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Abstract: This paper presents the proposal of a load balancing 

algorithm implemented in two of the most popular controllers for 

Software Defined Networks (SDN): OpenDaylight and Floodlight. 

A comparative study in terms of the available bandwidth and delay 

time of the packet forwarding was performed by means of 

simulation modeling in a base network in which a shortest path 

algorithm was implemented as well. The results show that the 

proposed load balancing algorithm improves significantly the 

performance of a SDN in terms of the offered QoS of an 

OpenDaylight based controller. The effect of the proposed load 

balancing algorithm in the Floodlight controller shows a smaller 

impact mainly on the bandwidth allocation due to its in-build 

modules that by default perform specific routing and forwarding 

operations efficiently according to the traffic demand.  
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1.  Introduction 
 

Software defined Networking (SDN) is described as a 

dynamic, manageable, adaptable and cost-effective network 

architecture suitable to cope with the transport of high 

bandwidth demands. SDN aims at the creation of networks in 

which the control is detached from the hardware and is given 

to a software application called controller. This fact allows 

achieving simpler, programmable, flexible, more scalable 

and automatable networks as well as greater security and 

reliability are acquired due to the centralized control [1, 2, 

3]. In the context of the Quality of Service (QoS), load 

balancing is emerging as an important feature for future 

communication networks due to its versatility and constant 

improvements in communication and information systems. 

From the network's viewpoint, it provides scalability and 

easy management to TCP/IP, web, proxy, Virtual Private 

Networks (VPN) and multimedia services. Load balancing 

allows the use of the existing parallel paths between input 

and output nodes to distribute the information flows that are 

transmitted in a network where its underlying contribution is 

to reduce the congestion through routing and traffic control 

according to the existing resources in the backbone. The fact 

of combining all these characteristics can generate new 

models and structures that support the appropriate and 

balanced distribution of traffic with assurances of QoS, thus 

obtaining the most optimal paths to destinations [4].  

Load balancing distributes IP traffic to multiple copies or 

instances of TCP/IP services, each one running on a host 

within the farm (or cluster, if it is a server farm running a 

web application) of servers. Transparent partitions of client 

requests are made through the hosts and clients are allowed 

to access the farm using one or more virtual IP addresses. 

From the client's point of view, the farm seems to be a single 

server which responds to their requests. If traffic increases, 

the network administrator simply connects another server to 

the farm [5]. 

Most of the problems presented in current networks that 

prevent achieving proper load balancing are related to the 

routing algorithm itself. Nowadays, the routing is based on 

the shortest path algorithm in which each packet that enters 

the network looks for the path with the least number of hops 

that allows it to reach the destination and it is usually the 

same for all packets, even if there are other paths with a 

higher number of hops but much faster. This fact degrades 

operational aspects of the network such as: the congestion 

that occurs over the shortest route link, the overuse of some 

links while others are not often used and the reduction of the 

effective throughput of the network [4]. 

This paper evaluates the performance of the SDN controllers 

Floodlight [6] and Opendaylight [7] through the 

implementation of a load balancing algorithm that allows 

obtaining the shortest and/or lowest load paths for the 

transmission and forwarding of packets among the end 

devices of the network. In section II, the methodology and 

elements necessary to carry out the performance evaluation 

of SDN with the load balancing algorithm are presented. In 

section III, the obtained results are exposed as well as the 

analysis and observations found in this study. Finally, section 

IV summarizes the conclusions of this work. 
 

2.  Related work 
 

Most recent research works regarding software defined 

networking are focused on important aspects of network 

performance such as load balancing, security, QoS, energy 

efficiency and traffic optimization. Real-time 

programmability through the centralized controller has 

become a great chance of enhancing and optimizing services 

offered in data center networking and cloud environments, 

campus and high speed networks, wireless communications 

and residential environments aiming at making better end 

user experience [8]. 
 

