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Abstract: A Cognitive Radio (CR) is an intelligent wireless 

communication system, which is able to improve the utilization of 

the spectral environment. Spectrum sensing (SS) is one of the most 

important phases in the cognitive radio cycle, this operation consists 

in detecting signals presence in a particular frequency band. In order 

to detect primary user (PU) existence, this paper proposes a low cost 

and low power consumption spectrum sensing implementation. Our 

proposed platform is tested based on real world signals. Those 

signals are generated by a Raspberry Pi card and a 433 MHz Wireless 

transmitter (ASK (Amplitude-Shift Keying) and FSK (Frequency-

Shift Keying) modulation type). RTL-SDR dongle is used as a 

reception interface. In this work, we compare the performance of 

three methods for SS operation: The energy detection technique, the 

Artificial neural network (ANN) and the support vector machine 

(SVM). So, the received data could be classified as a PU or not 

(noise) by the ED method, and by training and testing on a proposed 

ANN and SVM classification model. The proposed algorithms are 

implemented under MATLAB software. In order to determine the 

best architecture, in the case of ANN, two different training 

algorithms are compared. Furthermore, we have investigated the 

effect of several SVM functions. The main objective is to find out 

the best method for signal detection between the three methods. The 

performance evaluation of our proposed system is the probability of 

detection (𝑷𝒅) and the false alarm probability (𝑷𝒇𝒂). This 

Comparative work has shown that the SS operation by SVM can be 

more accurate than ANN and ED. 
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1. Introduction 
 

The already existed radio resources are becoming 
increasingly in demand, because of the wireless 
communication emergence (wireless technologies and its 
various services). Under a static frequency spectrum 
allocation, a study carried out by the Federal Communications 
Commission (FCC) [1] has shown that the frequency 
spectrum use is not regular; according to the different times 
and the geographical position; some frequencies bands are not 
occupied or partially occupied and others are highly 
demanded [1, 2], the activity is concentrated on cellular radio 
and FM bands. The unused frequencies have been termed as 
spectrum holes. A spectrum hole is a region of spatiotemporal 
frequencies assigned to a licensed user (primary users ‘PU’), 
but, at a particular time and specific geographic location, the 
band is not being utilized by the PU wherein a secondary and 
unique use is possible. As a conclusion of this previous study, 
FCC recommends an efficient spectrum management and 
access to enhance the spectrum efficiency, and specifies that 
unlicensed devices should have the capability of identifying 
free bands. 

In order to reduce the waste of spectrum resources and 
increase the spectral efficiency, the concept of cognitive radio 
(CR) was introduced and proposed by Joseph Mitola in 1999 
[3, 4].  The CR is defined as an intelligent device that senses 
the spectrum holes and makes it available for unlicensed users 
(secondary users (SU)). In CR the SUs can take advantage of 
these spectral holes dynamically and opportunistically, 
without causing any harmful interference to PUs. CR is a 
concatenation of software defined radio and artificial 
intelligence, with the aim of providing an efficient spectrum 
usage, also defined by FCC as: “A radio or system that senses 
its operational electromagnetic spectrum environment and 
can dynamically and autonomously adjust its radio operating 
parameters to modify system operation”. Figure 1 illustrates a 
basic cognition cycle model as introduced by Haykin [5]. 

 

Figure 1. Basic cognitive cycle. (The figure focuses on three 

fundamental cognitive tasks.) 

Spectrum sensing (Radio-scene analysis) is an essential 
capability of CR. The objective is to sense the spectrum holes 
in order to obtain the state of the band (free/occupied). The 
various spectrum sensing methods are discussed in [6]; 
Matched filter detection technique [7, 8], Energy detection 
techniques [9, 10] and cyclostationary feature detection 
technique [11, 12]. The energy detection (ED) remains the 
most used method for spectrum sensing [13], due to its simple 
implementation and not requiring any information about the 
PU signal. Therefore, in this work, we are interested in the ED 
method, in which the energy of the received signal is 
measured and compared with a predetermined threshold, 
which presents the noise energy present in the channel. If the 
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signal energy exceeds the threshold, we declare the presence 
of the PU, otherwise it is absent. 
During the last years soft computing techniques like artificial 
neural networks (ANN) and support vector machine (SVM), 
have become extremely successful discriminative approaches 
to pattern classification [14-20]. In our context, we propose 
an implementation of ANN and SVM for SS operation to 
detect the PU signal; we focus on different ANN training 
algorithms and SVM functions that can be applied on the set 
of input data patterns. Our proposed platform as described in 
Fig. 2: transmits a real ASK/FSK signals using the Raspberry 
Pi 3 card and the 433 MHz transmitter. The transmitted 
signals are received by RTL-SDR dongle connected to 
MATLAB software environment. The received signals are 
treated as features and fed into a detector to sense the PU 
availability, using energy detection method, ANN and SVM. 

