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Abstract: Business in cloud computing is very popular among 

Small and Medium Enterprises (SMEs). By leveraging services 

from the cloud, such companies can migrate all of their in-house 

operations to cloud at low costs with minimum IT facility 

requirements such as desktop machines and the Internet. Even 

though the cloud promises tremendous advantages in terms of 

computing resources and storage spaces, some of the companies are 

still reluctant to adopt such a technology because of security 

concerns. To overcome such problems, a fully homomorphic 

encryption (FHE) scheme with improved efficiency can be 

implemented as the scheme allows computation on encrypted data 

without decryption. In this paper, we propose an improved FHE 

scheme that uses a symmetric key for encryption together with a 

protocol to implement the scheme. Furthermore, we also provide an 

analysis regarding to the noise growth in the processed ciphertext 

and squashing technique that is required to reduce the noise. This 

analysis is essential to improve the efficiency of the scheme as the 

squashing technique is time-consuming.  
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1. Introduction 
 

Computation of arbitrary functions on encrypted data is a 

desired application of many online service providers like the 

cloud as it offers tremendous benefits to their business and to 

the users as well. By enabling computation on encrypted 

data, many applications can be outsourced into the cloud to 

process the encrypted data without decryption. Such a 

process can guarantee the security and privacy of the data 

processed by those applications. With the advent technology 

provided by the cloud, many organizations have started to 

think and move their in-house business operations to the 

cloud. This is due to the cloud providing huge advantages 

including ample computing resources and storage spaces on 

an as-pay-as-you-use basis [1]. In addition, those fantastic 

services can be leveraged in a very convenient way with 

minimum IT facility requirements such as desktop machines 

and the Internet. In order to fully leverage services from the 

cloud, a user needs to outsource its data into the cloud 

storage. Nevertheless, outsourcing such information that may 

contain private data raises security and privacy concerns as 

the safety of the data is not guaranteed [2]–[4]. Thus, to 

preserve the security and privacy of the data, computation of 

arbitrary functions on encrypted data is certainly required, 

which enables the user to perform operations on its data 

without revealing the data contents to the cloud. To achieve 

such a requirement, a lot of research has been conducted 

from various perspectives such as theoretical research and 

practical applications to enable arbitrary functions to be 

computed on encrypted data [5]–[11].  

Research of computation on encrypted data started 30 years 

ago when Rivest, Adleman, and Dertouzos invented the RSA 

cryptosystem [12]. Even the RSA scheme has a special 

feature which is homomorphic under multiplication, but it is 

still unable to compute arbitrary functions on encrypted data, 

as to achieve that, the encryption scheme must support 

homomorphism in both additions and multiplications [13]. 

Since then, a lot of methods had been proposed but they were 

still partially homomorphic or fully homomorphic under 

certain conditions [14], [15]. This process continued until a 

smart guy Gentry has found a homomorphic scheme that 

supports both additions and multiplications so as to enable 

computation of arbitrary functions on encrypted data. The 

proposed scheme is called a fully homomorphic encryption 

(FHE) over Lattices [16]. Since then, all the proposed FHE 

schemes have followed the blueprint of Gentry’s scheme 

[17], [18]. His achievement has proven that computation on 

arbitrary encrypted data is achievable and provided a new 

direction for other researchers to conduct research to allow 

computation on arbitrary encrypted data. 

Even computation on an encrypted data is achievable and 

many optimizations has been made to improve the existing 

schemes; their implementation in any practical system is far 

from practical as efficiency still be the big obstacle. 

According to [10], [19], [20] this efficiency problem is came 

from various aspects such as key generation algorithm, the 

noise growth, and a technique that has been used to reduce 

the noise. As such in [18], the public key generated with high 

complexity is unpractical to be implemented in any practical 

system [21]. Furthermore, as all of the existing schemes 

based on the blueprint of Gentry’s scheme, each ciphertext 

generated has noise attached for security reason. When the 

ciphertext is processed, the noise will be growing and once it 

exceeded the size of the secret key i.e. the threshold; the 

decryption will be failed. To remedy such a problem, 

squashing can be used to reduce the noise. However, this 

technique is time-consuming and need to be minimized or 

omitted as proposed in [8], [22].    