2.1  Data centers and environments 
 

Some requirements necessary when operating at large scales 

in data centers environments are optimal traffic engineering, 

network control, and policy implementation. High levels of 

latency, faults, and prolonged troubleshooting may cause not 

only a negative end user experience but also significant cost 
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penalties for operators.  Through SDN is possible to monitor 

and manage a great deal of network devices and services 

ensuring an effective usage of resources provided for 

operators. Google, for instance, has implemented SDN 

technology to connect its geographically dispersed data 

centers around the globe allowing increased resilience and 

manageability [8], [9]. Likewise, Cloud computing has also 

integrated SDN based traffic-engineering solutions to 

increase service scalability and provide an automated 

network. Microsoft implemented in their public cloud a load 

balancing solution based in SDN Ananta, a layer 4 load 

balancer employing commodity hardware to provide 

multitenant cloud management. This deployment has been 

quite important for Microsoft Azure public cloud, since it 

has allowed obtaining high throughput for several tenants 

allocated a single public IP address [8], [10]. Reducing 

energy consumption in data centers has also had a significant 

enhancement and has allowed cutting down operational costs 

for operators.  SDN technologies such as ElasticTree allow 

network-wide power management by putting out redundant 

switches from the controller side during low traffic demand 

[8], [11]. 
 

2.2  Campus and high speed networks 
 

Enterprise networks may show a great deal of variability in 

traffic patterns requiring proactive management to adjust 

network policies and fine tuning performance using a 

programmable SDN framework. A centralized control plane 

may also aid in effective monitoring and utilization of 

network resources for readjustment. An additional benefit 

may be to eliminate middle boxes providing services such as 

NAT, firewalls, access control, service differentiation 

solutions, and load balancers [8], [12]. The integration of 

heterogeneous networking technologies using OpenFlow 

enabled network elements and a centralized controller has 

seen a great deal of applicability in optical networking. 

Using centralized real-time programmability, SDN enabled 

hardware from multiple vendors and optical packet based as 

well as circuit-switched networks can be placed under the 

SDN controller. For instance, in [13] a Wavelength Selective 

Switching (WSS) facilitated by OpenFlow protocol was 

demonstrated, and virtual Ethernet interfaces to demonstrate 

OpenFlow based wavelength path controlling in optical 

networking is described in [14]. A commodity SDN 

controller, such as NOX and POX, can operate the optical 

light paths using OpenFlow by mapping virtual Ethernet 

interfaces to physical ports of an optical cross-connect node. 

The evaluation of network performance metrics included 

latency of path setup and verification of routing and 

wavelength assignment allocation using dynamic node 

control provided promising results for future software 

defined optical networking (SODN) [8], [15]. In contrast 

with typical distributed GMPLS protocol, SDON uses a 

unified control protocol for QoS metrics offers greater 

capacity and performance optimization in optical burst 

switching. The application of SDN and in particular 

OpenFlow based controls in high-speed and campus 

networking, therefore, continues to grow resulting in new as 

well as hybrid solutions to achieve greater network 

programmability [8], [16]. 
 

2.3  Wireless communications 
 

Due to the real-time programmability and potential to 

seamlessly introduce new services and applications to 

consumers, the SDN paradigm has been ported to mobile 

communication networks. A programmable wireless data 

plane offering flexible physical and MAC address based 

routing, in contrast layer 3 logical address based traffic 

forwarding, has allowed developers to fine tune mobile 

communications performance [17], [18]. Using the control 

plane, user traffic can be segregated and routed over 

different protocols such as WiMAX, 3GPP, and LTE 

advanced [8].  

Current cellular technologies are relatively inflexible by 

limitations in link capacities, making real-time service 

provisioning difficult and prone to errors. The redesigning of 

cellular networks using SDN principles adds modularity to 

the existing infrastructure, with each layer encapsulating 

horizontally chained protocol stacks orchestrated by a 

network operating system residing at the top [19]. For 

example, with cellular SDN (CSDN) is possible to take 

advantage of network function virtualization (NFV) to 

optimize the control through contextual analyses of user data 

to create intelligent traffic forwarding policies [8], [20]. 
 

2.4  Residential environments 
 

Software defined networking has also been considered as an 

efficient way to manage residential and small office 

networks. To relieve the burden of network management on 

residential gateways, the creation of virtual residential 

gateway (data plane) using software defined networking 

controller at the service provider side to remotely allow 

management flexibility innovative service delivery in homes 

was presented in [21].  

The residential router or gateway may be controlled and 

managed remotely via an SDN controller at the service 

provider premises, with the latter mainly responsible for fine 

tuning and troubleshooting the residential network [21, 22, 

23]. Incorporation of the SDN in residential networks offers 

improved scalability and privacy for network management. 