 

 

Figure 2. The proposed system 

The rest of this paper is organized as follows: Section II 
presents the ASK and FSK radio signal transmitter based on 
Raspberry Pi 3 card and 433 MHz Wireless transmitter. 
Section III describes the mathematical formulation of 
classical energy detection method and explains the MATLAB 
implementation of this detector. Section IV gives more 
detailed description of the artificial neural network and the 
ANN detector architecture. Section V presents the theoretical 
foundations of SVM, the mathematical formulation and the 
implementation of SVM is presented. Section VI presents the 
performance evaluation results for the proposed SS 
implementation. Lastly, Section VII concludes the paper. 
 

2. The used Data base 
 

2.1 Database generation: 
 

In order to make our work more authentic, we will generate 

our own signals 𝑥(𝑡) using a Raspberry Pi 3 card and a 433 

MHz Wireless transmitter (ASK/FSK).  

 

Figure 3. Raspberry Pi 3 card 

The Raspberry Pi 3 (fig. 3) card is a low-cost, basic computer 
that was originally intended to help spur interest in computing 
among school-aged children. It allows running multiple 
variants of free operating systems GNU / Linux and 
compatible software. One of its great points is that it has GPIO 
connectors (General Purpose Input Output). This GPIO pins 
can be designated (in software) as an input or output pin and 

used for a wide range of purposes. In this work, we will use 
the GPIO 4 connector (pin 7) for transmitting signal data to 
433 MHz transmitter. 

 

Figure 4. The 433 MHz ASK/FSK transmitter devices  

The 433 MHz ASK/FSK transmitter (fig. 4) module is a small 
electronic device, it is used to transmit radio signals between 
two devices, and widely used in remote control, wireless data 
transfer applications, mobile robots and burglar alarms. The 
Specifications of the used 433MHz device, are as follows: the 
receiver operating voltage: 3V to 12V, the receiver operating 
current is 5.5mA, the operating frequency is 433 MHz, the 
Transmission Distance: 3 meters (without antenna) up to 100 
meters, the modulating technique: ASK (Amplitude shift 
keying) / FSK (Frequency-Shift Keying), the data 
transmission speed: 10Kbps, and has a Low cost and small 
package. 
 

2.2 Database acquisition: 
 

The receiver reconstructs the message sent from the captured 
signal by the inverted processing operations done on 
transmission. Those processes can be performed using a 
single RTL-SDR hardware and MATLAB software. RTL-
SDR (fig. 5) or Software Defined Radio is a radio 
communication system, wherein the traditional hardware 
components (e.g. mixers, filters, amplifiers, 
modulators/demodulators, detectors, etc.) are instead 
implemented by means of software on an embedded system 
[21]. RTL-SDR is capable of receiving any signal in its 
frequency range. This range varies depending on the type of 
device used. In this work, the used dongle has a frequency 
capability of approximately 25MHz-1750MHz. 

  

Figure 5. RTL-SDR dongle 

 

Figure 6. Synoptic diagram of SDR card 

Fig. 6 shows the block diagram of the different processing 
stages of an RTL-SDR dongle. It is composed of: 
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• A configurable analog RF head, consisting of filters, 
couplers, mixers, intermediate frequency local 
oscillators, broadband and low noise power 
amplifiers, 

• An analog / digital (ADC) and digital / analogue 
(DAC) conversion stage, 

• A programmable digital section for shaping the 
spectrum, adapting and digital baseband processing, 

• Software section providing control and software 
configuration of the various stages. 

 

3. The Energy Detection 
 

3.1. Energy detection Model 
 

The problem of spectrum sensing operation can be 
mathematically formulated as follows: 

{
𝑦(𝑡) = 𝑛(𝑡)                       ∶ 𝐻0

𝑦(𝑡) =  𝜀 ∗ 𝑥(𝑡) + 𝑛(𝑡)  ∶ 𝐻1
     Where   0 < 𝜀 ≤ 1     (1) 

Where: 

𝑦(𝑡) : The received signal. 

𝑥(𝑡) : The signal to be detected, deterministic or random, 
but unknown. 

𝑛(𝑡) : The presented noise in the channel. 

H0 is the hypothesis that the PU is not transmitting, 
therefore 𝑥(𝑡) = 0, while H1 is the hypothesis that the PU is 
using the channel for transmission. In the energy detection 
technique, we receive the signal 𝑦(𝑡), next we measure its 
energy by (2). The detection of the primary signal is done by 
comparing the measured energy with a threshold 𝜆 that 
presents the noise energy. 

𝐸 =
1

𝑇
∑ [𝑌(𝑛)]2𝑁

𝑛=1                  {
𝐸 > 𝜆       𝐻1

𝐸 < 𝜆       𝐻0
              (2) 

 

3.2. Energy detector implementation 
 

The energy detection implementation is presented in Fig. 7. 
First, the received signal y (t), by RTL SDR dongle, is 
digitized by an analog to digital convertor (ADC) then passes 
through a band-pass filter (BPF), with a center frequency f0 
and bandwidth W, using the transfer function (3) to select the 
desired band. 

𝐻(𝑓) = {

2

√𝑁0
                   |𝑓 − 𝑓0| ≤ 𝑊

0                         |𝑓 − 𝑓0| > 𝑊
                (3) 

Then the filtered signal is transformed into frequency domain 
through the fast Fourier transform (FFT) block, and the signal 
energy is measured using (4). 

