
502
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

An Improved Fully Homomorphic Encryption

Scheme for Cloud Computing

Mohd Rizuan Baharon1, Qi Shi2, Mohd Faizal Abdollah1, S.M.Warusia Mohamed S.M.M Yassin1 and Ariff Idris1

1Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, 76100 Malaysia
2Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom

Abstract: Business in cloud computing is very popular among

Small and Medium Enterprises (SMEs). By leveraging services

from the cloud, such companies can migrate all of their in-house

operations to cloud at low costs with minimum IT facility

requirements such as desktop machines and the Internet. Even

though the cloud promises tremendous advantages in terms of

computing resources and storage spaces, some of the companies are

still reluctant to adopt such a technology because of security

concerns. To overcome such problems, a fully homomorphic

encryption (FHE) scheme with improved efficiency can be

implemented as the scheme allows computation on encrypted data

without decryption. In this paper, we propose an improved FHE

scheme that uses a symmetric key for encryption together with a

protocol to implement the scheme. Furthermore, we also provide an

analysis regarding to the noise growth in the processed ciphertext

and squashing technique that is required to reduce the noise. This

analysis is essential to improve the efficiency of the scheme as the

squashing technique is time-consuming.

Keywords: Fully Homomorphic Encryption Scheme, Cloud

Computing, Integers, Symmetric Encryption Scheme, Asymmetric

Encryption Scheme.

1. Introduction

Computation of arbitrary functions on encrypted data is a

desired application of many online service providers like the

cloud as it offers tremendous benefits to their business and to

the users as well. By enabling computation on encrypted

data, many applications can be outsourced into the cloud to

process the encrypted data without decryption. Such a

process can guarantee the security and privacy of the data

processed by those applications. With the advent technology

provided by the cloud, many organizations have started to

think and move their in-house business operations to the

cloud. This is due to the cloud providing huge advantages

including ample computing resources and storage spaces on

an as-pay-as-you-use basis [1]. In addition, those fantastic

services can be leveraged in a very convenient way with

minimum IT facility requirements such as desktop machines

and the Internet. In order to fully leverage services from the

cloud, a user needs to outsource its data into the cloud

storage. Nevertheless, outsourcing such information that may

contain private data raises security and privacy concerns as

the safety of the data is not guaranteed [2]–[4]. Thus, to

preserve the security and privacy of the data, computation of

arbitrary functions on encrypted data is certainly required,

which enables the user to perform operations on its data

without revealing the data contents to the cloud. To achieve

such a requirement, a lot of research has been conducted

from various perspectives such as theoretical research and

practical applications to enable arbitrary functions to be

computed on encrypted data [5]–[11].

Research of computation on encrypted data started 30 years

ago when Rivest, Adleman, and Dertouzos invented the RSA

cryptosystem [12]. Even the RSA scheme has a special

feature which is homomorphic under multiplication, but it is

still unable to compute arbitrary functions on encrypted data,

as to achieve that, the encryption scheme must support

homomorphism in both additions and multiplications [13].

Since then, a lot of methods had been proposed but they were

still partially homomorphic or fully homomorphic under

certain conditions [14], [15]. This process continued until a

smart guy Gentry has found a homomorphic scheme that

supports both additions and multiplications so as to enable

computation of arbitrary functions on encrypted data. The

proposed scheme is called a fully homomorphic encryption

(FHE) over Lattices [16]. Since then, all the proposed FHE

schemes have followed the blueprint of Gentry’s scheme

[17], [18]. His achievement has proven that computation on

arbitrary encrypted data is achievable and provided a new

direction for other researchers to conduct research to allow

computation on arbitrary encrypted data.

Even computation on an encrypted data is achievable and

many optimizations has been made to improve the existing

schemes; their implementation in any practical system is far

from practical as efficiency still be the big obstacle.