From a security perspective it has been argued that an 

anomaly detection system in a programmable residential 

SDN provides more accuracy and higher scalability than 

intrusion detection systems deployed at Internet service 

provider side [8], [24]. 
 

3.  Materials and Methods 
 

The principle of load balancing to the packet transmission 

management in software defined networking is similar to that 

implemented in traditional networks. In the case of SDN 

networks, the controller is responsible for carrying out the 

process of selecting the most appropriate route through the 

routing protocols considering the load of the network links. 

For a network topology as shown in Figure I, in order to 

obtain the shortest path through Dijkstra's algorithm, each 

node v of the graph G(V,E) has an associated label L(v), this 

label indicates the smallest known distance to go from a 

fixed node u to this node. Initially, if the edge exists, then the 

value of L(v) corresponds to the weight w(u,v) of the edge 
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joining the nodes u and v where L(v)=∞. Otherwise, if the 

distance is unknown, the algorithm works by creating a set of 

nodes T⸦V, for which the shortest path from the node u to 

each one of them has been obtained up to that point. At the 

end of the algorithm, L(v) contains the cost of the shortest 

path to go from u to v [25], [26]. 

 
Figure 1. Network scenario [25]. 

 

In this work the shortest path based on the Dijkstra's 

algorithm for the load balancing implementation was 

programmed in Python where a new node in the list T is 

added for each iteration of the algorithm. This is achieved by 

choosing a node v' that does not yet belong to T and that has 

a minimum tag L(v'). In other words, the node v' closest to u 

and external to the T list is chosen. Once this is done, the 

labels of the nodes over which v' influences are updated, so 

that a new calculation of the distances from u to these nodes 

is made and this node v' is added to T. The process is 

repeated until all the nodes of the graph are in the list. The 

pseudo code is shown as follows [25]: 
 

 
 

In this context, u and v are the nodes that require 

communication. u is the initial node and v is the destination 

node. The labels L(u) and L(v) symbolize the weights of 

each link that represent the distance between a pair of nodes.  

The set T stores the nodes that will form the shortest route 

from an origin node u to a destination node v. w(u,v) 

represents the weight or cost between the nodes u and v. 

Initially, when the algorithm evaluates the first node of the 

network, the distance must be equal to 0 (L(u)=0) and 

therefore the first node evaluated must be assigned to T 

(T=u). Then, the algorithm evaluates that while T does not 

have all the nodes of the network (while not all the nodes 

have been evaluated to find the shortest path from u to each 

node v of the network), it must analyses a neighbour node v’ 

which does not belong to the set T and its distance or weight 

must be less than the neighbour node v previously evaluated. 

v and v’ are adjacent nodes that connect directly to the 

previous node. The algorithm analyses which one of these 

two paths have a lower cost to form the link, so if L(v’) ≤ 

L(v) the set T adds the new node v’. The next step is to 

analyse that for every node v that does not belong to T and 

that is adjacent to v’, it must be added to the cost of the total 

link L(v), the sum of the distance L(v’) and the weight 

w(v’,v) which corresponds to the connection between v and 

v’. This should be done whenever L(v) > L(v’) + w(v’,v), 

that is, if the new analysed link has a cost lower than L(v) 

(the lower distance obtained previously), in this way L(v) is 

updated with the new node that forms one route with a lower 

cost. This algorithm must be repeated until all possible 

routes between the nodes of the network have been evaluated 

[25]. 

In order to evaluate the performance of the Dijkstra's 

algorithm, a customized network comprised of many 

possible routes that allow the packets to take different paths 

was created in the environment of the Mininet software, 

where its multiple tools for bandwidth, delay times, and 

traffic measurements, among others were used. Thus, it is 

intended to observe how the algorithm finds the shortest path 

taking into account that the network was previously loaded 

by the controller.  

For the sake of the comparative study, the SDN controllers 

Floodlight and OpenDaylight operate over the same network 

topology and under the same conditions were implemented. 