 𝐸 =
1

𝑁
∑ |𝑌(𝑓𝑖)|2𝑁

𝑖=1                                                          (4) 

Finally, the estimated energy E is compared with a threshold 
λ (the noise energy) to decide if a signal is present (𝐻1) or not 
(𝐻0). 

 

Figure 7. Block diagram of a frequency domain energy 

detector 

 

4. Artificial Neural Networks 
 

4.1. The biological neuron 
 

The biological neuron is a special biological cell that 
processes information. According to [22], there are huge 
number of neurons in the human brain, approximately 1011, 
each neuron is connected to 103 up to 104 other neurons. In 
total, approximately 1014 to 1015 interconnections. As shown 
in the fig. 8, a typical neuron mainly consists of the following 
three parts: 

− The dendrites, which are the inputs of the neuron, collect 
the electrical information from the nervous system. 

− The soma that processes this information and sends back 
an electrical signal of impulse type. 

− The axon through which the outgoing signal is 
transmitted to neighboring neurons. 

 

Figure 8. The biological neuron 

4.2. The formal neuron 
 

A formal neuron (fig. 9) is a mathematical function; it is 
conceived as a model of biological neuron. Formal neurons 
are elementary units in an artificial neural network. The 
following diagram represents the general mathematical model 
of a formal neuron [23]: 

 

Figure 9. Mathematical model of the formal neuron 

The formal neuron that is given in the figure above has n 
inputs denoted as {𝑋1, 𝑋2, … , 𝑋𝑛}. Each line that connects 
these inputs to the summation junction is assigned a weight 
denoted as {𝑊1, 𝑊2, … , 𝑊𝑛}. The net input 𝑦𝑖𝑛 can be 
calculated as follows: 

𝑦𝑖𝑛  =  𝑥1. 𝑤1  + 𝑥2. 𝑤2 + 𝑥3. 𝑤3  +  … +  𝑥𝑛. 𝑤𝑛  +  𝑏   (5) 

The activation function 𝐹(𝑎) is One of the most important 
parts of a neuron. Several activation functions can be 
considered (threshold function, linear function, sigmoid 
function …). In this work, we have chosen a sigmoid function 
(fig. 10), for its nonlinearity that makes it possible to 
approximate any function. Finally, the output 𝒚 of the neuron 
is given in the following formula: 
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𝑦 = 𝐹(𝑦𝑖𝑛) = 𝐹 (∑ 𝑊𝑖 ∗  𝑋𝑖 + 𝑏)                                   (6) 

 

Figure 10. sigmoid function 

4.3. Multi-Layer Perceptron 
 

The multilayer perceptron (MLP) (fig. 11) is a class of 
feedforward artificial neural network that has at least three 
layers of nodes. It generates a set of outputs {𝑦1, 𝑦2, … , 𝑦𝑚} 
from a set of inputs {𝑋1, 𝑋2, … , 𝑋𝑛}. Except for the input 
nodes, each node is a neuron that uses a nonlinear activation 
function.  

 

Figure 11. MLP model  

A neural network is trained with input and target pair patterns 
with the ability of learning. MLP can separate data that is not 
linearly distinguishable [24]. It is especially trained using a 
supervised learning technique called back-propagation (PB) 
algorithm [25], which aims at minimizing the global error 
measured at the output layer by the relation bellow: 

            𝑒(𝑡) =  𝑦𝑑(𝑡) − 𝑦𝑚(𝑡)                                         (7) 

Where 𝑦𝑑(𝑡) denotes the desired output, and 𝑦𝑚(𝑡) the 
measured output of the neuron. 
The BP algorithm uses an iterative supervised learning 
procedure, where the MLP is trained with a set of predefined 
inputs and outputs. The global error 𝐸𝑔(𝑡) is calculated by 

equation (8), this error can be minimized by the gradient 
descent technique [22]. 

       𝐸𝑔(𝑡) =
1

2
∑ (𝑦𝑑,𝑖(𝑡) − 𝑦𝑚,𝑖(𝑡))

2
𝑛
𝑖=1                            (8) 

There are several training algorithms that can be used to train 
an MLP network. In this paper, we will present a qualitative 
comparison between two training algorithms: quasi newton 
and conjugate gradient. Wherein the used training functions 
are respectively: trainlm (Levenberg Marquardt (LM)) and 
trainscg (Scaled Conjugate Gradient (SCG)). All these 
algorithms are trained by the same data set acquired from the 
implementation described in section II. 
 

4.4. ANN implementation 
 

We have proposed an ANN detector for spectrum sensing 
(Fig. 12), the ANN detector architecture is similar at the ED 
detector (Fig. 7), where the energy calculation block is 
replaced by an ANN block (Fig. 13). 