According to [10], [19], [20] this efficiency problem is came

from various aspects such as key generation algorithm, the

noise growth, and a technique that has been used to reduce

the noise. As such in [18], the public key generated with high

complexity is unpractical to be implemented in any practical

system [21]. Furthermore, as all of the existing schemes

based on the blueprint of Gentry’s scheme, each ciphertext

generated has noise attached for security reason. When the

ciphertext is processed, the noise will be growing and once it

exceeded the size of the secret key i.e. the threshold; the

decryption will be failed. To remedy such a problem,

squashing can be used to reduce the noise. However, this

technique is time-consuming and need to be minimized or

omitted as proposed in [8], [22].

Thus, in this paper we propose a solution that focuses on the

key generation, and provide an analysis related to the scheme

efficiency. We believed that by concentrating on the

complexity of key generation, we will provide a scheme that

has better efficiency. Furthermore, the analysis related to the

scheme efficiency will give a way to improve the weaknesses

and optimize the scheme.

Our contribution in this paper is threefold. First, we proposed

an improved FHE scheme by combining symmetric and

asymmetric encryption schemes to achieve better efficiency.

Our encryption process using a symmetric key will make the

encryption faster compared to others that mainly adopt slow

503
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

asymmetric encryption schemes [23]. Furthermore, our

proposed scheme will reduce the key generation time because

there is only one symmetric key required to encrypt the data

rather than many public keys proposed in other schemes. The

next contribution of this paper is that we have proposed an

appropriate protocol to implement our proposed scheme.

This protocol has been designed accordingly for the

implementation of computation of arbitrary functions on

encrypted data in cloud environments. Furthermore, we have

provided an analysis of the implication of noise and the

number of squashing required for computation on encrypted

data.

Our paper is organized as follows. Section 2 describes some

background of the existing FHE schemes over integers. Then,

in Section 3 we explain our proposed scheme together with a

proposed protocol to implement the scheme. In section 4, we

provide an analysis on the performance of the proposed

scheme. Finally, in Section 5 we conclude our paper and

provide some open problems to be further investigated in the

future.

2. Related Work

In 2009, Gentry found a technique that allows computation of

arbitrary functions on encrypted data [18]. His brilliant idea

can be illustrated in Figure 1.

DO’s Secret Key

Receiver’s Public Key

F(x, y)

F(x, y) Arbitrary Functions

F(x, y)

Figure 1. Gentry’s FHE scheme data.

In the figure, there are two types of keys; public keys and a

secret key where the former is an encryption key while the

latter is a decryption key. The public key is used to encrypt

an original data item. The encrypted data will be outsourced

to a processor for remote processing using low degree

polynomial. During the process, noise that attached to each

ciphertext will be growing. Thus, to reduce the size of the

noise growth in the ciphertext, squashing technique will be

implemented. Squashing technique involved two steps; re-

encrypt and decryption. The re-encrypt is a technique to

prevent the data from being disclosed to the processor once it

is decrypted using an encrypted secret key. At the meantime,

the decryption is required to remove the growing noise in the

processed ciphertext, leaving the ciphertext encrypted by

another public key, and has a small amount of noise attached

to the data.

The squashing technique is very essential as the purpose is to

remove the growing noise in the ciphertext without revealing

any information about the plaintext or the secret key to the

processor. Without this process, further computation on the

encrypted data would be unable to get a correct result, as the

noise growth could exceed a set threshold and thus impede

the derivation of the correct result. The process of removing

the noise will be repeated during the computation on the

encrypted data in order to maintain a small amount of noise

attached to the ciphertext. Finally, once the computation is

completed, the result will be decryptable using the receiver’s

private key [12].

Since the invention of Gentry’s scheme, a lot of

improvements on FHE schemes have been proposed. Some

of them are based on the complexity of Lattices [11], [16],

[20] and others on the simplicity of the Integers [7]–[9], [18],

[24]. The aim of all the schemes is solely to allow the

computation of arbitrary functions on encrypted data while

the security of the processed data is guaranteed in a very

efficient way. Those schemes are believed to be able to solve

the FHE problem identified 30 years ago. Nonetheless, to

implement such schemes in any practical systems, there is

still a lot of work to be done to improve their applicability,

particularly efficiency.