The proposed load balancing algorithm improves the 

performance of a former proposal in terms of compatibility 

and suitability to work with the new versions of the SDN 

controllers. In this context, measurements of the available 

bandwidth and response times of ICMP requests were 

performed for a scenario in which the load balancing 

algorithm was used and also when it was not used, in such a 

way that the improvements can be appreciated. In addition, 

the selection of the shortest and/or least loaded paths will be 

shown. The flowgraph of the load balancing algorithm is 

shown in Figure 2. 

First of all, a pair of hosts must be defined for the load 

balancing algorithm, these hosts will communicate to each 

other. Then, a neighbor device near Host 2 will serve as a 

reference in the network for knowing where is located Host 

2. Subsequently, the algorithm will carry out a mapping of 

the network to find out and extract information regarding IP 

address, MAC address and ports of all hosts and switches 

into the network. Then, it will evaluate what routes are 

shorter and with the lower load between Host 1 and Host 2 

and it will select one of them for the communication. This 

last process is performed through Dijkstra's algorithm 

mentioned and explained before. Finally, the controller will 

save the new rule with information about the shortest path 

and with the lower load in a routing table, meanwhile the 

algorithm keeps on seeking the best routes for the 

communication taking into account the current network 

performance. Because of its transversal operation, the 

proposed load balancing algorithm could also be used in 

environments as those presented in [27] and [28] in order to 

improve the QoS features. 
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Figure 2. Flow diagram of the proposed load balancing 

algorithm. 
 

4.  Results and Analysis 
 

This section describes the outcomes obtained by the 

OpenDaylight and Floodlight controllers in the context of the 

shortest path and load balancing algorithms described in the 

previous section. It is worth to point out that both controllers 

are operating over the same network topology. 
 

4.1  Results for OpenDaylight controller 
 

Figure 3 shows the network topology in which the tests with 

the OpenDaylight controller were performed. Bandwidth 

measurements between end devices h1 and h12 (gray circles) 

were initially chosen. Results show that the average values 

are 0.377 Gbit/s for the network without the load balancing 

module and 32.6 Gbit/s when applying the load balancing 

algorithm, this results in roughly an improvement of 86 times 

the initial bandwidth. Table 1 summarizes the results of three 

different tests performed. 

 

 
Figure 3. Network from Opendaylight Web API 

 

Table 1. Bandwidth between h1 and h12 
Without load balancing With load balancing 

0,376 Gbit/s 33,6 Gbit/s 

0,369 Gbit/s 31,9 Gbit/s 

0,386 Gbit/s 32,3 Gbit/s 
 

Likewise, the bandwidth between the hosts h3 and h8 (black 

circles in Figure 3) was evaluated. The obtained average 

values obtained from three different measurements are 

shown in Table 2. The results indicate that without using the 

module of load balancing the bandwidth is 0.227 Gbit/s 

whereas 32.766 Gbit/s for the network using the load 

balancing algorithm is feasible. That is, the bandwidth had 

an improvement of 144.34 times. 
 

Table 2. Bandwidth between h3 and h8 

Without load balancing With load balancing 

0,226 Gbit/s 33,5 Gbit/s 

0,237 Gbit/s 32,6 Gbit/s 

0,219 Gbit/s 32,2 Gbit/s 
 

Subsequently, the packet delivery delay time was evaluated 

by sending 100 ping requests between each pair of the 

previously defined selected hosts. As seen in Figure 4, the 

minimum delay time obtained between the hosts h1 and h12 

without load balancing was 0.253 ms (black trace) and 

whereas with load balancing (grey trace) the obtained value 

was 0.031 ms. As far as the maximum obtained values is 

concerned, the absence of load balancing imposes a delay 

time of 0.649 ms (black trace) whereas 0.369 ms was found 

when using the load balancing algorithm (grey trace). 

Overall, the average delay time of the ping requests was 

0.361 ms without load balancing and roughly 0.065 ms with 

load balancing. The measured average delay times indicate 

that the load balancing algorithm reduces the time needed to 

select the most optimal path in approximately 5.55 times. 
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Figure 4. Delay time for 100 ping requests between h1 and 

h12. 
 