 

Figure 12. ANN detection diagram 

The number of input layer neurons n, is fixed by the points 
number (features) in the captured signal FFT vector. which is 
1024 and we use one (1) neuron in the output layer 
(𝐻1 or 𝐻0): 

 

Figure 13. The ANN architecture 

5. Support vector machines 
 

Support vector machines (SVMs) are a new discriminating 
techniques in the theory of statistical learning, introduced in 
1995s by V. Vapnik in his book " The Nature of Statistical 
Learning Theory "[26]. SVMs are machine learning methods 
that can be used to separate two classes of data [27, 28] by 
finding an optimal hyperplane ‘𝐻0’. This technique is 
essentially used for binary classification, but possible to 
classify samples with multiple classes. In addition, it can be 
used to solve both linear and nonlinear classification or 
regression problems. In SVMs, each input instance 𝑥, is 
represented by a pair (𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖  ∈  ℝ𝑛 is the data 
instance, and 𝑦𝑖 ∈ {1, −1}  is the binary class label (positive 
or negative). The training data can be defined as: 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)  ∈  ℜ𝑛   ,   𝑖 = 1, … , 𝑚 }                                (9) 

The hyperplane ‘H’ can be defined by equation (10). Where 
the vector ‘𝜔’ is the weighing vector that defines the boundary 
of different classes of data, and ‘𝑏’ is a scalar threshold. 

𝐻 ∶  (𝜔 . 𝑥)  +  𝑏                                                                   (10) 

The objective of SVM classification is to predict the value of 
𝑦𝑖  for new data points 𝑥𝑖. There are two types in SVM 
classification: Linearly and non-linearly separable 
classification. 

5.1. Linearly separable classification: 
 

In this section, we present the general method of constructing 
the optimal hyperplane (OH), which separates data belonging 
to two different linearly separable classes. Fig. 14 gives a 
visual representation of the OH (𝐻0) in the case of linearly 
separable data, which is satisfying in the following 
conditions: 

{
𝜔 ∗ 𝑥𝑖 + 𝑏 ≥ 1               𝑖𝑓     𝑦𝑖 = 1     
𝜔 ∗  𝑥𝑖 + 𝑏 ≤ −1          𝑖𝑓       𝑦𝑖 = −1  

                         (11) 

That is equivalent to the next representation: 

𝑦𝑖(𝜔 ∙  𝑥𝑖 + 𝑏) ≥ 1     ,    𝑖 = 1, … … , 𝑚                          (12) 
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Figure 14. Separator hyperplanes: H is any hyperplane, Ho 

is the optimal hyperplane and M is the margin that represents 

the distance between the different classes and Ho (SV are the 

Supports Vectors) 

The optimal hyperplane 𝐻0 is a hyperplane that maximizes the 
margin M, which represents the smallest distance between the 
different data of the two classes and 𝐻0. Maximizing the 
margin M is equal to maximizing the sum of the distances 
between the two classes relative to 𝐻0. The margin ‘M’ has 
the following mathematical expression: 

    𝑀 = 𝑚𝑖𝑛
𝑥𝑖|𝑦𝑖=1

𝜔∙𝑥+𝑏

‖𝜔‖
−  𝑚𝑎𝑥

𝑥𝑖|𝑦𝑖=−1

𝜔∙𝑥+𝑏

‖𝜔‖
                      (13) 

          =
1

‖𝜔‖
−

−1

‖𝜔‖
                                                                         

 𝑀 =
2

‖𝜔‖
                                                                            (14)  

The optimal hyper plane can be obtained by maximizing the 
equation (14). Which is equivalent to minimizing (15): 

   min
𝜔

‖𝜔‖2

2
                                                    (15) 

The Equation (15) can be solved as a quadratic optimization 
problem by Lagrangian function: 

𝐿(𝜔, 𝑏, 𝛼) =
1

2
‖𝜔‖2 − ∑ 𝛼𝑖

𝑚

𝑖=1

[𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) − 1]      (16) 

Where 𝛼𝑖 = (𝛼1, … , 𝛼𝑚) > 0 is a lagrangian multiplier 
factors. 

By deriving the equation (16) we obtain: 

                𝜔 = ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖𝑥𝑖                                                       (17) 

                ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖 = 0                                                           (18) 

Substituting (17) and (18) into Equation (16), the optimal 
separating hyperplane can be obtained by solving the 
following dual representation of the optimization problem: 

  min     
𝛼

1

2
∑ 𝑦𝑖𝑦𝑗(

𝑚

𝑖,𝑗=1

𝑥𝑖𝑥𝑗)𝛼𝑖𝛼𝑗 − ∑ 𝛼𝑗                           (19)

𝑚

𝑗=1

 

Subject to     ∑ 𝛼𝑖
𝑚
𝑖=1 𝑦𝑖 = 0    ,    𝛼𝑖 >

0                                          

By solving this dual Lagrange function (19), 𝛼 is evaluated. 
Consequently, 𝜔 is evaluated out from (17), and 𝑏 can be 
easily calculated from (20): 

          𝑏 = 𝑦𝑗 − ∑ 𝛼𝑖𝑦𝑖(

𝑚

𝑖=1

𝑥𝑖𝑥𝑗)                                            (20) 

Knowing that the classification function is defined by (21), 
where 𝑠𝑔𝑛 is a Signum function. 