A FHE scheme over integers that was first proposed by van

Dijk et al. [24] seems to be a good potential scheme because

it is proposed based on conceptual simplicity. Furthermore,

the plaintext of this scheme is considered as integers instead

of single bits used in other schemes. Such a scheme provides

a better improvement in terms of a bigger plaintext space

rather than the plaintext space of {0,1} . Nevertheless, this

scheme suffers from an efficiency issue as the scheme’s

public key with the complexity of 10()O is too large for any

practical system [24].

According to Coron et al. in their works, this drawback can

be improved by reducing the public-key size to 7()O [7]

Such an improvement can be achieved by encrypting with a

quadratic form in the public-key element [7]. The details of

the way they improved the previous scheme are explained as

in the previous section.

 2.1 FHE Scheme over Integers

Van Dijk et al. [24] have proposed a FHE scheme using only

elementary modular arithmetic with the aim of simplicity.

Their FHE scheme is constructed from a somewhat

homomorphic scheme, a scheme that can evaluates low

degree polynomial on ciphertext. To achieve fully

homomorphic properties, they have implemented squashing

technique introduced by Gentry. Their scheme only uses

addition and multiplication over the Integers rather than

using ideal Lattices over polynomial ring to achieve

simplicity. Furthermore, in their scheme, they only consider

encryption schemes that are homomorphic with respect to

Boolean circuits, C consisting of gates for addition and

multiplication mod 2. The details of their scheme and

parameters used are explained as below.

 is a security parameter.

 is the bit-length of a noise ri .

 is the bit-length of a secret key p .

 is the bit-length of the xi ’s such that 2= +x pq ri i i .

 is the number of xi ’s in the public key, pk such that

, ,...,1 2 =pk x x x .

' is a secondary noise parameter used for encryption.

For a specific  -bit odd integer p , the following

distribution over  -bit integers is used:

() {Randomly choose [0,2 /),,

(2 ,2) : Output }


 

 

=  

  − =  +

D p q pi

r x p q ri i i i

504
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

Where p is the secret key and is a set of all integers.

A homomorphic public key encryption scheme consists of

four algorithms which are KeyGen, Encrypt, Decrypt, and

Evaluate. The algorithm Evaluate takes as input a public

key pk , a circuit C, a tuple of ciphertexts , ,...,1 2=c c c ct ,

and output another ciphertext c .

KeyGen: Generate a random odd integer p of  bits.

For 0  i , sample (), x D pi . Relabel so that 0x is the

largest. Restart unless 0x is odd and []0x p is even. Let

, ,...,1 2 =pk x x x and =sk p .

Encrypt (, {0,1})pk m . Given a data item m which is either

0 or 1 to be encrypted, choose a random subset {1,2,..., }S

and a random integer ' '(2 ,2)  −r , and output the

ciphertext:

0

2 2
 
 = + +
 

 

c m r xi
i S x

 (1)

Evaluate (, , , ,...,)1 2pk C c c ct Given a circuit C with t input

bits, and t ciphertexts ci , apply the addition and

multiplication gates of C to the ciphertexts, perform all the

additions and multiplications over integers, and return the

resulting in integers.

Decrypt (,)sk c : Output (mod)mod2m c p .

The scheme is homomorphic under addition and

multiplication. Suppose ()1 1c m and ()2 2c m be ciphertexts

of plaintexts 1m and 2m .

2.1.1 The Homomorphic Addition

() () () ()2 21 1 2 2 1 1 1 2 2 2+ = + + + + +c m c m m r pq m r pq

and the decryption

() ()()

()()()

1
1 1 2 2

2 ' 2 ' mod mod 21 2

1 2

− +

= + + +

= +

c c m c m

m m r pq p

m m

2.1.2 The Homomorphic Multiplication

() () () ()2 21 1 2 2 1 1 1 2 2 2 = + +  + +c m c m m r pq m r pq

and the decryption

() ()()

() ()()()

1
1 1 2 2

2 , , , 2 , , , , , mod1 2 1 2 1 2 1 2 1 2 1 2

mod 2

1 2

− 

= + +

= 

c c m c m

m m f m m r r pf m m r r q q p

m m

The scheme is semantically secure as shown in [24] under the

approximate-Greatest Common Divisors (GCD) assumption.

The Definition of approximate GCD is given as below.

