
36
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Modified SHA1: A Hashing Solution to Secure Web

Applications through Login Authentication

Esmael V. Maliberan

Graduate Studies, Surigao del Sur State University, Philippines

Abstract: The modified SHA1 algorithm has been developed by

expanding its hash value up to 1280 bits from the original size of

160 bit. This was done by allocating 32 buffer registers for

variables A, B, C and D at 5 bytes each. The expansion was done by

generating 4 buffer registers in every round inside the compression

function for 8 times. Findings revealed that the hash value of the

modified algorithm was not cracked or hacked during the

experiment and testing using powerful online cracking tool, brute

force and rainbow table such as Cracking Station and Rainbow

Crack and bruteforcer which are available online thus improved its

security level compared to the original SHA1.

Keywords: SHA1, hashing, client-server communication,

modified SHA1, hacking, brute force, rainbow table

1. Introduction

Cryptography and Network Security are concepts to secure

client-server communication over wireless network.

Currently, Internet security has been an interest in the area of

Information Technology particularly in cloud environment

[1, 2,]. According to [23], in order to secure data in a cloud

environment, a fully homomorphic encryption (FHE) scheme

with improved efficiency can be implemented.

Cryptographic hash function is one of the solutions to protect

data being transferred. It is a component for various

signification internet security applications [3]. Moreover, it

accepts any length of messages and parsed it into fixed length

value, which is called information abstraction. Hashing

cannot be reversed unlike encryption. It has main usage in

sustaining message integrity and confidentiality and because

of this, hash algorithms are used especially in login

authentication and file verification [4, 5]. In addition, hashing

algorithms are essential elements in numerous security

applications and practices [6]. SHA-1 generates a hash

message based on principles related to those used by Ronald

L. Rivest who designed MD4 and MD5 algorithms. The

algorithm was made as a portion of the U.S. Government's

Capstone project and it is widely used in securing client-

server communications and a variety of applications [7, 8].

Secure Hash Algorithm (SHA 1), is a cryptographic hashing

algorithm utilized to verify the authenticity and integrity data.

Differences of this algorithm are usually applied by SSL

certificate authorities to sign certificates and digital

signatures. This hash algorithm guarantees that the website’s

data is not tampered or altered. It generates a fixed 160 bit

unique hash codes from any file size. Based from these hash

values, it can be verified whether or not the file has been

modified by comparing the hash value generated from the

hash value stored in the database [24].

But, SHA1 is not perfect due to its short hash value. It can

easily be cracked using brute force and rainbow table.

Furthermore, researchers have attained the first collision

attack against the SHA-1 hash function, generating two

different PDF files. The research study conducted by [9]

presented a specific freestart identical pair for SHA-1, i.e. a

collision within its compression function. This was the first

appropriate break of the SHA-1, extending all 80 out of 80

steps. This attack was performed for only 10 days of

computation on a 64-GPU. Thus, SHA1 algorithm is not

anymore safe in login authentication and data transfer. For

this reason, there were enhancements and modifications

being developed in the algorithm in order to solve these

issues [10, 11]. [12] proposed a new approach to enhance

MD5 algorithm combined with SHA compression function

that produced a 256-bit hash code. This enhancement was

used to prevent birthday attacks, rainbow table and brute

force attacks. The method was to extend the hash length up to

256–bit from its original size of 128-bit. The block size was

expanded inside the compression function. The proposed

modification was applied in data reliability and signing

applications. Meanwhile [13] proposed a modification to

SHA-1 hash function. For their scheme, the authors utilized

the usually dispersed pseudo random function instead of

logical functions. This change generated an exclusive hash

codes for distinctive messages and provided brute force-

resistance requirement to hash function. Numerous hash

functions have been proposed, majority of them were derived

from MD4 hash function. The MD4 hash function was

developed by Rivest [14].

2. Related Work

A new secure Hash algorithm, SHA-192 is presented in [15].