   𝑐𝑙𝑎𝑠𝑠(𝑥) =  𝑠𝑔𝑛(𝜔 ∙ 𝑥𝑖 + 𝑏)                                          (21) 

Finally, we can classify an unknown data x by utilizing the 
following function: 

      𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛 [∑ 𝛼𝑖𝑦𝑖(

𝑚

𝑖=1

𝑥𝑖𝑥) + 𝑏]                       (22) 

 

5.2. Non-linearly separable classification: 
 

If the classes of data are mixed (not linearly) (fig. 15), it is 
impossible to linearly separate the training data in the original 
space. In order to solve this non- linearly separable problem, 
the slack variables 𝜉𝑖, which cause little change around 
training data, are introduced. Then the training vectors must 
satisfy: 

𝑦𝑖(𝜔 ∙  𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖       ,    𝑖 = 1, … … , 𝑚       (23) 

In the case when the data points are not linearly separable in 
the data space, the SVM handles this by using a kernel 
function to map the data to a transformed feature space (a 
higher dimensional space) where a hyperplane is then used to 
gain linearly separation. For this, we project the original data 
into the feature space using non-linear functions. In this new 
space we build the OH that separates the transformed data. 
The main problem here is how to manipulate the 
transformation of all input vectors in the feature space, so as 
to avoid an increase in the cost in number of free parameters. 
Let the set 𝐷′ be the image (the transformed feature space) of 
the set D defined in previous section, by the transformation: 

𝐷′ = {𝜓(𝑥𝑖), 𝑦𝑖)  ∈  ℜ𝑛 × {−1,1}, 𝑖 = 1, … , 𝑚| 𝑝 ≥ 𝑛  }  (24) 

Structuring an optimal hyperplane, defined by the weight 
vector 𝜔 and the bias b is solved as a quadratic optimization 
problem that maximizes the margin between the classes (The 
first part of Eq. 25), and minimizes the errors (The second part 
of Eq. 25). It can be expressed as: 

𝑚𝑖𝑛 [
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

    ]                                 (25) 

Subject to   {
 𝑦𝑖(𝜔 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ;  𝑖 = 1, … … , 𝑚 
 

Where C is a soft margin constant that is used to control the 
training error rate by different values. For high values of C, 
the optimization uses a smaller-margin hyperplane if that 
hyperplane classified all the training points correctly. 
Conversely, a very small value of C will make the optimizer 
use a higher-margin separating hyperplane in the case when 
the hyperplane misclassifies more points. 
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Figure 15. Separator hyperplanes in the case of non-linearly 

separable (𝜉 is the slack variables) 

Using Lagrange multiplier technique, the above optimization 
problem (25) can be reformulated as: 

𝐿(𝜔, 𝑏, 𝜉, 𝛼, 𝛽) =
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

− ∑ 𝛽𝑖𝜉𝑖

𝑚

𝑖=1

− ∑ 𝛼𝑖

𝑚

𝑖=1

[𝑦𝑖(𝜔𝑇𝜓(𝑥𝑖) + 𝑏) − 1

+ 𝜉𝑖]                                                           (26) 

Where 𝛼𝑖 and β𝑖 are positive Lagrangian multipliers 
parameters that can be found by solving the quadratic 
programming problem (26). The obtained vector 𝛼 is known 
as a support vector. By applying Karush-Kuhn-Tucker (KKT) 
conditions, which is a theorem that plays an important part in 
the theory of optimization, to (26), we can obtain: 

          𝜔 = ∑ 𝛼𝑖𝑦𝑖𝜓(𝑥𝑖)                                                     (27)

𝑚

𝑖=1

 

               ∑ 𝛼𝑖𝑦𝑖 = 0

𝑚

𝑖=1

                                                            (28) 

               𝛼𝑖 = 𝐶 − 𝛽𝑖                                                              (29) 

It is noticeable that 0 ≤ 𝛼𝑖 ≤ 𝐶 and  𝛽𝑖 ≥ 0. 

By calculating the derivatives with respect to 𝜔, 𝑏 and 𝜉, the 
dual representation of the optimization problem in term of 
support vectors can be obtained as follows [28]. 

max ∑ 𝛼𝑖 −
1

2

𝑚

𝑖=1

∑ 𝛼𝑖𝛼𝑗

𝑚

𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)                           (30) 

Subject to   

{
 ∑ 𝛼𝑖

𝑚
𝑖=1 𝑦𝑖 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶 ;  𝑖 = 1, … … , 𝑚 
                                        (31)     

Where 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜓(𝑥𝑖)𝜓(𝑥𝑗) is the kernel function. Hence, 

by solving the optimization function defined in (30), the 
resulting nonlinear classification function can be obtained as 
follows: 

𝑐𝑙𝑎𝑠𝑠(𝑥) = 𝑠𝑔𝑛 [ ∑ 𝛼𝑖

𝑥𝑖∈ 𝑉𝑆

𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏 ]             (32) 

𝜓(𝑥𝑗) The most common kernel, that are widely used 

because of their efficiency in mapping the input data to higher 
dimensional space in order to reduce the computational load, 
are illustrated as follows (𝑢 and 𝑣 are vectors) [28]. 