Definition 1: The (), ,   -approximate-GCD problem is: For

a random  -bit odd integer p , given polynomially many

samples from (), D p , output p .

 2.2 FHE Scheme over Integers with Shorter Public

Keys

The technique proposed by Coron et al. [7] works with

integers 'x ij of the form ' ,0 ,1= x x xij i j mod 0x for

1 ,  i j where  is a new parameter. Only 2 integers

,xi b need to be stored in the public key in order to generate

2 = integers 'x ij used for encryption. In other words, a

quadratic form is used for encryption in the public key

elements instead of a linear form. This process will reduce

the public key size from the size of  to the size of 2 

integers of  bits.

Their technique requires using an error-free 0x , that is,

0 0= x q p where 0q is a random square free integer (an

integer that is not divisible by perfect square) in)0,2 /


p .

Otherwise the error would grow too large. Furthermore for

encryption, they consider a linear combination of 'x ij , with

coefficients in)0,2


 instead of bits; this further reduces the

size of the public key. This technique provides the following

operations:

KeyGen: Generate a random prime)12 ,2 −


p . Let

0 0= x q p . Generate integers ,xi b for 1 ,  i j and

{0,1}b :

, , ,= +x pq ri b i b i b 1  i , 0 1 b (2)

where ,qi b are random integers in )0, 0q and ,ri b are

integers in ()' '2 ,2 − . Let =sk p and

(), , ,..., ,0 1,0 1,1 ,0 ,1 =pk x x x x x .

Encrypt (), {0,1}pk m : Generate a random vector ,=b bi j

of size 2 = and with each element ,bi j in)0,2


.

Generate a random integer r in ()' '2 ,2 − . Output the

ciphertext:

2 2 mod, , ,1 0
1 , 

 
 = + +  
    

c m r b x x xi j i j j
i j

 (3)

Evaluate and Decrypt: These are the same as the ones in the

[24], except that the ciphertext is reduced by modulo 0x

after addition and multiplication.

 2.3 Comparison of Performance of Both schemes

The scheme proposed by van Dijk et al. has achieved

simplicity but less efficiency. To see the improvement in

term of public key size, the scheme parameters in [7], [24]

and notations like and   as have been implemented to

describe the complexity of each parameter setting.

()log  = to prevent brute force attacks on the noise.

()2log    =  to support the homomorphic operation for

evaluating the “squashed decryption circuit”.

()2 log   =  to avoid lattice-based attacks.

()log    + for the reduction to approximate, (GCD).

()' log   = + for the secondary noise parameter.

In order to satisfy such constraints, a convenient parameter

setting suggested in [24] is as follows:

() ()2 5, ' 2 , , and           = = = = = +O O .

505
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

This setting results in a scheme with the public key size

of ()10O . In practice, the bit-length of the public key should

be no less than 232 = bits to avoid lattice attacks. However,

the size of the public key generated by this scheme is at least

462 bits, which is too large to be implemented on any real

application [7].

This performance has been improved by Coron et al. works.

In order to achieve the reduced public key, they have defined

some changes in the parameter setting as follows:

()log  = to prevent brute force attacks on the noise.

() ()22 log      +  to support the homomorphic

operation for evaluating the “squashed decryption circuit”.

()2 log   =  to avoid lattice-based attacks.

()2 log      + for the reduction to approximate GCD.

()' log   = + for the secondary noise parameter.

To satisfied these conditions, they set

() ()2 5, ' 2 , ,       = = = =O O as in the original scheme,

but add up other new parameters such that

()2, , ' 4     = = =O . The main difference between the

two schemes is that instead of having ()5 = O integers 'x i ,

they only have ()22 = O integers xi . Thus, the size of the

public key is reduced to ()7O instead of ()10O [7].

3. The Propose Scheme

In this section, we describe the proposed scheme, the security

analysis of the proposed scheme and the proposed protocol to

implement the scheme.