The novel SHA-1 established by NIST generated 160 bit

message digest whereas the proposed SHA-192 generated a

192 output hash size. The authors made modifications to the

original function and examined that SHA-192 to be much

improved than the present SHA-1 hashing algorithm with

regards to the number of brute force attack. However, the

time performance of the proposed SHA-192 was slower

compared to the original one since it needs to generate a 192

bit of hash value. A digital signature consisting mathematical

calculations that demonstrates the authenticity of a message

was also proposed as an enhancement to the original SHA1

[16].

Meanwhile [17] argued the necessity to modify the SHA-1.

According to the author, a hash function in one of them most

important cryptographic approaches which are usually used

in many applications. However, it was found out that these

hash functions that followed the Merkle-Damgard

Construction have shown weaknesses particularly on the

compression function thus vulnerable to generic attacks and

collision attacks. Therefore, the proposed study based it on

the design principle of SHA-1 and is patterned on dither

https://en.wikipedia.org/wiki/Message_digest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Capstone_(cryptography)

37
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

construction. The compression function part consists of three

inputs and produces a fix output of 160-bit length. Findings

revealed that Dither construction have shown a strong

resistance against different cryptanalytic attacks.

A Canonical Particle Swarm Optimization approach to

improve the SHA1 is presented in [18]. The idea consisted of

predicting control block which captured the plaintext from

the user and provided a log-list of the same size with the

plaintext stream. The forecasting scheme does obstruct the

CPU utilization a bit but the author was convinced that the

innovative scheme will produce a new setting in crafting a

cryptographic hash function.

Moreover, a new improved MD5 Algorithm combined with

SHA Compression Function that produced a 256-bit hash

code is presented in [19]. This enhancement was used to

prevent brute force and rainbow table and birthday attacks.

Their method was to expand the hash size to 256–bit from its

original size of 128-bit by expanding the compression

function block size which will be applied in data reliability

and signing applications. Complicated message enhancement

approaches were used to attain the essential situations on the

chaining variables and the message bits. Findings revealed

that it was resistant to local collision and differential attack.

In addition, [20] made enhancement on SHA1 particulary on

the method and the formula of parsing or digesting the final

message through shifting, xoring and improved mathematical

formula. The improved SHA-1 maintained its original rounds

which consisted of 80 rounds and message digest output of

160 bit.

An advanced SHA-1 Algorithm ensuring stronger data

integrity is presented in [21]. The study evaluated many

collision attacks on the earliest complete 80-step SHA-1 and

presented an innovative enhanced edition of the algorithm

that decreased the likelihood of collision and augmented the

theoretical lower bound of the time complexity needed to

discover the collision by an exponential factor of 2.

In 1993, the original SHA1 algorithm was invented by The

National Security Agency (NSA) and was announced by the

National Institute of Standards and Technology (NIST) as

Federal Information Processing Standard (FIPS) 180, letting

its application and usage in government projects. After the

publication of SHA1, NSA abolished the standard and

included minor modification to the hash function. The NSA

confirmed that the alteration deal with an error in the original

algorithm that reduced its cryptographic security. However,

NSA was unable to give details regarding the error, which

leaded in utilizing and consuming a lot of time scrutinizing

the algorithm. Thus, SHA1 algorithm is still believed to be

safe to use in hashing applications because no flaws was

found in it.

The NIST published FIPS 180-2 sometime in 2001, made

several enhancements which are now defined as SHA-256,

SHA-384, and SHA-512. The name of each algorithm was

due to the hash sizes each one produced. The creations of

these new algorithms were variants of the original SHA-1

algorithm and were sufficiently new that their security

remained open.

Properties of a hash algorithm. Pre-image resistant: for any

known h, it is infeasible to find y such that H(y)=h while in

second pre-image resistant, for any given x, it is

computationally infeasible to find y ≠ x with H(y) = H(x).

For strong collision resistant, it is infeasible to find pair (x,y)

such that H(x) = H(y).

Table 1 Summary of different hashing algorithms
Name Input block size Message limit (bits) Hash code size (bits)

MD5 512 264 128

SHA-1 512 264 160

SHA-256 512 264 256

SHA-384 1024 2128 384

SHA-512 1024 2128 512

These properties of a hash algorithm must be satisfied by the

proposed algorithm. According to [22], for a given n-bit hash

code, pre-image is calculated by the formula 2n where n is the

number of bits output. Moreover, strong collision is

calculated by the formula 2n/2 where n is the number of bits

output of a hash algorithm.