− The linear kernel: 

            𝐾(𝑢, 𝑣) =  𝑢. 𝑣                                                      (33) 

− The Polynomial kernel: 

         𝐾(𝑢, 𝑣)  =  [(𝑢. 𝑣)  +  1]𝑑                                    (34) 

− The RBF kernel (Radial Basis Function): 

                𝐾(𝑢, 𝑣)  =  𝑒𝑥𝑝(−
‖𝑢 −  𝑣‖2

2𝜎2
 )                          (35) 

5.3. SVM implementation: 
 

Support Vector Machine (SVM) model is a powerful 
supervised machine learning, it is used for efficient 
classification with high precision in various applications like 
object detection, speech recognition, bioinformatics, image 
classification, medical diagnosis and others [29]. In our 
context, we have proposed an SVM detector diagram for 
signal classification (spectrum sensing) (Fig. 16). Our SVM 
detector have the same steps of the ANN detector (fig. 12), 
we have just changed the ANN block by an SVM block. 

 

Figure 16. SVM detection diagram 

The SVM kernel choice is critical to define the flexibility and 
classification power. The most used kernels are: linear, 
polynomial degree ‘p’, and Gaussian. In MATLAB software, 
we can find three principle SVM functions for classification 
[30]: “fitcsvm”, “fitclinear” and “fitckernel”. 

− The Fitcsvm function (fit a classifier using SVM), 
trains a support vector machine (SVM) model for binary 
classification (two classes), on a low-dimensional or 
moderate-dimensional predictor data set. 

− The fitclinear (Fit linear classification) function 
trains linear classification models for two-class (binary) 
learning with high-dimensional. This function minimizes 
the objective function using techniques that reduce 
computing time (e.g., stochastic gradient descent). 

− The fitckernel (fit classifier kernel) function trains a 
binary Gaussian kernel classification model for nonlinear 
classification. it is more practical for big data applications 
that have large training sets, but can also be applied to 
smaller data sets. This function maps data in a higher 
dimensional space then fits a linear model in the new 
space by minimizing the regularized objective function. 

6. Implementation and Results 
 

The database used in our spectrum sensing implementation, 
was generated by the Raspberry Pi 3 card and the 433 MHz 
Wireless transmitter, then captured by RTL-SDR dongle for 
different distances between the transmitter and the receiver. 
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The collected database contains 1600 signals with ASK and 
FSK modulation type. The proposed work is implemented in 
MATLAB 9.4.0 (R2018a) for a 64-bit computer with core i3 
processor, clock speed 2.4 GHz, and 6 GB RAM. 

Table 1 is showing how we have used our database in the 
learning phase and test phase: 

Table 1. Data-base used in learning and testing 

Signal Learning phase Test phase 

Primary signal 600 300 

Noise 400 300 

 

Figure 17. Chart of the energy detection operation 

 

 

The performance of an energy detector can be characterized 
using two probabilities: 𝑃𝑑 the probability of detection and 
𝑃𝑓𝑎 the false alarm probability. 

𝑃𝑑 : The probability of detecting a signal in the band of 
interest, when this signal is truly present (𝐻1). Failed 
detection causes interference with the PU. We calculated 𝑃𝑑 
by (36): 

𝑃𝑑  =  𝑃 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐻1/𝐻1)   =
𝑁𝑐

𝑁
× 100               (36) 

𝑃𝑓𝑎 : The probability when the test falsely decides that the 

band of interest is occupied, while it is free (𝐻0). The False 
alarm reduces the efficiency of spectrum use. We calculated 
𝑃𝑓𝑎 by (37): 

𝑃𝑓𝑎  =  𝑃 (𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐻1/𝐻0)  =
𝑁𝑒

𝑁
× 100              (37) 

Where:  
𝑁𝑐  : The number of times in which the signal is detected, 

while  𝐻1; 

𝑁𝑒 : The number of times in which the signal is detected, 
while  𝐻0; 

𝑁 : The number of the captured signals. 

6.1. Energy Detection results: 
 

The detection of the transmitted signal, using the energy 
detection method, is done in MATLAB software according to 
the flowchart of Fig. 17. We have as an input a frequency 
vector that contains ‘N’ signals data, which is captured by the 
RTL-SDR. 
Following this flowchart, we calculate the probability of 
detection 𝑃𝑑 . While we calculate the false alarm probability 
𝑃𝑓𝑎 by stopping the emission operation and following the 

same previous steps using (37) instead of (36). The values of 
𝑷𝒅 and 𝑷𝒇𝒂 obtained through the energy detector (fig. 7) are 

shown in the table 2: 

Table 2. The probability of detection and the false alarm 

probability of ED 

𝑷𝒅 𝑷𝒇𝒂 

0.99 0,015 

 

6.2. Artificial neural network results 
 

Supervised learning methods are normally composed of two 
main phases: training/learning, and classification. To 
determine the most convenient value of the neurons number 
in the hidden layer, we have tested experimentally several 
architectures, with different hidden layer size for each training 
function. We measure the error on training with mean squared 
error (MSE). We have used Matlab Neural Network Toolbox 
in order to build and train our network. Basic system training 
parameters 1000 maximum training epochs, 6 validation 
checks, performance goal=0, time=Inf, min_grad=1e-010 and 
max_fail=10 are fixed for each training function. Table 3 
summarizes the results obtained for different training 
functions with different architectures. 