 3.1 The Proposed Scheme

Our proposed scheme utilizes a combination of symmetric

and asymmetric encryption schemes to achieve fully

homomorphic properties. This technique is proposed to

improve the efficiency of the two schemes introduced in the

previous section, as we do not need to generate many public

keys for encryption as proposed by other schemes [8], [19],

[25], [26]. In our scheme, there are three parties involved

which are Data Owner (DO), processor, and receiver. In the

scheme as illustrated in Figure 2, two types of keys will be

used; public keys and two distinct secret keys where the

former is an encryption key whiles the latter are for

encryption and decryption. To encrypt the original data item,

a secret key will be used instead of public key proposed by

other schemes. The encrypted data will be outsourced to a

processor together with an encrypted secret key that has been

used to encrypt the data. Prior the data to be processed, the

data need to be re-encrypted using a receiver’s public key

and decrypted using the encrypted secret key sent by the DO.

This process is essential to allow further computation on the

ciphertext as during the process, the size of noise attached to

the data will be reduced and without disclosed any

information about the data to the processor. The rest of the

processes in our scheme are similar to Gentry’s approach as

before.

Figure 2. The proposed scheme

Our scheme parameter setting is based on Coron et al.’s

scheme introduced as in previous section. Therefore, the size

of our public key can be maintained as ()7O . Our proposed

scheme consists of four algorithms described below.

KeyGen (), ',p p xi : Generates secret keys p and 'p , which

are odd integers such that)1 and ' 2 ,2 −


p p with  being

the bit length of the keys. Generates parameters qi and ri

randomly such that
3

2qi and 2


=ri . Generates public

keys, ' 2= +x p q ri i i for 1,2,...,=i n where n is the number of

the squashing processes required in the computation to get

the desired result.

Encrypt (), {0,1},p m xi : Suppose m be a plaintext such

that {0,1}m . m is encrypted using a symmetric encryption

scheme as in [24].

() 2= + +c m pq r mi i such that ()c m (4)

The secret key p is encrypted by DO using a receiver’s

public key, 1x .

() 1= +c p x p , s.t. ()c p (5)

Re-encrypt and decrypt (), , ()1c m x c p : The processor will

re-encrypt the encrypted data using a receiver’s public key.

Then, decrypt it using the encrypted secret key sent by the

DO. This process is called squashing and it will be repeated

along the computation on encrypted data to maintain a small

amount of noise attached to the data.

()() () ()= c m c c m c pd , see Definition 2.

() ()() 1 1= +  +c m x p xd

()() 1=  +c m p xd

1= +m x

Definition 2: Let a and b be integers such that a is a secret

key to encrypt a plaintext x and ()=b c xa is a ciphertext,

we then have 1()− = =a b c b xd a

Evaluate (), (), (),..., ()1 2C c m c m c mn : Suppose C is a Boolean

circuit and (), (),..., ()1 2c m c m c mn be a tuple of ciphertext.

Then, ciphertexts can be evaluated by C as long as the noise

growth in the ciphertexts does not exceed the threshold.

Otherwise the decryption will be failed [18]. This noise

growth can be maintained small by implementing re-encrypt

and decrypt on the ciphertext along the computation on

encrypted data.

Decrypt ()(()), 'c C m p : (())c C m is decrypted using 'p (a

secret key that poses by the receiver) as below:

506
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

()() (())mod ' mod2=C m c C m p (6)

 3.2 Scheme Security

Our scheme’s security is based on the hardness of

approximation GCD. The scheme is semantically secure

under the stronger error-free approximate GCD assumption.

The definition of error-free approximate GCD is given by the

Definition 3. The proof follows the same strategy as in [24].

For the two specific integers p and q , we define the

distribution as in [7]:

()' , {Randomly choose [0,),0 0

(2 ,2) : Output }



 

=  

  − =  +

D p q q q

r x p q r

Definition 3: (Error-free approximate GCD)

For a random  -bit prime p , pqy ...00 = where 0q is a

random integer in)/2,0[p and polynomially many samples

from ()0,qpD , then output p .

Based on [27], the encryption of zero and the encryption of a

random message by using the public key encryption instead

of the oracle is hard to be differentiated. Thus, the scheme is

said to be semantically secure under the stronger error-free

approximate GCD problem.