Table 2 Comparison of the modified MD5 to the MD5 in

calculating pre-images attack, second pre-image attack and

strong collision attack
Name of Attacks MD5 (128-bit output) Modified MD5

(1280-bit output)

Pre-image attack 2128 21280

Second Pre-image

attack

2128 21280

Strong Collision attack 264 2640

As shown in Table 2, it would take 2128 permutations before a

pre-image attack is calculated using MD5 while it would take

21280 permutations for the proposed algorithm. Second pre-

image attack would take 21280 permutations and strong

collision attack would take 2640 permutations for the

proposed algorithm. This means that the longer the length of

the hash code output is, the more operations and

permutations the attacker needs to perform to these attacks.

Table 3 Usage of the properties of a Hash Algorithm

3. System Architecture, Materials and Method

In this section, the approach in expanding the hash size of the

modified SHA1 is described. Materials which include both

the software and hardware are identified and the procedure of

the different phases is defined.

3. 1. Expanding the hash value of SHA1

First the message is padded (extended) so that its length (in

bits) is congruent to 448, modulo 512. Next, 64 bits is

appended to the message so that it will be equal to 512 bit.

Then the buffer registers A, B, C, D at 40 bits each is

initialized to a certain constant before it will be processed in

20 word block. The message will be processed from round 1

to round 4 and every round consists of 20 steps at 5 bytes of

the message per step. If the message is lesser than 512 bit,

only 1 cycle of rounds will be needed before an output of 160

bit SHA1 is produced. To expand the hash value to 1280 bit,

32 buffer registers (buff [0] to buff [31]) is allocated

containing 5 Bytes each. The original output of SHA1

Applications Pre-image

Resistant

Second Pre-

image Resistant

Collision

Resistant

Hash + digital

signature

Yes Yes Yes

Intrusion detection and

virus detection

 Yes

Hash + symmetric

encryption

One-way password file Yes

MAC Yes Yes Yes

38
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

generated from buffer A, B, C, and D was used to process for

8 rounds inside the compression function (1-4 rounds). 4

buffer registers were created in every round which generated

a total of 160 Bytes or 1280 bits hash value as shown in

Figure 1 which is the system architecture of the study.

3.2. Software

The modified SHA1 algorithm which has a hash size of 1280

bit was used for Login authentication in various web

applications. One of the software used to implement this was

MYSQL database. PHP Programming Language. PHP

(Hypertext Pre-processor) is a widely-used open source

general-purpose scripting language that is especially suited

for web development and can be embedded into HTML.

Other software used include XAMPP server and MSQL

server.

3.3 Hardware

The hardware that was used in this study was Intel Core i5

7100 3.9GHz, 8G Ram DDR3, 500 HDD Hard Drive.

3.4 Experimental design

The modified SHA1 hashed the password into 1280 bit

created by the user during registration. Using the PHP

scripting language, it stored the hashed password in the user's

table of MySQL database running in the server. Every time

users fill the basic information such as username and

password and clicks on the log in button, the information is

submitted to the server in a plain text. Using the modified

SHA1 algorithm, the script in the server digested or hashed

the password inputted by the user into 1280 bits size.

Moreover, there was a function that compared the generated

hash code of the password from the users and the hash codes

stored in the table of MySQL database. If there is a match in

the in the hash values converted by the modified SHA1 in the

database, then the login authentication is successful and the

user can access the system.

3.5 Procedures for the different phases

Phase 1. Expanding hash length from 128 bit to 1280 bit

The expansion was done by allocating 32 buffer registers at 5

Bytes each. The process was done at 8 runs in the

compression function of SHA1 to produce 1280 bits of hash

value.

Phase 2. Designing a Login procedure for user’s

authentication

In this phase, a log in form was created using PHP scripting

language for a user who wanted to register and communicate

with the application server. Every time a user fills the basic

information such as username and password and clicks on the

log in button, the information is submitted to the server.