Thus, in this paper we propose a solution that focuses on the 

key generation, and provide an analysis related to the scheme 

efficiency. We believed that by concentrating on the 

complexity of key generation, we will provide a scheme that 

has better efficiency. Furthermore, the analysis related to the 

scheme efficiency will give a way to improve the weaknesses 

and optimize the scheme.   

Our contribution in this paper is threefold. First, we proposed 

an improved FHE scheme by combining symmetric and 

asymmetric encryption schemes to achieve better efficiency. 

Our encryption process using a symmetric key will make the 

encryption faster compared to others that mainly adopt slow 
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asymmetric encryption schemes [23]. Furthermore, our 

proposed scheme will reduce the key generation time because 

there is only one symmetric key required to encrypt the data 

rather than many public keys proposed in other schemes. The 

next contribution of this paper is that we have proposed an 

appropriate protocol to implement our proposed scheme. 

This protocol has been designed accordingly for the 

implementation of computation of arbitrary functions on 

encrypted data in cloud environments. Furthermore, we have 

provided an analysis of the implication of noise and the 

number of squashing required for computation on encrypted 

data.  

Our paper is organized as follows. Section 2 describes some 

background of the existing FHE schemes over integers. Then, 

in Section 3 we explain our proposed scheme together with a 

proposed protocol to implement the scheme. In section 4, we 

provide an analysis on the performance of the proposed 

scheme. Finally, in Section 5 we conclude our paper and 

provide some open problems to be further investigated in the 

future. 
 

2. Related Work 
 

In 2009, Gentry found a technique that allows computation of 

arbitrary functions on encrypted data [18]. His brilliant idea 

can be illustrated in Figure 1. 

---------
---------
---------
-------

---------
---------
---------
---------

DO’s Secret Key

Receiver’s  Public Key

F(x, y)

F(x, y) Arbitrary Functions

F(x, y)

Figure 1. Gentry’s FHE scheme data. 

In the figure, there are two types of keys; public keys and a 

secret key where the former is an encryption key while the 

latter is a decryption key. The public key is used to encrypt 

an original data item. The encrypted data will be outsourced 

to a processor for remote processing using low degree 

polynomial. During the process, noise that attached to each 

ciphertext will be growing. Thus, to reduce the size of the 

noise growth in the ciphertext, squashing technique will be 

implemented. Squashing technique involved two steps; re-

encrypt and decryption. The re-encrypt is a technique to 

prevent the data from being disclosed to the processor once it 

is decrypted using an encrypted secret key. At the meantime, 

the decryption is required to remove the growing noise in the 

processed ciphertext, leaving the ciphertext encrypted by 

another public key, and has a small amount of noise attached 

to the data.  

The squashing technique is very essential as the purpose is to 

remove the growing noise in the ciphertext without revealing 

any information about the plaintext or the secret key to the 

processor. Without this process, further computation on the 

encrypted data would be unable to get a correct result, as the 

noise growth could exceed a set threshold and thus impede 

the derivation of the correct result. The process of removing 

the noise will be repeated during the computation on the 

encrypted data in order to maintain a small amount of noise 

attached to the ciphertext. Finally, once the computation is 

completed, the result will be decryptable using the receiver’s 

private key [12].  

Since the invention of Gentry’s scheme, a lot of 

improvements on FHE schemes have been proposed. Some 

of them are based on the complexity of Lattices [11], [16], 

[20] and others on the simplicity of the Integers [7]–[9], [18], 

[24]. The aim of all the schemes is solely to allow the 

computation of arbitrary functions on encrypted data while 

the security of the processed data is guaranteed in a very 

efficient way. Those schemes are believed to be able to solve 

the FHE problem identified 30 years ago. Nonetheless, to 

implement such schemes in any practical systems, there is 

still a lot of work to be done to improve their applicability, 

particularly efficiency.  

