
122
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Slid Pairs of the Fruit-80 Stream Cipher

Kok-An Pang1, Shekh Faisal Abdul-Latip1 and Hazlin Abdul Rani2

1INSFORNET, Centre for Advanced Computing Technology (C-ACT),

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka.
2Cryptography Development Department, CyberSecurity Malaysia.

Abstract: Fruit is a small-state stream cipher designed for

securing communications among resource-constrained devices. The

design of Fruit was first known to the public in 2016. It was later

improved as Fruit-80 in 2018 and becomes the latest and final

version among all versions of the Fruit stream ciphers. In this paper,

we analyze the Fruit-80 stream cipher. We found that Fruit-80

generates identical keystreams from certain two distinct pairs of key

and IV. Such pair of key and IV pairs is known as a slid pair.

Moreover, we discover that when two pairs of key and IV fulfill

specific characteristics, they will generate identical keystreams. This

shows that slid pairs do not always exist arbitrarily in Fruit-80. We

define specific rules which are equivalent to the characteristics.

Using the defined rules, we are able to automate the searching

process using an MILP solver, which makes searching of the slid

pairs trivial.

Keywords: cryptanalysis, Fruit-80, MILP, slid pairs, stream

ciphers

1. Introduction

Stream ciphers play a prominent role in protecting digital

communications. While there is a myriad of stream ciphers

available in the literature, considerations of these ciphers for

real-world applications are hindered by "security" concerns.

This problem can be witnessed from several practical

applications such as RC4 [25], A5/1 [9] and E0 [27]. The RC4

stream cipher, which is a well-known primitive for protecting

wireless networks, has been used as the underlying algorithm

for Wired Equivalent Privacy (WEP) protocol. The aim of this

protocol is to provide confidentiality comparable to wired

networks. Nowadays, RC4 can no longer provide a sufficient

level of security as it is vulnerable to attacks such as in [14,

22]. A5/1, which is another example of stream cipher, adopted

in the Global System for Mobile Communications (GSM)

protocol, is a well-known primitive for securing

telecommunications. Unfortunately, the A5/1 stream cipher

can be broken [5, 6, 8, 12] as well, which has become one of

the factors that renders GSM insecure. The E0 stream cipher,

which had been implemented in Bluetooth networks, has also

been practically broken [21]. Although stream ciphers encrypt

faster than block ciphers, their security margins are unclear as

the design principle of stream ciphers is not well understood

as in block ciphers. Thus, in order to understand a “good”

design principle for stream ciphers, an extensive effort to

analyze existing design structures is required.

Due to limitation of resource in Internet of Things (IoT)

devices, implementation of security features have become a

challenge to cryptographers [1], especially in this era where

IoT is on the rise. Most modern ciphers are designed to be

lightweight for resource-constrained devices. However, The

design of stream ciphers often involves internal states which

are at least twice as large as their key size [2, 7, 10, 11, 19,

20], which requires larger area size. This design strategy is

adopted due to its resistance against the time-memory-data

tradeoff (TMDTO) attack, which can render the effective key

length into half of the original key size. Nevertheless, this

does not stop cryptographers in designing stream ciphers with

small internal states which are suitable for ultra-lightweight

applications such as Internet of Things. In FSE 2015, Sprout

[4], a new stream cipher has been proposed with shorter

internal state, allowing the construction to have a smaller area

size and lower power consumption than ciphers with large

internal state size. However, Sprout was later proven to be

insecure [13] against the time-memory-data tradeoff attack,

which breaks Sprout practically. Nevertheless, studies on

small-state stream ciphers remain active, with the emergence

of new design proposals such as Fruit [3], Plantlet [23] and

Lizard [17] with similar design principle which are based on

Grain [19]. Among all these Grain-like ciphers, Fruit has

undergone several modifications [3, 16], until being finalized

in [15] and has been called Fruit-80.