As far as the delay time between the hosts h3 and h8 is 

concerned, the Figure 5 shows that the minimum delay time 

obtained without load balancing was 0.176 ms (black trace), 

with load balancing (grey trace) the obtained value was 

0.041 ms. Figure 5 also shows that the maximum values in 

the absence of load balancing imposes a delay time of 1.199 

ms (black trace) whereas 0.538 ms was obtained when using 

the load balancing algorithm (grey trace). As a result, the 

average delay time of the ping requests was 0.330 ms 

without load balancing and 0.067 ms with load balancing. 

Thus, the average time of the ping requests was reduced 4.93 

times when the load balance module was used for the most 

optimal path selection. 
 

 
Figure 5. Delay time for 100 ping requests between h3 and 

h8. 
 

The considerable differences in the time statistics between 

the test with and without the load balancing algorithm, are 

mainly due to the fact that the OpenDaylight controller does 

not have default modules that allow selecting the most 

suitable path between two points, instead, the controller 

floods the network with packets and then selects the right 

path. In the same way, the bandwidth is assigned to each one 

of the possible paths used for communication such that each 

path have only a fraction of the maximum bandwidth and not 

the maximum. 

In general, the results obtained with the implementation of 

the algorithm for load balancing in a network controlled with 

OpenDaylight, show a great improvement in the management 

of bandwidth when selecting the shortest path and/or with the 

lowest load for the pair of hosts. The increase in bandwidth 

was between 80 and 150 times greater. 

In the same way, the results obtained with the 

implementation of the load balancing algorithm in a network 

controlled with OpenDaylight, show a significant 

improvement by reducing the time of ping requests between 

two ends of the network when selecting the shortest path 

and/or with less load. The reduction of the times was 5.55 

and 4.93 times in each of the hots pairs respectively. 
 

4.1.1  Shortest path analysis and load balancing 
 

Figure 6 shows the shortest and least loaded path that was 

obtained between devices h1 and 12 (grey color) and devices 

h3 and h8 (black color). As can be seen, the algorithm 

selected the shortest and/or with the least load between each 

pair of hosts. For the pair of hosts h1 and h12 there is no 

shorter path alternative than the one chosen by the algorithm. 

In the case of hosts h3 and h8, one of the shorter paths was 

chosen, since there were three paths that had the same 

number of hops. In this case the algorithm selected the path 

with the lowest load out of the three. 
 

 
Figure 6. Shortest path. 

 

Subsequently, in order to demonstrate the load balancing in 

the network, hosts h4 and h8 are selected and applied the 

load balancing algorithm. The path defined for this pair of 

hosts is in black color in Figure 7 Then, between these two 

devices, ping requests are made permanently while load 

balancing is running between a different pair of hosts, h3 and 

h7. The algorithm determines the most appropriate path for 

these two hosts, which may be the shortest and/or least 

loaded. The resulting path must share the least number of 

switches belonging to the previously path selected for h4 and 

h8 (the path obtained is marked with grey color in the Figure 

7). Finally, devices h1 and h8 are selected while pairs h4-h8 

and h3-h7 communicate permanently. The algorithm is 

applied and the most appropriate path is obtained (shortest 

and/or least loaded path), which shares the least number of 

switches belonging to the paths selected for the previous 

pairs of hosts. 

By making ping requests between each pair of hosts, 

improvements in the delay time can be reached because the 
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network load is balanced. The average time was reduced 

approximately 5 times in all pairs of hosts, considerably 

improving the behavior of the network. Thanks to the load 

balancing algorithm, the packet transmission rate between 

different points of the network was improved, especially in 

large networks where there were many paths through which 

packets can be routed. 

It should be noted that normally the load balancing modules 

in a network do not always work in the most appropriate 

way. This is due to the fact that the most optimal links are 

not always chosen, since these algorithms are only based on 

obtaining the shortest path. Thus, they can choose the path 

with the least number of hops but with an excessive load. 
 

 
Figure 7. Network load balancing. 

 

4.2  Results for Floodlight controller 
 

The evaluation of the shortest path with the Floodlight 

controller was performed in the network topology shown in 

figure 8 with hosts h1 and h12 (black circle) and hosts h5 

and h10 (grey color). It should be pointed out that the 

network topology is exactly the same as that used for the 

evaluation of the OpenDaylight controller in the previous 

section. 

 
Figure 8. Network from Floodlight API Web. 