A FHE scheme over integers that was first proposed by van 

Dijk et al. [24] seems to be a good potential scheme because 

it is proposed based on conceptual simplicity. Furthermore, 

the plaintext of this scheme is considered as integers instead 

of single bits used in other schemes. Such a scheme provides 

a better improvement in terms of a bigger plaintext space 

rather than the plaintext space of {0,1} . Nevertheless, this 

scheme suffers from an efficiency issue as the scheme’s 

public key with the complexity of 10( )O  is too large for any 

practical system [24]. 

According to Coron et al. in their works, this drawback can 

be improved by reducing the public-key size to 7( )O [7] 

Such an improvement can be achieved by encrypting with a 

quadratic form in the public-key element [7]. The details of 

the way they improved the previous scheme are explained as 

in the previous section. 

    2.1  FHE Scheme over Integers 

Van Dijk et al. [24] have proposed a FHE scheme using only 

elementary modular arithmetic with the aim of simplicity. 

Their FHE scheme is constructed from a somewhat 

homomorphic scheme, a scheme that can evaluates low 

degree polynomial on ciphertext. To achieve fully 

homomorphic properties, they have implemented squashing 

technique introduced by Gentry. Their scheme only uses 

addition and multiplication over the Integers rather than 

using ideal Lattices over polynomial ring to achieve 

simplicity. Furthermore, in their scheme, they only consider 

encryption schemes that are homomorphic with respect to 

Boolean circuits, C consisting of gates for addition and 

multiplication mod 2. The details of their scheme and 

parameters used are explained as below. 
 

  is a security parameter. 

  is the bit-length of a noise ri . 

  is the bit-length of a secret key p  . 

   is the bit-length of the xi ’s such that 2= +x pq ri i i . 

   is the number of xi ’s in the public key, pk  such that   

, ,...,1 2 =pk x x x . 

'  is a secondary noise parameter used for encryption.  
 

For a specific  -bit odd integer p , the following 

distribution over  -bit integers is used: 

( ) {Randomly choose [0,2 / ),,

( 2 ,2 ) : Output }


 

 

=  

  − =  +

D p q pi

r x p q ri i i i
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Where p is the secret key and  is a set of all integers. 

A homomorphic public key encryption scheme consists of 

four algorithms which are KeyGen, Encrypt, Decrypt, and 

Evaluate. The algorithm Evaluate takes as input a public 

key pk , a circuit C, a tuple of ciphertexts , ,...,1 2=c c c ct , 

and output another ciphertext c . 

KeyGen: Generate a random odd integer p of   bits. 

For 0  i  , sample ( ), x D pi . Relabel so that 0x  is the 

largest. Restart unless 0x  is odd and [ ]0x p  is even. Let 

, ,...,1 2 =pk x x x  and =sk p  .  

Encrypt ( , {0,1})pk m . Given a data item m which is either 

0 or 1 to be encrypted, choose a random subset {1,2,..., }S   

and a random integer ' '( 2 ,2 )  −r , and output the 

ciphertext:  

0

2 2
 
 = + +
 

 

c m r xi
i S x

  (1) 

Evaluate ( , , , ,..., )1 2pk C c c ct  Given a circuit C  with t  input 

bits, and t  ciphertexts ci , apply the addition and 

multiplication gates of C   to the ciphertexts, perform all the 

additions and multiplications over integers, and return the 

resulting in integers.  

Decrypt ( , )sk c : Output ( mod )mod2m c p .  

The scheme is homomorphic under addition and 

multiplication. Suppose ( )1 1c m  and ( )2 2c m  be ciphertexts 

of plaintexts 1m  and 2m . 

2.1.1 The Homomorphic Addition  

( ) ( ) ( ) ( )2 21 1 2 2 1 1 1 2 2 2+ = + + + + +c m c m m r pq m r pq   

and the decryption 

( ) ( )( )

( )( )( )

1
1 1 2 2

2 ' 2 ' mod mod 21 2

1 2

− +

= + + +

= +

c c m c m

m m r pq p

m m

 

2.1.2 The Homomorphic Multiplication 

( ) ( ) ( ) ( )2 21 1 2 2 1 1 1 2 2 2 = + +  + +c m c m m r pq m r pq  

and the decryption 

( ) ( )( )

( ) ( )( )( )

1
1 1 2 2

2 , , , 2 , , , , , mod1 2 1 2 1 2 1 2 1 2 1 2

mod 2

1 2

− 

= + +

= 

c c m c m

m m f m m r r pf m m r r q q p

m m

 

The scheme is semantically secure as shown in [24] under the 

approximate-Greatest Common Divisors (GCD) assumption. 