The Fruit-80 stream cipher has a faster initialization than

Plantlet, Sprout and Lizard [15]. It is the lightest stream cipher

compared with other Grain-like stream ciphers. Although

small-state stream ciphers may incur TMDTO distinguishing

attacks, the designers of Fruit-80 ruled out the possibility the

cipher to be susceptible to this attack depending on the

application scenario [15, 18]. Nevertheless, in order to avoid

this attack, one of the countermeasures proposed by the

designers is to limit the number of keystream bits to 216 .

Recently, Todo et al [31] discovered that Fruit-80 can be

broken in a time complexity of 277.8702 when 243 keystream

bits is allowed to be generated per one key and IV pair. Thus,

by limiting the number of keystream bits to 216 as suggested,

the attack by Todo on Fruit-80 can be avoided as well. In this

paper, we show that the initialization and keystream

generation of Fruit-80 is slidable, proving that there are more

than one pair of key and IV pairs that can produce the same

keystream. Thus, by limiting the number of keystream bits to

216 is not sufficient to strengthen the cipher from its

weaknesses.

An ideal stream cipher should produce keystreams which are

indistinguishable from truly-random sequence. In this paper

we would like to point out that, there exists slid key-IV pairs

(alternatively “slid pairs”) in Fruit-80. To begin, denote 𝑓𝑟
and 𝑓𝑠 as 𝑟 -clock and 𝑠 -clock variants of the same cipher

respectively which only differ in the number of clocks. Given

a key-IV pair, (𝑥, 𝑣) and (𝑥′, 𝑣′) , if both 𝑓𝑟+𝑡(𝑥, 𝑣) and

𝑓𝑠+𝑡(𝑥
′, 𝑣′) can produce the same keystream for any clock

𝑡 > 0, such key-IV pair is known as a slid pair.

The existence of slid pairs in a stream cipher clearly shows

that there are more than one key-IV pair that can produce the

same keystream. In principle, each keystream should only be

used once. By having different messages being encrypted

using the same keystream will cause a catastrophic failure to

the cipher system in preserving the confidentiality of the

messages. To be more precise, let 𝑐 and 𝑐′ be two different

ciphertexts obtained by encrypting two different plaintexts m

123
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

and m' using the same keystream k, such that, 𝑐𝑖 = 𝑚𝑖⊕𝑘𝑖
and 𝑐𝑖

′ = 𝑚𝑖
′⊕𝑘𝑖. Thus, by XORing 𝑐𝑖 and 𝑐𝑖

′, we have 𝑐𝑖⊕
𝑐𝑖
′ = 𝑚𝑖⊕𝑚𝑖

′ which simplifies the recovery of both 𝑚𝑖 and

𝑚𝑖
′.

OUR CONTRIBUTION. In this paper, we investigate Fruit-80 of

such behavior. We found that, by setting specific distinct key

and IV pairs, Fruit-80 will generate identical keystreams with

clock-shifts. Moreover, finding slid pairs in Fruit-80 is trivial.

We propose specific rules for key and IV pairs to become a

slid pair in Fruit-80. These rules can be translated into MILP

inequalities to be solved automatically by an MILP solver. By

the aid of an MILP solver, slid pairs can be generated easily.

The result of our work shows that slid pairs in Fruit-80 is easy

to be generated, which implies the weakness of the cipher in

generating random keystreams. Moreover, by observing the

slid pairs, we found that both combination of key and IV pairs

in most slid pairs do not have a definite pattern, suggesting

that slid pairs can also occur even if keys and IVs are

randomly generated.

ORGANIZATION OF THE PAPER. In Section 2, we review the

design of the Fruit-80 stream cipher. Section 3 describes the

construction of MILP inequalities for MILP solver to find slid

pairs. Section 4, shows how to find slid pairs in Fruit-80 and

describes the result of our work. Section 5 concludes the

paper.