 3.3 The Proposed Protocol

This protocol has been designed according to the

implementation of the proposed FHE scheme in cloud

environment. Three parties involved in the protocol which

are a group of Data Owner (DO), Cloud Service Provider

(CSP), and a receiver. DO is responsible as data contributor

with limited computing resources and storage spaces, CSP is

the processor, and the receiver is as a data user. In this

protocol, a lot of computing resources and storage spaces are

required to process the data contributed by DO. Thus, DO

need to outsource the data to the CSP as the CSP provide

such facilities as a service. Prior outsourcing the data, the

data will be encrypted using the proposed scheme to prevent

any information of the data to be disclosed to the CSP and at

the same time, the data can be processed in the encrypted

form without decryption. Once, the process is completed,

result of the process will be sent to the receiver which

satisfies a certain policy made by the DO. In the protocol,

only the receiver will be able to decrypt the result as the

receiver has the decryption key.

The specific details of the proposed protocol will be

described as below while the protocol is illustrated in Figure

3.

Stage 1: DO that consists of 1A and 2A , together generate

a secret key SkA . They create raw data =V vi and =W wi for

1,2,...,=i n , and encrypt them using the secret key, i.e.

()
A

c VSk and ()
A

c WSk . They outsource ()
A

c VSk and ()
A

c WSk

to the designated cloud storage.

Stage 2: A receiver, B who satisfies a certain policy to

use the result of processed data ()
A

c VSk and ()
A

c WSk will

outsource their public key to the CSP and keep the

corresponding private key by them.

Stage 3: 1A and 2A retrieve B ’s public key from the CSP,

use it to encrypt their secret key ()
B

c SkSk A and sent it to the

CSP.

Stage 4: The CSP encrypts ()
A

c VSk and ()
A

c WSk using PkB

to produce ()()
B A

c c VPk Sk and ()()
B A

c c WPk Sk . The CSP

decrypts ()()
B A

c c VPk Sk and ()()
B A

c c WPk Sk

homomorphically as below.

() () ()() () ()
B B A B A B

c Sk c c V c Sk c V c VPk A d Pk Sk Pk A d Sk Pk =  =

() () ()() () ()
B B A B A B

c Sk c c W c Sk c W c WPk A d Pk Sk Pk A d Sk Pk =  =

 Then, the CSP computes those data homomorphically.
() () ()

B B B

c V c W c V WPk Pk Pk = 

Stage 5: B retrieves the result from the CSP and decrypts it

using B ’s private key:

()1 ()
B B

c c V W V WSk Pk
−  = 

Figure 3. The Proposed Protocol

4. Analysis, Result and Discussion

In this section, we provide the definition of full adder in

terms of gates operations. This definition is essential to

determine the size of noise during computation on encrypted

data. Furthermore, we provide some analysis of the scheme

performance according to the number of squashing needed to

perform the operations. The results of analysis are illustrated

as graphs in Figures 5 and 6.

 4.1 Full Adder Definition

In this sub-section, the definition of full adder is provided as

the following definition.

Definition 4:

An OR gate can be defined as a combination of XORs and an

AND Gates as below:

() ()+ =   D E D E D E (7)

Definition 5:

Carried output, Cout in circuit evaluation (during addition

operation) can be illustrated in Figure 4 and defined as

below.

() ()()

() ()() () ()()

=  +  

=  +     +  

C A B C A Bout IN

A B C A B A B C A BIN IN

507
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

where CIN is a carried input value and S is the output value

as shown in Figure 4.

Figure 4. Map Representation

Definition 6:

According to Definition 4 and 5, a single bit addition is

defined as below:

() ()() () ()()

+ =  

=           

A B A B CIN

A B A B C A B A B C A BIN IN

5. Result and Discussion

The proposed scheme is believed to provide better efficiency

in terms of key generation process as this scheme uses

symmetric encryption rather than asymmetric one. The other

performance of the scheme’s process remains the same as the

one in [7]. Furthermore, to provide further analysis on the

process involved in this scheme, we have analysed the

number of squashing processes required with respect to the

noise growth. Too fast noise growth implies frequent

squashing operations required and thus degrades the scheme

efficiency.

Figure 5. Adding up to 10 16-bits ciphertexts.