 

 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj70MqI1v3bAhVGD5oKHeTwBpgQFggqMAA&url=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8292449%2F&usg=AOvVaw3ChpaIbS-8OFj9wZKH92HL
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Table 3. Probability of detection and the false alarm 

probability in testing phase for ANN detector 

Number of 

neurons in the 

hidden layer 

Training 

function 
𝑷𝒅 𝑷𝒇𝒂 

3 

SCG 0.983 0.017 

LM 0.963 0.020 

4 

SCG 0.973 0.013 

LM 0.966 0.043 

5 

SCG 0.980 0.0167 

LM 0.960 0.046 

6 

SCG 0.970 0.0167 

LM 0.973 0.0167 

7 

SCG 0.963 0.0267 

LM 0.960 0.023 

8 

SCG 0.970 0.0131 

LM 0.983 0.007 

10 

SCG 0.970 0.0233 

LM 0.956 0.0267 

The results show that the best performance is obtained for the 
training function ‘trainlm’ with 8 hidden neurons, in which 
the probabilities 𝑷𝒅  and 𝑷𝒇𝒂 are presented in the following 

table. 

Table 4. The probability of detection and the false alarm 

probability of ANN detection 

𝑷𝒅 𝑷𝒇𝒂 

0.983 0.007 

 

6.3. Support vector machines results 
 

The SVM training phase builds a model for classifying any 
future data based on the Support Vectors (SVs) identified 
from a training dataset. The SVs are then used in the 
classification phase to predict the appropriate class of an input 
test data. In order to determine the most convenient SVM 
function for our SVM detector, we have compared the 
performance of the above three functions. The 
implementation results of the SVM detector (fig. 16) are 
presented in table 5, the following table shows the comparison 
of classification performance for the three SVM functions. 

 

 

 

 

 

 

 

 

 

Table 5. Probability of detection and the false alarm 

probability in testing phase for SVM detector 

Functions 𝑷𝒅 𝑷𝒇𝒂 

 

fitcsvm 

linear 0.9433 0.040 

sigmoid 0.9400 0.403 

RBF 1 0.66 

fitclinear 0.9900 0 

fitckernel 0.9733 0 

From this table we can see that the function “fitclinear” has 

shown high classification accuracy rates outperforming the 

other functions. 
 

6.4. Discussion 
 

Energy detection has the advantages of low complexity, ease 
of implementation, and extensive use of properties without 
knowing the signal. However, when there is a low signal noise 
ratio (SNR), there are many problems that decrease the 
performance of energy detection method, and make it hard to 
set the threshold. In the classic method, we use a static 
threshold, but as we know, the threshold depends on the 
environmental noise. Whereas the ANN detector and the 
SVM detector, give the best results and they have a stable 
performance in comparison with the classical energy 
detection method. The excellent results have been reported in 
applying SVM’s in spectrum sensing. 
 

7. Conclusions 
 

In this paper, we have proposed different implementation of 
spectrum sensing based on real signal generated by Raspberry 
Pi 3 card and 433 MHz Wireless transmitter. The transmitted 
signal is detected in MATLAB software by RTL-SDR dongle 
using three methods: the energy detection method, the 
artificial neural (ANN) networks and support vector machines 
(SVM). The ANN networks implemented using the two 
training functions (SCG and LM), are affected according to 
the number of neurons in their hidden layer. The SVM 
algorithm is implemented using three SVM functions 
(fitcsvm, fitclinear and fitckernel). The proposed work is 
evaluated in terms of the probability of detection and the false 
alarm probability. The obtained results show that the 
spectrum sensing will be stable with ANN and SVM 
detectors, in comparison with the classical energy detection 
method. However, the SVM classifier achieves the highest 
detection performance compared to the other classifiers (ED 
and ANN). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
International Journal of Communication Networks and Information Security (IJCNIS)                                           Vol. 11, No. 1, April 2019 

 

References 
   

[1] Federal Communications Commission, Spectrum Policy Task 

Force, “Report of the Spectrum Efficiency Working Group,” 

November 2002. 

[2] P. Kolodzy, "Next generation communications: Kickoff 

meeting," in Proc. DARPA, vol. 10, 2001. 

[3] J. Mitola G. Q. Maguire, "Cognitive radio: making software 

radios more personal," IEEE personal communications, vol. 6, 

No. 4, pp. 13-18, 1999. 

[4] J. Mitola Iii, "Cognitive radio for flexible mobile multimedia 

communications," Mobile Networks and Applications, vol. 6, 

No. 5, pp. 435-441, 2001. 

[5] S. Haykin, "Cognitive radio: brain-empowered wireless 

communications," IEEE journal on selected areas in 

communications, vol. 23, No. 2, pp. 201-220, 2005. 

[6] T. Yucek H. Arslan, "A survey of spectrum sensing algorithms 

for cognitive radio applications," IEEE communications 

surveys & tutorials, vol. 11, No. 1, pp. 116-130, 2009. 

[7] D. Cabric, S. M. Mishra, R. W. Brodersen, "Implementation 

issues in spectrum sensing for cognitive radios," in Signals, 

systems and computers, 2004. Conference record of the thirty-

eighth Asilomar conference on, vol. 1, pp. 772-776, 2004. 

