)

80

56 files (total size 62.2
MB)

14 files (total size 2.26
MB)

70

48 files (total size 45.2
MB)

12 files (total size 1.38
MB)

60

40 files (total size 41 MB) 10 files (total size 1.27
MB)

50

32 files (total size 29.3
MB)

8 files (total size 1.16 MB) 40

24 files (total size 23.2
MB)

6 files (total size 950KB) 30

16 files (total size 14.2
MB)

4 files (total size 842KB) 20

8 files (total size 1.62 MB) 2 files (total size 112KB) 10

Figure 14. Blaster worm false positive and false negative

percentages.

Figure 15. Sasser worm false positive and negative

percentages.

There are many other factors that would influence the
practical implementation cases as well. Some of them are:
types of worms used in the experiments, amount of worm
samples and percentage of odd samples, and so on. A

standard performance testing platform is therefore needed to
produce a more accurate comparison. We have tried to do the
comparison as fairly as possible. Clearly, no detection
system is fully safe, and all will have shortcomings.
However, as we have tested several cases, we have found
that our scheme performs pretty well compared to all other
available solutions in this area.

6. Conclusions and Future Work

In this paper, we have shown that the network content-based
methodology holds great promise for defending against Zero-
day polymorphic worms. Moreover, we have proven that
applying Jaccard similarity algorithm is an effective way to
generate a fixable signature for polymorphic worms. We
have observed that it is inefficient to make the polymorphic
worm signature rigid. Our solution contains four phases.
While the first three phases are to generate a precise
signature, the last phase is to evaluate the efficiency of the
generated signature. We used two types of polymorphic
worms to test the proposed algorithm. The resulted signature
was accurate and produced no false alarm. The signature
generated by our system can be deployed with commonly
used IDSs with ease.
Our main goal in the signature generation process was to
achieve accurate signature that suits most of the polymorphic
worm instances. There is a potential trade-off between
computational overhead and generating a precise signature.
For any kind of mobile system or any network with mobility,
a critical issue would be the lower resource consumption. As
stated in the subsection 4.3, we took into account the system
resource limitation and computational overhead, which
makes our design implementable in mobile networks and
systems.
The performance of our signature could further be improved
by applying code optimization techniques. In future, we
would like to work in this direction to improve the proposed
mechanism and test it under various kinds of dynamic and
mobile settings.

References

[1] P. Szor. The Art of Computer Virus Research and Defense.
Upper Saddle River, NJ: Addison-Wesley Professional,
February 13, 2005.

[2] “A new era of computer worms: Wireless mobile worms”,
2005. [Online]. Available:
http://searchsecurity.techtarget.com/feature/A-new-era-of-
computer-worms-Wireless-mobile-worms [last accessed: 22
October, 2016]

[3] F. Perriot and P. Szor, “An Analysis of the Slapper Worm
Exploit,” Symantec Security Response, 2003.

[4] F. Syed, “Understanding Worms, Their Behaviour and
Containing Them,” Project Report, 2009. [Onine]. Available:
http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms.pdf [last
accessed: 11 March, 2016]

[5] “Global Information Assurance Certification Paper,” SANS
Institute, 2003. [Online]. Available:
https://www.giac.org/paper/gsec/3091/ms-sql-slammer-
sapphire-worm/105136 [last accessed: 11 March, 2016]

[6] M. Bailey, E. Cooke, F. Jahanian, and D. Watson, “The Blaster
Worm: Then and Now,” IEEE Sec. and Pri. Mag., vol. 3, no.
4, pp. 26-31, 2005.

[7] C. Dougherty, J. Havrilla, S. Hernan and M. Lindner,
“W32/Blaster worm,” CERT, 2003. [Online]. Available:
http://www.cert.org/historical/advisories/ca-2003-20.cfm [last
accessed: 11 March, 2016]

213
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

[8] Nazario. Defense and Detection Strategies against Internet

Worms. Boston, MA: Artech House, October 2003.
[9] M.M.Z.E. Mohammed, H.A. Chan, N. Ventura, and A.-S.K.

Pathan, “An Automated Signature Generation Method for
Zero-day Polymorphic Worms Based on Multilayer
Perceptron Model,” ACSAT2013, December 22-24, 2013,
Kuching, Sarawak, Malaysia, pp. 450-455.

[10] M. Mohammed and A.-S.K. Pathan. Automatic Defense
against Zero-day Polymorphic Worms in Communication
Networks. ISBN 9781466557277, CRC Press, Taylor &
Francis Group, USA, 2013.

[11] H. Orman, “The Morris worm: A fifteen-year perspective,”
IEEE Security & Privacy Magazine, vol. 1, no. 5, 2003, pp.
35-43.

[12] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically
generating signatures for polymorphic worms,” 2005 IEEE
Symposium on Security and Privacy, 2005, pp. 226-241.

[13] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez.
“Hamsa: fast signature generation for zero-day polymorphic
worms with provable attack resilience,” IEEE Symp. on Sec.
and Pri., Oakland, CA, 2006.

[14] L. Cavallaro, A. Lanzi, L. Mayer, and M. Monga,
“LISABETH: Automated Content-Based Signature Generator
for Zero-day Polymorphic Worms,” Proc. of the fourth int.
workshop on Software engineering for secure systems,
Leipzig, Germany, 2008, pp. 41-48.

[15] Y. Tang and S. Chen, “An Automated Signature-Based
Approach against Polymorphic Internet Worms,” IEEE
Transactions on Parallel and Distributed Systems, Volume 18,
Issue 7, July 2007, pp. 879-892.

[16] Y. Tang and S. Chen, “Defending against Internet Worms: A
Signature-Based Approach,” IEEE INFOCOM, Volume 2,
2005, pp. 1384-1394.