Figure 6. A single multiplication of ciphertexts with the

length of up to 16-bits.

To reduce the number of squashing required, we have

analysed the implication of noise towards the bit length of

ciphertext and the result is shown in Figures 5 and 6.

Figure 5 shows the growth of noise based on the sum of up to

10 16-bits ciphertexts. In this example, we have chosen a

secret key of 2048 bits. After the sum of two ciphertexts, the

noise has grown to nearly the size of the secret key. Once it

exceeds the threshold, then the decryption will fail. Thus, the

squashing technique is required to reduce the size of the

noise to the size of the original ciphertext. To continue this

process, the result of every sum needs to be squashed in

order to have a correct result at the end of 10 additions on the

distinct ciphertexts.

Furthermore, Figure 6 shows the growth of noise during the

product of two 16-bits ciphertexts with the same size of the

secret key. After summing the first 6 bits of the ciphertexts,

the noise is growing to nearly the size of the secret key. Once

it exceeds the size of the key, the same problem happens as

for the addition. Thus, squashing is needed to reduce the size

of noise to the size of the first bit summation to enable the

completion of the multiplication.

Based on the analysis, we can conclude that the number of

squashing required in computing on encrypted data is depend

on the size of the noise growth with respect to the size of the

secret key. In addition, both noise and squashing are very

essential to be implemented to provide a secure FHE scheme.

However, squashing technique is time-consuming and it

should be carefully managed. Thus, in our proposed scheme,

we have designed the scheme so that this technique will be

done efficiently by the CSP as the CSP has a lot of

computing resource. By doing so, we can achieve a FHE

scheme with better efficiency while the security of the data is

preserved.

6. Conclusions

We have proposed an improved FHE scheme which

combines symmetric and asymmetric encryptions. Our

scheme uses a symmetric key for encryption, so it offers

better efficiency by successfully avoiding the time consuming

process for generating many public keys in the most existing

schemes. To implement the proposed scheme, we have

proposed a protocol which has been designed to operate in

cloud environments. Furthermore, we have provided a new

analysis of the effect of noise during operations on encrypted

data. This result will determine the number of squashing

processes required to complete the computation on the

encrypted data. In order to provide an efficient FHE scheme,

the number of squashing processes should be considered

because such a process is time-consuming and thus affects

the efficiency of the scheme.

7. Acknowledgement

This work has been supported under Universiti Teknikal

Malysia Melaka research grant Gluar/CSM/2016/FTMK-

CACT/100013. The authors would like to thank to Universiti

Teknikal Malaysia Melaka, CyberSecurity Malaysia and all

members of INSFORNET research group for their incredible

supports in this project.

508
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 3, December 2018

References

[1] S. Marston, “Cloud Computing – The Business Perspective,”

Sciences-New York, pp. 1–11, 2011.

[2] G. V. Mini and K. S. A. Viji, “A Comprehensive Cloud

Security Model with Enhanced Key Management , Access

Control and Data Anonymization Features,” International

Journal of Communication Networks and Information

Security, vol. 9, no. 2, pp. 263–273, 2017.

[3] D. Zissis and D. Lekkas, “Addressing cloud computing

security issues,” Future Generation Computer Systems, vol.

28, no. 3, pp. 583–592, 2012.

[4] M. R. Baharon, Q. Shi, D. Llewellyn-Jones, and M. Merabti,

“Efficient and secure remote data storing and processing,”

European Conference on Information Warfare and Security,

ECCWS, pp. 396–401, 2013.

[5] C. Gentry and S. Halevi, “Implementing Gentry ’ s Fully-

Homomorphic Encryption Scheme,” 30th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, pp. 1–29, 2011.

[6] D. Stehlé and R. Steinfeld, “Faster fully homomorphic

encryption,” in International Conference on the Theory and

Application of Cryptology and Information Security, 2010,

pp. 377–394.

[7] A. Mandal, D. Naccache, and M. Tibouchi, “Fully

Homomorphic Encryption over the Integers with Shorter

Public Keys,” Proceedings of the 31st annual conference on

Advances in Cryptology, pp. 487–504, 2011.