The Definition of approximate GCD is given as below. 

Definition 1: The ( ), ,   -approximate-GCD problem is: For 

a random  -bit odd integer p , given polynomially many 

samples from ( ), D p , output p . 

    2.2 FHE Scheme over Integers with Shorter Public 

Keys 

The technique proposed by Coron et al. [7] works with 

integers 'x ij  of the form ' ,0 ,1= x x xij i j  mod 0x  for 

1 ,  i j  where   is a new parameter. Only 2  integers 

,xi b  need to be stored in the public key in order to generate 

2 =  integers 'x ij  used for encryption. In other words, a 

quadratic form is used for encryption in the public key 

elements instead of a linear form. This process will reduce 

the public key size from the size of   to the size of 2   

integers of   bits. 

Their technique requires using an error-free 0x , that is, 

0 0= x q p  where 0q  is a random square free integer (an 

integer that is not divisible by perfect square) in )0,2 /


p . 

Otherwise the error would grow too large. Furthermore for 

encryption, they consider a linear combination of 'x ij , with 

coefficients in )0,2


 instead of bits; this further reduces the 

size of the public key. This technique provides the following 

operations: 

KeyGen: Generate a random prime )12 ,2 −


p . Let 

0 0= x q p . Generate integers ,xi b  for 1 ,  i j  and 

{0,1}b : 

, , ,= +x pq ri b i b i b  1  i , 0 1 b   (2) 

where ,qi b  are random integers in  )0, 0q  and ,ri b are 

integers in ( )' '2 ,2 − . Let =sk p  and 

( ), , ,..., ,0 1,0 1,1 ,0 ,1 =pk x x x x x  . 

Encrypt ( ), {0,1}pk m : Generate a random vector ,=b bi j  

of size 2 =  and with each element ,bi j  in )0,2


. 

Generate a random integer r   in ( )' '2 ,2 − . Output the 

ciphertext:  

2 2 mod, , ,1 0
1 , 

 
 = + +  
    

c m r b x x xi j i j j
i j

 (3) 

Evaluate and Decrypt: These are the same as the ones in the 

[24], except that the ciphertext is reduced by modulo 0x  

after addition and multiplication.  

    2.3 Comparison of Performance of Both schemes 

The scheme proposed by van Dijk et al. has achieved 

simplicity but less efficiency. To see the improvement in 

term of public key size, the scheme parameters in [7], [24] 

and notations like  and    as have been implemented to 

describe the complexity of each parameter setting. 

( )log  =  to prevent brute force attacks on the noise. 

 

( )2log    =   to support the homomorphic operation for 

evaluating the “squashed decryption circuit”. 

( )2 log   =   to avoid lattice-based attacks.  

( )log    +  for the reduction to approximate, (GCD). 

( )' log   = +  for the secondary noise parameter.  

In order to satisfy such constraints, a convenient parameter 

setting suggested in [24] is as follows:  

( ) ( )2 5, ' 2 , ,  and           = = = = = +O O . 
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This setting results in a scheme with the public key size 

of ( )10O . In practice, the bit-length of the public key should 

be no less than 232 =  bits to avoid lattice attacks. However, 

the size of the public key generated by this scheme is at least 

462  bits, which is too large to be implemented on any real 

application [7].  

This performance has been improved by Coron et al. works. 

In order to achieve the reduced public key, they have defined 

some changes in the parameter setting as follows: 

( )log  =  to prevent brute force attacks on the noise. 

( ) ( )22 log      +   to support the homomorphic 

operation for evaluating the “squashed decryption circuit”. 

( )2 log   =    to avoid lattice-based attacks.  

( )2 log      + for the reduction to approximate GCD. 

( )' log   = + for the secondary noise parameter.  