Bandwidth measurements were performed between the two 

hosts in which the effect of having load balancing is 

contrasted with the operation without the load balancing 

algorithm. The results are summarized in Table 3: 
 

Table 3. Bandwidth between h1 and h12 

Without load balancing With load balancing 

35,6 Gbit/s 34,9 Gbit/s 

36,2 Gbit/s 37,1 Gbit/s 

32,3 Gbit/s 35,0 Gbit/s 

35,8 Gbit/s 33,8 Gbit/s 

36,3 Gbit/s 37,4 Gbit/s 
 

The average values of the results presented in Table 3 are: 

35.24 Gbit/s for the network without the load balancing 

module and 35.64 Gbit/s when applying the load balancing 

module. 

Similarly, Table 4 shows the bandwidth measurements 

between hosts h5 and h10. The average values found for this 

pair of hosts are: 33.72 Gbit/s for the network without the 

load balancing module and 36.54 Gbit/s for the network with 

the load balancing module. 
 

Table 4. Bandwidth between h5 and h10 

Without load balancing With load balancing 

38,5 Gbit/s 35,2 Gbit/s 

33,8 Gbit/s 37,0 Gbit/s 

32,3 Gbit/s 34,9 Gbit/s 

32,2 Gbit/s 39,1 Gbit/s 

31,8 Gbit/s 36,5 Gbit/s 
 

Subsequently, 100 ping requests were sent out and the time 

statistics of the transmitted packets were obtained. In Table 5 

is observed that the average time was 2.19 times lower when 

the load balancing algorithm was implemented for the pair of 

hosts h1-h12. 
 

Table 5. Time statistics between h1 and h12 

 Without load 

balancing 

With load 

balancing 

Minimum time 0,039 ms 0,042 ms 

Maximum time 14,532 ms 0,515 ms 

Average time 0,221 ms 0,101 ms 
 

In the Figure 9 the black color trace corresponds to the ping 

requests without using the load balancing module, and the 

grey color trace when it was implemented in hosts h1-h11. 

The figure shows that the general behavior in the two tests is 

very similar and the only difference is in the first ping 

request. The delay time of the first ping request with the load 

balancing module was 0.515 ms, while for the other case the 

value was 14.532 ms (see maximum time at Table 5). 
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Figure 9. Delay time for 100 ping requests between h1 and 

h12. 
 

As far as the hosts h5 and h10 is concerned, Table 6 shows 

the minimum and maximum values of the delay time in 

which the average delay time was 2.88 times lower when the 

load balancing module was used. 
 

Table 6. Time statistics between h5 and h10 

 Without load 

balancing 

With load 

balancing 

Minimum time 0,045 ms 0,040 ms 

Maximum time 9,536 ms 0,520 ms 

Average time 0,150 ms 0,052 ms 
 

Figure 10 shows in more detail the general behavior of all 

ping requests. The black trace is related to ping requests 

without using the load balancing module, and the grey trace 

when implementing load balancing. The general behavior of 

the two configurations is very similar, however, the first ping 

request without the load balancing module presented a very 

high time response of 9.536 ms, while the other has a 

response of 0.520 ms (see maximum value Table 6). 

 
Figure 10. Delay time for 100 ping request between h5 and 

h10. 
The load balancing algorithm implementation in a SDN 

network controlled by Floodlight shows a significant 

improvement by drastically reducing the time of the first 

ping request, where the pairs of hosts communicate for the 

first time. This causes the average time of ping requests to 

decrease considerably. On the other hand, the general 

behavior of the network in the two evaluations was quite 

similar, showing that the Floodlight controller has a pretty 

good performance on its own. 

Although the average value of the bandwidth increases 

from one case to another, the improvements are very small 

unlike the results obtained with the OpenDaylight controller. 

The reason why this occurs is because the Floodlight 

controller has a large number of default modules that are 

automatically loaded each time the controller is executed and 

derives in an improvement of the network performance, 

among these modules is the load balancing. This default 

module for load balancing is developed in Java, so the one 

proposed and implemented in this paper is an important 

alternative since it was developed in Python. 
 