[8] W. Ejaz, ul Hasan, N., Lee, S. et al. , "Intelligent spectrum 

sensing scheme for cognitive radio networks," EURASIP 

Journal on Wireless Communications and Networking, vol. 1, 

pp. 1-10, 2013. 

[9] F. F. Digham, M.-S. Alouini, M. K. Simon, "On the energy 

detection of unknown signals over fading channels," IEEE 

International Conference on Communications, Anchorage, 

AK, USA, vol. 5, pp. 3575-3579, 2003. 

[10] V. I. Kostylev, "Energy detection of a signal with random 

amplitude," IEEE International Conference on 

Communications, New York, USA, vol. 3, pp. 1606-1610, 

2002. 

[11] K. Kim, I. A. Akbar, K. K. Bae, J.-S. Um, C. M. Spooner, J. 

H. Reed, "Cyclostationary approaches to signal detection and 

classification in cognitive radio," 2nd IEEE International 

Symposium on New Frontiers in Dynamic Spectrum Access 

Networks, Dublin, Ireland, pp. 212-215, 2007. 

[12] Sai Shankar N, C. Cordeiro and K. Challapali, "Spectrum agile 

radios: utilization and sensing architectures," First IEEE 

International Symposium on New Frontiers in Dynamic 

Spectrum Access Networks, Baltimore, MD, USA, pp. 160-

169, 2005. 

[13] S. Atapattu, C. Tellambura, H. Jiang, "Energy detection based 

cooperative spectrum sensing in cognitive radio networks," 

IEEE Transactions on wireless communications, vol. 10, No. 

4, pp. 1232-1241, 2011. 

[14] S. Ali, K. A. Smith, "On learning algorithm selection for 

classification," Applied Soft Computing, vol. 6, No. 2, pp. 119-

138, 2006. 

[15] K. M. Thilina, K. W. Choi, N. Saquib, E. Hossain, "Machine 

learning techniques for cooperative spectrum sensing in 

cognitive radio networks," IEEE Journal on selected areas in 

communications, vol. 31, No. 11, pp. 2209-2221, 2013. 

[16] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, "Gene selection 

for cancer classification using support vector machines," 

Machine learning, vol. 46, No. 1-3, pp. 389-422, 2002. 

[17] P. Singh, V. Pareek, A. K. Ahlawat, "Designing an Energy 

Efficient Network Using Integration of KSOM, ANN and Data 

Fusion Techniques," International Journal of Communication 

Networks and Information Security (IJCNIS), vol. 9, No. 3, 

2017. 

[18] B. Benmammar, Y. Benmouna, A. Amraoui, F. Krief, "A 

parallel implementation on a multi-core architecture of a 

dynamic programming algorithm applied in cognitive radio ad 

hoc networks," International Journal of Communication 

Networks and Information Security (IJCNIS), vol. 9, No. 2, 

2017. 

[19] A. Elrharras, R. Saadane, M. Wahbi, A. Hamdoun, "Neural 

Networks and PCA for Spectrum Sensing in the context of 

Cognitive Radio," Proceedings of the Mediterranean 

Conference on Information & Communication Technologies, 

pp. 173-181, 2016. 

[20] A. Elrharras, R. Saadane, M. Wahbi, A. Hamdoun, "Signal 

detection and automatic modulation classification based 

spectrum sensing using PCA-ANN with real word signals," 

Applied Mathematical Sciences, vol. 8, No. 160, pp. 7959-

7977, 2014. 

[21] M. Dillinger, K. Madani, N. Alonistioti, Software defined 

radio: Architectures, systems and functions. John Wiley & 

Sons, 2005. 

[22] A. K. Jain, J. Mao, K. M. Mohiuddin, "Artificial neural 

networks: A tutorial," Computer, vol. 29, No. 3, pp. 31-44, 

1996. 

[23] M. T. Hagan, H. B. Demuth, M. H. Beale,"Neural network 

design," Boston, 1996. 

[24] G. Cybenko, "Approximation by superpositions of a sigmoidal 

function," Mathematics of control, signals and systems, vol. 2, 

No. 4, pp. 303-314, 1989. 

[25] K. Tsagkaris, A. Katidiotis, P. Demestichas, "Neural network-

based learning schemes for cognitive radio systems," 

Computer Communications, vol. 31, No. 14, pp. 3394-3404, 

2008. 

[26] V. Vapnik, The nature of statistical learning theory. Springer 

science & business media, 2013. 

[27] C. J. Burges, "A tutorial on support vector machines for pattern 

recognition," Data mining and knowledge discovery, vol. 2, 

No. 2, pp. 121-167, 1998. 

[28] C. Cortes V. Vapnik, "Support-vector networks," Machine 

learning, vol. 20, No. 3, pp. 273-297, 1995. 

[29] J. Nayak, B. Naik, H. Behera, "A comprehensive survey on 

support vector machine in data mining tasks: applications & 

challenges," International Journal of Database Theory and 

Application, vol. 8, No. 1, pp. 169-186, 2015. 

[30] https://www.mathworks.com/help/stats/support-vector-

machine-classification.html 

 

https://www.mathworks.com/help/stats/support-vector-machine-classification.html
https://www.mathworks.com/help/stats/support-vector-machine-classification.html