To satisfied these conditions, they set 

( ) ( )2 5, ' 2 , ,       = = = =O O  as in the original scheme, 

but add up other new parameters such that 

( )2, , ' 4     = = =O . The main difference between the 

two schemes is that instead of having ( )5 = O  integers 'x i , 

they only have ( )22 = O  integers xi . Thus, the size of the 

public key is reduced to ( )7O instead of ( )10O  [7]. 

3.  The Propose Scheme 
 

In this section, we describe the proposed scheme, the security 

analysis of the proposed scheme and the proposed protocol to 

implement the scheme.  

    3.1  The Proposed Scheme 

Our proposed scheme utilizes a combination of symmetric 

and asymmetric encryption schemes to achieve fully 

homomorphic properties. This technique is proposed to 

improve the efficiency of the two schemes introduced in the 

previous section, as we do not need to generate many public 

keys for encryption as proposed by other schemes [8], [19], 

[25], [26]. In our scheme, there are three parties involved 

which are Data Owner (DO), processor, and receiver. In the 

scheme as illustrated in Figure 2, two types of keys will be 

used; public keys and two distinct secret keys where the 

former is an encryption key whiles the latter are for 

encryption and decryption. To encrypt the original data item, 

a secret key will be used instead of public key proposed by 

other schemes. The encrypted data will be outsourced to a 

processor together with an encrypted secret key that has been 

used to encrypt the data.  Prior the data to be processed, the 

data need to be re-encrypted using a receiver’s public key 

and decrypted using the encrypted secret key sent by the DO. 

This process is essential to allow further computation on the 

ciphertext as during the process, the size of noise attached to 

the data will be reduced and without disclosed any 

information about the data to the processor. The rest of the 

processes in our scheme are similar to Gentry’s approach as 

before.   

 
Figure 2. The proposed scheme 

Our scheme parameter setting is based on Coron et al.’s 

scheme introduced as in previous section. Therefore, the size 

of our public key can be maintained as ( )7O . Our proposed 

scheme consists of four algorithms described below. 

KeyGen ( ), ',p p xi : Generates secret keys  p  and 'p , which 

are odd integers such that )1 and ' 2 ,2 −


p p  with   being 

the bit length of the keys. Generates parameters qi  and ri  

randomly such that 
3

2qi  and 2


=ri . Generates public 

keys, ' 2= +x p q ri i i  for 1,2,...,=i n  where n  is the number of 

the squashing processes required in the computation to get 

the desired result. 

Encrypt ( ), {0,1},p m xi : Suppose m  be a plaintext such 

that {0,1}m . m  is encrypted using a symmetric encryption 

scheme as in [24].  

( ) 2= + +c m pq r mi i such that ( )c m  (4) 

The secret key p  is encrypted by DO using a receiver’s 

public key, 1x  . 

( ) 1= +c p x p ,  s.t. ( )c p   (5) 

Re-encrypt and decrypt ( ), , ( )1c m x c p : The processor will 

re-encrypt the encrypted data using a receiver’s public key. 

Then, decrypt it using the encrypted secret key sent by the 

DO. This process is called squashing and it will be repeated 

along the computation on encrypted data to maintain a small 

amount of noise attached to the data.  

( )( ) ( ) ( )= c m c c m c pd , see Definition 2. 

( ) ( )( ) 1 1= +  +c m x p xd   

( )( ) 1=  +c m p xd  

1= +m x  

Definition 2: Let  a  and b  be integers such that a  is a secret 

key to encrypt a plaintext x   and ( )=b c xa  is a ciphertext, 

we then have 1( )− = =a b c b xd a    

Evaluate ( ), ( ), ( ),..., ( )1 2C c m c m c mn : Suppose  C  is a Boolean 

circuit and ( ), ( ),..., ( )1 2c m c m c mn  be a tuple of ciphertext. 

Then, ciphertexts can be evaluated by  C  as long as the noise 

growth in the ciphertexts does not exceed the threshold. 

Otherwise the decryption will be failed [18]. This noise 

growth can be maintained small by implementing re-encrypt 

and decrypt on the ciphertext along the computation on 

encrypted data.    