When a user will register or create an account, a script in

PHP will process the procedure and store it in the database.

Phase 3. Applying the modified SHA1 in securing a client

server communication

Every time a user enters his username and password, the

modified sha1 algorithms hashes the password into 1280 bit

hash length and compare its value from the stored hash value

of the user’s original password. During registration, user’s

password is being hashed into 1280 bit length and will be

stored in one mypassword table in the server’s database. If

the hash values of the two passwords are the same, then the

login authentication is verified and the user will be able to

access the server.

 3.6 Evaluation

During the evaluation, the researcher compared the original

SHA1 algorithm to the modified SHA1 algorithm with

respect to the length of their respective hash values. By

applying the modified SHA1 in the system or any web

application during login authentication will be impossible for

the attacker to use a rainbow table in order to lookup for the

possible string of the 1280 bit hash value because its length is

eight (8) times the length of the original SHA1. In most

cases, attackers only have all the possible combinations of a

128 bit hash value generated from SHA1 in their databases

4. Testing the reliability of the modified SHA1

To conduct a comparison in terms of the security level of

SHA1 and the modified SHA1, tools for online password

cracker, brute force and rainbow table were used to simulate

the attack using the two algorithms. Since the modified

SHA1 generated 1280 bit hash value, these attacks did not

work because the hash value is not found in the databases of

the existing hash algorithms like SHA1, SHA256, SHA 512,

MD5, MD4, RIPEMD320, etc. thus improved the security

level of the modified SHA1.

Shown in Figure 2, the modified SHA1 algorithm with a

generated hash value of 1280 bit was being put to test using

the crackstation tool. The generated 1280 bit hash size was

looked up inside its databases which consists of existing

familiar hash algorithms. This crackstation tool is being

designed to search fo a possible match. Even though the tool

acknowledged the 1280 bit hash size as input, unfortunately

it could not produced the corresponding text value of the

hash code stored in its database which produced a result of

unrecognized hash format. It can be observed from the figure

that the color code is red. This implied that the hash code is

the unrecognized format and its type is unknown or cannot be

found in its database. This is due to the fact that crackstation

tool will work only on the current hashing algorithm such as

sha256, MD160, MD5, sha512, etc.

Figure 2. Cracking the Modified SHA1 using CrackStation

 4.1 Testing a brute force attack

Other common attack in a hash algorithm is brute force

attack. A brute-force attack attempts each potential

permutation of characters up to a known length. These kinds

of attacks are very arithmetically costly, and are typically the

least effective in terms of cracking hashes per processor time,

but passwords are ultimately cracked. In creating a password,

39
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

it is advised to be long enough with the combination of both

letters and numbers so that searching all possible character

string would be difficult. The researchers used the

hashkracker console program to perform this attack on the

hash code of “MYPASS” generated by the modified SHA1 to

measure its reliability. HashKracker Console is the all-in-one

command-line tool to find out the password from the Hash.

Currently, it supports password recovery from following

popular Hash types such as MD5, SHA1, SHA256, SHA384,

and SHA512.

Shown in Figure 3, the attack was not successful in the

modified SHA1 since the tool was not able to identify the

type of the hash code the modified SHA1 generated.

Moreover, the hacker should know the source code of the

modified SHA1 in order for him to carry out a brute force

attack.

Figure 3. Using HashKracker Console to perform brute force

attack on the Modified SHA1

 4.2 Testing a Rainbow Table Attack

Rainbow tables are considered as a time-memory exchange

technique. They are similar to lookup tables, although they

sacrifice the speed to form the lookup tables smaller.

Furthermore, a Rainbow Crack table is a tool that was

developed by attacker to access the password by simply

examining only at a hashed value. Figure 4 showed a rainbow

table attack using RainbowCrack software. Results showed

that the attack was unsuccessful to crack the hash value of

“PASSWORD” which is 1280-bit generated from the

modified SHA1 and the result was "not found" in its

database. This is due to the fact that the database only

consists of hash values of the current hash algorithms such as

MD4, SHA1, SHA2, MD5, SHA256, SHA512, etc.