4.2.1  Shortest path analysis and load balancing 
 

Unlike the OpenDaylight controller, Floodlight does not 

send ping requests throughout the network when attempting 

to communicate two hosts. On the contrary, this controller 

determines the most appropriate way to establish the 

connection and generate a flow within its tables. In most 

cases, the selected path is usually the shortest and usually 

only one. The following test is similar to the one performed 

in OpenDaylight where it is observed which paths the 

controller defines for communication between two hosts 

when the load balancing algorithm is used and when it is not. 

For demonstrating purposes of the load balancing in the 

network, initially the communication is carried out between 

hosts h3 and h8. The paths selected when establishing the 

connection between these two hosts with and without our 

load balancing algorithm are the following: paths between h3 

and h8 without algorithm 0d::0c::0b::11::12 - 

0d::08::07::11::12 (in Figure 11 the path in grey color) and 

path between h3 and h8 with algorithm 0d::0c::0b::11::12 

(the path in black color). When the connection is established 

without the implementation of the load balancing algorithm, 

the default modules with which the controller works assign 

two paths for communication, one forward path and one 

return path. On the contrary, the load balancing algorithm 

only allocates one way for communication. The assignment 

of two paths is advantageous if we consider it as a way to 

avoid the saturation of the links while avoiding the load 

increment in one path. On the other hand, it is inefficient if 

we consider that several hosts try to communicate among 

them. In this way, more than the necessary resources are 

used. 

 
Figure 11. Load balancing between h3 and h8. 
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 Then, host h3 remains sending ping requests to host h8 in 

order to occupy this link, while trying to establish the 

connection between hosts h4 and h7. In both cases, a single 

path is assigned and different from those previously 

assigned: path between h4 and h7 without the load balancing 

algorithm 0d::04::03::11::12 (in Figure 12 the path in grey 

color) and Path between h4 and h7 with the load balancing 

algorithm 0d::08::07::11::12 (the path in black color). 
 

 
Figure 12. Load balancing between h4 and h7. 

 

 In the same way, host h3 remains sending ping requests to 

host h8 and host h4 sending ping requests to host h7 in order 

to occupy these links. With the new pair of hosts h12 and h6, 

the following paths are obtained: without the algorithm 

0f::0e::07::09 (in Figure 13 the path in grey color) and with 

the algorithm 0f::0e::07::09 (the path in black color).  In this 

case, the assigned paths are the same.  

 
Figure 13. Load balancing between h12 and h6. 

 

 
Figure 14. Load balancing between h1 and h5. 

 

Finally, for the communication between h1 and h5, the 

controller assigns two paths by default, while the load 

balancing algorithm assigns only one: paths 

0f::0e::0b::0c::05 - 0f::0e::03::04::05 (in Figure 14 the path 

in grey color) and the path 0f::0e::03::04::05 (path in black 

color). The general behavior in both tests shows a very good 

allocation and distribution of the resources of the network, 

which depending on the situation, will provide better results 

our proposal or the default module implemented by the 

controller. In this test, we demonstrate a better performance 

with our approach since the communication was made 

among 8 hosts. 
 

5.  Conclusions 
 

Software defined networking or programmable networks 

have a wide range of controllers for traffic management in 

the network, where each one of them differs from each other 

due to its complexity and support given by their developers. 

The OpenDaylight controller has low performance when 

handling response times and bandwidth allocation, and it 

presents an excessive consumption of RAM. However, it has 

good information support from its developers and it has a 

Web API. On the other hand, the Floodlight controller has a 

very good throughput in managing response times and 

bandwidth by having a large number of modules that 

together perform specific actions that improve its efficiency. 

In addition, it has good documentation and easy handling 

through simple instructions in the terminal or through its 

Web API. 

The implementation of the load balancing algorithm allowed 

improving the behavior of a software defined networking in 

terms of quality of service, improving bandwidth, decreasing 

response times and optimally distributing the load of the 

links. For the case in which the OpenDaylight controller was 

used, there were improvements of the available bandwidth of 

around 100 times when finding a more optimal path for the 

packets. On the other hand, the packets delay time was 

improved by reducing it roughly 5 times on average.  
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In general, the results in this item were quite satisfactory. In 

the same way, the results obtained with the Floodlight 

controller were not very far from the results obtained with 

the load balancing algorithm in terms of bandwidth and 

response times. Thus, in terms of these network parameters 

there is no need to make drastic changes to the controller. 
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