Decrypt ( )( ( )), 'c C m p : ( ( ))c C m  is decrypted using 'p (a 

secret key that poses by the receiver) as below: 
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( )( ) ( ( ))mod ' mod2=C m c C m p   (6) 

    3.2  Scheme Security 

Our scheme’s security is based on the hardness of 

approximation GCD. The scheme is semantically secure 

under the stronger error-free approximate GCD assumption. 

The definition of error-free approximate GCD is given by the 

Definition 3. The proof follows the same strategy as in [24]. 

For the two specific integers p  and q , we define the 

distribution as in [7]: 

( )' , {Randomly choose [0, ),0 0

( 2 ,2 ) : Output }



 

=  

  − =  +

D p q q q

r x p q r

 

 

Definition 3: (Error-free approximate GCD) 

For a random  -bit prime p , pqy ...00 = where 0q is a 

random integer in )/2,0[ p and polynomially many samples 

from ( )0,qpD , then output p . 
 

Based on [27], the encryption of zero and the encryption of a 

random message by using the public key encryption instead 

of the oracle is hard to be differentiated. Thus, the scheme is 

said to be semantically secure under the stronger error-free 

approximate GCD problem.  

    3.3  The Proposed Protocol 

This protocol has been designed according to the 

implementation of the proposed FHE scheme in cloud 

environment. Three parties involved in the protocol which 

are a group of Data Owner (DO), Cloud Service Provider 

(CSP), and a receiver. DO is responsible as data contributor 

with limited computing resources and storage spaces, CSP is 

the processor, and the receiver is as a data user. In this 

protocol, a lot of computing resources and storage spaces are 

required to process the data contributed by DO. Thus, DO 

need to outsource the data to the CSP as the CSP provide 

such facilities as a service. Prior outsourcing the data, the 

data will be encrypted using the proposed scheme to prevent 

any information of the data to be disclosed to the CSP and at 

the same time, the data can be processed in the encrypted 

form without decryption. Once, the process is completed, 

result of the process will be sent to the receiver which 

satisfies a certain policy made by the DO. In the protocol, 

only the receiver will be able to decrypt the result as the 

receiver has the decryption key.  

The specific details of the proposed protocol will be 

described as below while the protocol is illustrated in Figure 

3. 

Stage 1: DO that consists of  1A   and 2A , together generate 

a secret key SkA . They create raw data =V vi  and =W wi  for 

1,2,...,=i n , and encrypt them using the secret key, i.e. 

( )
A

c VSk  and ( )
A

c WSk . They outsource ( )
A

c VSk  and ( )
A

c WSk  

to the designated cloud storage. 

Stage 2:   A receiver,  B  who satisfies a certain policy to 

use the result of processed data ( )
A

c VSk  and ( )
A

c WSk  will 

outsource their public key to the CSP and keep the 

corresponding private key by them. 

Stage 3:  1A   and 2A retrieve B ’s public key from the CSP, 

use it to encrypt their secret key ( )
B

c SkSk A and sent it to the 

CSP. 

Stage 4:  The CSP encrypts ( )
A

c VSk  and ( )
A

c WSk using PkB   

to produce ( )( )
B A

c c VPk Sk  and ( )( )
B A

c c WPk Sk . The CSP 

decrypts ( )( )
B A

c c VPk Sk  and ( )( )
B A

c c WPk Sk  

homomorphically as below. 

( ) ( ) ( )( ) ( ) ( )
B B A B A B

c Sk c c V c Sk c V c VPk A d Pk Sk Pk A d Sk Pk =  =  

( ) ( ) ( )( ) ( ) ( )
B B A B A B

c Sk c c W c Sk c W c WPk A d Pk Sk Pk A d Sk Pk =  =

  Then, the CSP computes those data homomorphically. 
( ) ( ) ( )

B B B

c V c W c V WPk Pk Pk =   

Stage 5: B  retrieves the result from the CSP and decrypts it 

using B  ’s private key: 

( )1 ( )
B B

c c V W V WSk Pk
−  =   

 

Figure 3. The Proposed Protocol 

4. Analysis, Result and Discussion 
 

In this section, we provide the definition of full adder in 

terms of gates operations. This definition is essential to 

determine the size of noise during computation on encrypted 

data. Furthermore, we provide some analysis of the scheme 

performance according to the number of squashing needed to 

perform the operations. The results of analysis are illustrated 

as graphs in Figures 5 and 6. 