Figure 4. Testing for rainbow table attack using Rainbow

Crack

4.3 Securing login authentication in a client server

communication using the modified SHA1

Shown in Figure 5 and Figure 6 is how to secure the login

authentication of a client-server communication using the

modified SHA1 through login authentication. Users are

advised to create a password that is not easy to guess. Thus in

the login form, the only password with a combination of

characters and numbers with a capital letter will be accepted.

These will prevent the attackers from guessing the right

password. Then the script found in the server will generate a

hash value of the message or password inputted by the user

into 1280 bit and then compares it to the hash value of the

password previously stored in the database during

registration. If the hash code of the password entered by the

user matches with the hash code stored in the database, then

the user is able to access the system. However, if the hash

value does not match, then the server will not grant the

request from the user.

Figure 5. Securing a client-server communication using

modified SHA1

Figure 6. Login Form with stored 1280-bit Modified SHA1

hash value stored in the server’s password database.

5. Conclusion
In this paper, the modified SHA1 has been proposed and

developed to expand its hash size up to 1280 bit to secure

web applications through its login authentication against

brute force, online cracking tools and rainbow table attacks.

The expansion was done by allocating 32 buffer registers for

variables A, B, C and D at 5 bytes and generating 4 buffer

40
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

registers in every round inside the compression function of

the original SHA1 for 8 times. During testing, it showed that

the hash code of the modified SHA1 was not cracked using

powerful online cracking tools, brute force and rainbow table

attacks that are available online.

References

[1] G. Raj, R. Kesireddi, and S. Gupta, “Enhancement of

Security Mechanism for Confidential Data using AES-128,

192 and 256bit Encryption in Cloud,” 1st International

Conference on Next Generation Computing Technologies

(NGCT-2015), 2015.

[2] A. Arora, A. Rastogi, A Khanna, and A. Agarwal, “Cloud

Security Ecosystem for Data Security and Privacy,” 7th

International Conference on Cloud Computing, Data

Science& Engineering – Confluence, 2017.

[3] D. Morres, “SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions,” Federal Information

Processing Standards Publication, 2015.

[4] L. Zhong, W. Wan and D. Kong, “JAVAWEB LOGIN

AUTHENTICATION BASED ON IMPROVED MD5

ALGORITHM,” International Conference on Audio,

Language and Image Processing (ICALIP), 2016.

[5] X. Zheng and J. Jin, “Research for the Application and Safety

of MD5 Algorithm in Password Authentication,” 9th

International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), 2012.

[6] P. Walia and V. Thapar, “Implementation of New Modified

MD5-512 bit Algorithm for Cryptography,” International

Journal of Innovative Research in Advanced Engineering

(IJIRAE), vol. 1, no. 6, 2015.

[7] S. Sonh, “A Study on Area-Efficient Design of Unified MD5

and HAS-160 Hash Algorithms,” The Journal of the Korean

Institute of Information and Communication Engineering,

vol. 16, no. 5, pp. 1015-1022, 2012.

[8] V. Kapoor, “A new security system using ECC AND MD5,”

International Journal of Engineering Research & Technology

(IJERT), 2015.

[9] M. Stevens, P. Karpman, and T. Peyrin, “Freestart Collision

for Full SHA-1,” Annual International Conference on the

Theory and Applications of Cryptographic Techniques, vol.

9665, pp. 459-483, 2016.

[10] A. Bhandari, “Enhancement of MD5 Algorithm for Secured

Web Development,” Journal of Software, vol. 12, no.4, pp.

240-252, 2017.

[11] Y. Sasaki, “Improved Single-Key Distinguisher on HMAC-

MD5 and Key Recovery Attacks on Sandwich-MAC-MD5

and MD5-MAC,” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, no.1,

pp. 26-38, 2015.

[12] A. Kasgar, J. Agrawal and S. Sahu, “New Modified 256-bit

MD5 Algorithm with SHA Compression Function,”

International Journal of Computer Applications, vol. 42, no.

12, 2012.