[8] M. Tibouchi, “Batch Fully Homomorphic Encryption over the

Integers,” Lecture Notes in Computer Science, vol. 7881, pp.

315–355, 2013.

[9] J. Kim, M. S. Lee, A. Yun, and J. H. Cheon, “CRT-based

Fully Homomorphic Encryption over the Integers,” IACR

Cryptology ePrint Archive 2013, pp. 1–18, 2013.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)

fully homomorphic encryption without bootstrapping,”

Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference on - ITCS ’12, pp. 309–325, 2012.

[11] J. Fan and F. Vercauteren, “Somewhat Practical Fully

Homomorphic Encryption,” Proceedings of the 15th

international conference on Practice and Theory in Public

Key Cryptography, pp. 1–16, 2012.

[12] G. Davis, “Processing Encrypted Data,” Communications of

the ACM., vol. 30, no. 9, pp. 777–780, 1987.

[13] C. Gentry, “Computing arbitrary functions of encrypted data,”

Communications of the ACM, vol. 53, no. 3, pp. 97–105,

2010.

[14] D. Boneh, “Evaluating 2-DNF Formulas on Ciphertexts,”

Second Theory of Cryptography Conference, TCC 2005,

Cambridge Proceedings, pp. 325–341, 2005.

[15] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can

homomorphic encryption be practical?,” Proceedings of the

3rd ACM workshop on Cloud computing security workshop -

CCSW ’11, pp. 113–124, 2011.

[16] C. Gentry, “A Fully Homomorphic Encryption Scheme,”

Ph.D. Dissertation, Stanford University, 2009.

[17] N. P. Smart and F. Vercauteren, “Fully Homomorphic

Encryption with Relatively Small Key and Ciphertext Sizes,”

Proceedings of the 13th international conference on Practice

and Theory in Public Key Cryptography, pp. 420–443, 2010.

[18] M. Tibouchi, “Scale-Invariant Fully Homomorphic

Encryption over the Integers,” Lecture Notes in Computer

Science, vol. 8383, pp. 311–328, 2014.

[19] Z. Brakerski, “Fully Homomorphic Encryption without

Modulus Switching from Classical GapSVP,” Proceedings of

the 32nd Annual Cryptology Conference on Advances in

Cryptology, vol. 7417, pp. 868–886, 2012.

[20] C. Gentry and S. Halevi, “Fully Homomorphic Encryption

without Squashing Using Depth-3 Arithmetic Circuits,” IEEE

52nd Annual Symposium on Foundations of Computer

Science, pp. 107–109, Oct. 2011.

[21] Y. Doröz, E. Öztürk, and B. Sunar, “A million-bit multiplier

architecture for fully homomorphic encryption,”

Microprocessors and Microsystems, vol. 38, no. 8, pp. 766–

775, 2014.

[22] B. Pourghebleh and N. J. Navimipour, “Data aggregation

mechanisms in the Internet of things : A systematic review of

the literature and recommendations for future research,”

Journal of Network and Computer Applications, vol. 97, no.

April, pp. 23–34, 2017.

[23] P. Karu, “Practical Comparison of Fast Public-key

Cryptosystems,” Telecommunications Software and

Multimedia Lab. at Helsinki Univ. of Technology, Seminar on

Network Security., pp. 1–18, 2001.

[24] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,

“Fully Homomorphic Encryption over the Integers,” Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, pp. 24–43, 2010.

[25] M. R. Baharon, Q. Shi, and D. Llewellyn-jones, “A New

Lightweight Homomorphic Encryption Scheme for Mobile

Cloud Computing,” IEEE International Conference on

Computer and Information Technology; Ubiquitous

Computing and Communications; Dependable, Autonomic

and Secure Computing; Pervasive Intelligence and

Computing, pp. 618–625, 2015.

[26] J. H. Cheon, H. Hong, M. S. Lee, and H. Ryu, “The

Polynomial Approximate Common Divisor Problem and its

Application to the Fully Homomorphic Encryption,”

Information Sciences, vol. 326, pp. 41–58, 2016.

[27] Z. Chen, “Fully homomorphic encryption,” University of

Wollongong, pp. 1–77, 2017.