    4.1  Full Adder Definition 

In this sub-section, the definition of full adder is provided as 

the following definition. 

Definition 4: 

An OR gate can be defined as a combination of XORs and an 

AND Gates as below: 

( ) ( )+ =   D E D E D E   (7) 

Definition 5: 

Carried output, Cout in circuit evaluation (during addition 

operation) can be illustrated in Figure 4 and defined as 

below. 

( ) ( )( )

( ) ( )( ) ( ) ( )( )

=  +  

=  +     +  

C A B C A Bout IN

A B C A B A B C A BIN IN
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where CIN  is a carried input value and S  is the output value 

as shown in Figure 4.   

 

Figure 4. Map Representation 

Definition 6: 

According to Definition 4 and 5, a single bit addition is 

defined as below: 

( ) ( )( ) ( ) ( )( )

+ =  

=           

A B A B CIN

A B A B C A B A B C A BIN IN
 

 

5. Result and Discussion 
 

The proposed scheme is believed to provide better efficiency 

in terms of key generation process as this scheme uses 

symmetric encryption rather than asymmetric one. The other 

performance of the scheme’s process remains the same as the 

one in [7]. Furthermore, to provide further analysis on the 

process involved in this scheme, we have analysed the 

number of squashing processes required with respect to the 

noise growth. Too fast noise growth implies frequent 

squashing operations required and thus degrades the scheme 

efficiency.  

 
Figure 5. Adding up to 10 16-bits ciphertexts. 

 
Figure 6. A single multiplication of ciphertexts with the 

length of up to 16-bits. 

 

To reduce the number of squashing required, we have 

analysed the implication of noise towards the bit length of 

ciphertext and the result is shown in Figures 5 and 6.  

Figure 5 shows the growth of noise based on the sum of up to 

10 16-bits ciphertexts. In this example, we have chosen a 

secret key of 2048 bits. After the sum of two ciphertexts, the 

noise has grown to nearly the size of the secret key. Once it 

exceeds the threshold, then the decryption will fail. Thus, the 

squashing technique is required to reduce the size of the 

noise to the size of the original ciphertext. To continue this 

process, the result of every sum needs to be squashed in 

order to have a correct result at the end of 10 additions on the 

distinct ciphertexts.  

Furthermore, Figure 6 shows the growth of noise during the 

product of two 16-bits ciphertexts with the same size of the 

secret key. After summing the first 6 bits of the ciphertexts, 

the noise is growing to nearly the size of the secret key. Once 

it exceeds the size of the key, the same problem happens as 

for the addition. Thus, squashing is needed to reduce the size 

of noise to the size of the first bit summation to enable the 

completion of the multiplication. 
 

Based on the analysis, we can conclude that the number of 

squashing required in computing on encrypted data is depend 

on the size of the noise growth with respect to the size of the 

secret key. In addition, both noise and squashing are very 

essential to be implemented to provide a secure FHE scheme. 

However, squashing technique is time-consuming and it 

should be carefully managed. Thus, in our proposed scheme, 

we have designed the scheme so that this technique will be 

done efficiently by the CSP as the CSP has a lot of 

computing resource. By doing so, we can achieve a FHE 

scheme with better efficiency while the security of the data is 

preserved.  
 

6. Conclusions 
 

We have proposed an improved FHE scheme which 

combines symmetric and asymmetric encryptions. Our 

scheme uses a symmetric key for encryption, so it offers 

better efficiency by successfully avoiding the time consuming 

process for generating many public keys in the most existing 

schemes. To implement the proposed scheme, we have 

proposed a protocol which has been designed to operate in 

cloud environments. Furthermore, we have provided a new 

analysis of the effect of noise during operations on encrypted 

data. This result will determine the number of squashing 

processes required to complete the computation on the 

encrypted data. In order to provide an efficient FHE scheme, 

the number of squashing processes should be considered 

because such a process is time-consuming and thus affects 

the efficiency of the scheme. 
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