[13] A. Asbduvaliyev, S. Lee, and Y.K. Lee, “Modified SHA1

hash function (mSHA1),” Journal of Computing and

Information Technology, vol. 21, no.4, 2016.

[14] R. Rivest, “The MD4 message digest algorithm,” Conference

on the Theory and Application of Cryptography, pp. 303–

311, 1990.

[15] T. Lakshmanan, and M. Muthusamy, “A Novel Secure Hash

Algorithm for Public Key Digital Signature Schemes,” The

International Arab Journal of Information Technology, vol.9,

no.3, pp. 262 – 267, 2012.

[16] M. Hassouna, B. Barry, and E. Bashier, “A Short

Certificateless Digital Signature Scheme,” The Proceedings

of the International Conference on Digital Information

Processing, Data Mining, and Wireless Communications,

Dubai, UAE, 2015.

[17] H. Tiware, K. Asawa, “Enhancing the Security Level of

SHA-1 by Replacing the MD Paradigm,” Journal of

Computing and Information Technology - CIT 21, vol. 4, pp.

223–233, 2013.

[18] M. Alam, and S. Ray, “Design of an Intelligent SHA-1 Based

Cryptographic System: A CPSO Based Approach,”

International Journal of Network Security, vol. 15, no.6,

pp.465-470, 2013.

[19] A. Kasgar, J. Agrawal and S. Sahu, “New Modified 256-bit

MD5 Algorithm with SHA Compression Function,”

International Journal of Computer Applications, vol. 42, no.

12, 2012.

[20] C. San Jose, B. Gerardo, and B. Tanguilig, “Enhanced SHA-

1 on Parsing Method and Message Digest Formula,”

Proceedings of the Second International Conference on

Electrical, Electronics, Computer Engineering and their

Applications (EECEA2015), Manila, Philippines, 2015.

[21] R. Siddhartha, “Advanced SHA-1 Algorithm Ensuring

Stronger Data Integrity,” International Journal of Computer

Applications, vol. 130, no. 8, 2015.

[22] G. Gordon, “Properties of Hash Functions,” Sirindhorn

International Institute of Technology, Thailand: Thammasat

University, 2016.

[23] M.R. Baharon, Q. Shi, M. F. Abdollah, S.M. W. Mohamed,

S.M.M Yassin, and A. Idris, “An Improved Fully

Homomorphic Encryption Scheme for Cloud Computing,”

International Journal of Communication Networks and

Information Security (IJCNIS), vol. 10, no. 3, 2018.

[24] H. Tiware, and K. Asawa, “A Secure Hash Function MD-192

With Modified Message Expansion,” International Journal of

Computer Science and Information Security, (IJCSIS),vol. 7,

no.2, 2010.

https://link.springer.com/conference/eurocrypt
https://link.springer.com/conference/eurocrypt
https://www.researchgate.net/scientific-contributions/2012409114_Abduvaliyev_Abror
https://www.researchgate.net/profile/Sungyoung_Lee
https://www.researchgate.net/journal/1330-1136_Journal_of_Computing_and_Information_Technology
https://www.researchgate.net/journal/1330-1136_Journal_of_Computing_and_Information_Technology
https://link.springer.com/conference/crypto
https://link.springer.com/conference/crypto

41
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 1. System Architecture of the Modified SHA1

CVq

Buf0 [A1], Buf1[B1],Buf2[C1],

Buf3[D1]

20 Bytes (Original SHA1

Output)

Buf4 [A2], Buf5[B2],Buf6[C2],

Buf7[D2]

20 Bytes

Buf8 [A3], Buf9[B3],Buf10[C3],

Buf11[D3]

20 Bytes

Buf28[A8], Buf29[B8],Buf30[C8],

Buf31[D8]

20 Bytes

Plain Text

512 bits

1280 bit output

A B C D

A B C D

Round 2

f2, K, W[20…39]

20 steps

Round 1

f1, K, W[0…19]

20 steps

Round 3

f3, K, W[40…59]

20 steps

6 steps

Round 4

f4, K, W[60…79]

20 steps

teps

A B C D

A B C D

+ + + +