[17] Snort, Available: https://www.snort.org/ [last accessed: 11
March, 2015]

[18] J. Newsome and D. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software,” In Proc. of NDSS’05,
2005.

[19] Z. Liang and R. Sekar, “Fast and Automated Generation of
Attack Signatures: A Basis for Building Self-Protecting
Servers,” Proc. of the 12th ACM CSS'05, pp. 213-222.

[20] Z. Liang and R. Sekar, “Automatic generation of buffer
overflow signatures: An approach based on program behavior
models,” 21st Annual Computer Security Applications
Conference, 2005.

[21] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L.
Zhang and P. Barham, “Vigilante,” ACM Transactions on
Computer Systems, vol. 26, no. 4, Article No. 9, 2008.

[22] M.M.Z.E. Mohammed, Automated Signature Generation for
Zero-day Polymorphic Worms Using a Double-honeynet.
PhD dissertation, University of Cape Town, 2012.

[23] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A.K.H. Tung,
“Efficient and Scalable Processing of String Similarity Join,”
IEEE Trans. on Knowledge and Data Engineering, vol. 25,
no. 10, 2013, pp. 2217-2230.

[24] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of
Massive Datasets. ISBN: 9781107077232, 2nd edition,
Cambridge University Press, November 2014.

[25] R.B. Zadeh, and A. Goel, “Dimension independent similarity
computation,” The Journal of Machine Learning Research,
Volume 14, Issue 1, January 2013, pp. 1605-1626.

[26] MATLAB - The Language of Technical Computing, Available
at:
http://www.mathworks.com/products/matlab/?requestedDoma
in=www.mathworks.com [Last accessed: 3 March, 2016]

[27] C. Fosnock, “Computer Worms: Past, Present, and Future,”
2005. [Online]. Available:

http://www.infosecwriters.com/text_resources/pdf/Computer_
Worms_Past_Present_and_Future.pdf [last accessed: 11
March, 2016]

[28] “Beating the Superbug: Recent Developments in Worms and
Viruses,” 2002. [Online]. Available:
https://www.sans.org/reading-
room/whitepapers/malicious/beating-superbug-developments-
worms-viruses-146 [last accessed: 11 March, 2016]

[29] C.P. Pfleeger, S.L. Pfleeger, and J. Margulies, Security in
Computing. 5th edition, Prentice Hall, February 5, 2015.

[30] L. Wang, Z. Li, Y. Chen, Z. Fu, and X. Li, “Thwarting Zero-
Day Polymorphic Worms With Network-Level Length-Based
Signature Generation,” IEEE/ACM Trans. on Net., vol. 18,
no. 1, 2010, pp. 53-66.

[31] P. Li, M. Salour, and X. Su, “A survey of internet worm
detection and containment,” IEEE Com. Surv. & Tut., vol. 10,
no. 1, 2008, pp. 20-35.

[32] I.A. Farag, M.A. Shouman, T.S. Sobh, and H.Z. El-Fiqi,
“Intelligent System for Worm Detection,” International Arab
Journal of e-Technology, Volume 1, Number 1, 2009, pp. 58-
67.

[33] R. Kaur and M. Singh, “Efficient hybrid technique for
detecting zero-day polymorphic worms,” 2014 IEEE IACC,
2014, pp. 95-100.

[34] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” Proc. 15th USENIX-SS'06 -
Volume 15, Article No. 17, 2006.

214
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 3, December 2016

Table 7. Comparisons among polymorphic worm detection systems.

Network/

Host
based

Content/
behavior

based

False
Positive

False
Negative

Pros Cons

Polygraph [12] Network Content

Low (between
92.5% and

0%, depends
on the used

method)

Low

• Applies greedy
approach for signature
generation process to
minimize
computational
expense.

• Multiple fixed
substrings should be
found in all
polymorphic worm
instances.

Hamsa [13] Network Content

Low (average
= 0.09%,

maximum =
0.7%)

Zero

• The resulted
signature does not get
affected by the size of
the normal traffic.

• The resulted
signature gets affected
by the size of the
suspicious traffic. 100
samples of a worm as
minimum.

LISABETH [14] Network Content
Low

(Average=
0.095%)

Low
• Signature generation
process is less than by
20%

• Same as Hamsa.

PADS [15] Host Content
Low (did not

exceed
0.0003)

Low (did
not exceed

0.0003)

• Able to capture any
possible value of the
variable elements in a
worm.

• Not capable of
detecting advanced
worms.
• Cannot be merged
with other IDSs like
for instance, Snort.
• High computational
overhead.

TaintCheck [18] Host behavior Low (.0017%) Low
• Capable of detecting
any overwrite attack

• Signature generation
process cannot be
achieved
automatically.
• Very much
application-specific: a
certain type of server
must be used.

COVERS [19] Host Content Low Low
• Fast generation of
signatures.

• Cannot be used by
IDSs or firewalls.
• Not for general
purpose - it is
application-specific.
• Need for manual
involvement
• Depends on
application’s source
code.

ARBOR [20] Host behavior Zero

Low
(but more

than
COVERS)

• Fully automatic
signature generation.

• Cannot evade attacks
that are fragmented
through multiple
packets.

Vigilante [21] Host behavior Zero Low
• Can deal with three
different worm
infection mechanisms.

• Depends on threads
scheduling order.

Double-honeynet
[22]

Both Content Zero
Low

(0.92%)

• produces accurate
worm signatures.
• Network-based and
Host-based.

• Relatively long
deployment time for
the honeynets.

Our Scheme Network Content Zero Low

• Each sub-signature
has a different
occurrence
probability.
• Very accurate
signature.
• Different security
levels.

• Expected
computational
overhead4.

4Refer to the future work section, where we suggest some solution.