2. A Brief Description of the Fruit-80 Stream

Cipher

Fruit-80 [15] is a GRAIN-like stream cipher. It has a 37-bit

non-linear feedback shift register (NFSR) 𝑛 and a 43-bit

linear feedback shift register (LFSR) 𝑙. It receives a 80-bit

secret key 𝑘 and a 70-bit initialization vector 𝑣 where 𝑘 =
(𝑘1, 𝑘2, . . . , 𝑘80) and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣70) . The feedback

function of NFSR is as follow.

𝑛𝑡+37 = 𝑘𝑡
′⊕ 𝑙𝑡⊕𝑛𝑡⊕𝑛𝑡+10⊕𝑛𝑡+20⊕𝑛𝑡+12

 ⋅ 𝑛𝑡+3⊕𝑛𝑡+14⊕𝑛𝑡+5 ⋅ 𝑛𝑡+23 ⋅ 𝑛𝑡+31
 ⊕𝑛𝑡+8 ⋅ 𝑛𝑡+18⊕𝑛𝑡+28 ⋅ 𝑛𝑡+30 ⋅ 𝑛𝑡+32
 ⋅ 𝑛𝑡+34

while the feedback function of LFSR is

𝑙𝑡+43 = 𝑙𝑡⊕ 𝑙𝑡+8⊕ 𝑙𝑡+18⊕ 𝑙𝑡+23⊕ 𝑙𝑡+28⊕ 𝑙𝑡+37

where 𝑛 ∈ 𝒏 and 𝑙 ∈ 𝒍.
The output function produces an output bit 𝑧𝑡 in every clock.

However, 𝑧𝑡 is discarded when 0 ≤ 𝑡 < 160. Therefore 𝑧160

is the first output bit in the keystream. The output function is

as follows.

𝑧𝑡 = ℎ𝑡⊕𝑛𝑡⊕𝑛𝑡+7⊕𝑛𝑡+19⊕𝑛𝑡+29⊕𝑛𝑡+36⊕ 𝑙𝑡+38

The output function involves h function and round keys. The

h function is as follows.

ℎ𝑡 = 𝑘𝑡
′ ⋅ (𝑛𝑡+36⊕ 𝑙𝑡+19) ⊕ 𝑙𝑡+6 ⋅ 𝑙𝑡+15⊕ 𝑙𝑡+1

 ⋅ 𝑙𝑡+22⊕𝑛𝑡+35 ⋅ 𝑙𝑡+27⊕𝑛𝑡+1 ⋅ 𝑛𝑡+24
 ⊕𝑛𝑡+1 ⋅ 𝑛𝑡+33 ⋅ 𝑙𝑡+42

There are two round keys, 𝑘𝑡
′ and 𝑘𝑡

∗ used in the round

function. The generation of 𝑘𝑡
′ and 𝑘𝑡

∗ is based on three

selected key bits 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48.

𝑘𝑡
′ = 𝑘𝑟 ⋅ 𝑘𝑝+16 ⋅ 𝑘𝑞+48⊕𝑘𝑟 ⋅ 𝑘𝑝+16⊕ 𝑘𝑝+16 ⋅ 𝑘𝑞+48

 ⊕𝑘𝑟 ⋅ 𝑘𝑞+48⊕𝑘𝑝+16

𝑘𝑡
∗ = 𝑘𝑟 ⋅ 𝑘𝑝+16⊕𝑘𝑝+16 ⋅ 𝑘𝑞+48⊕ 𝑘𝑟 ⋅ 𝑘𝑞+48⊕ 𝑘𝑟

 ⊕𝑘𝑝+16⊕𝑘𝑞+48

The indices of the selected key bits are based on the value of

a counter 𝐶𝑟 which consists of 7 bits 𝐶𝑟 =
(𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5𝑐𝑡
6) , where 𝑟 = (𝑐𝑡

0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) , 𝑝 =

(𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5) and 𝑞 = (𝑐𝑡

2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5𝑐𝑡
6).

The initialization phase is divided into three steps. The first

step of the initialization starts from the first clock until the 80-

th clock. Both NFSR and LFSR are first initialized with 𝑘,

such that, 𝑛𝑖 = 𝑘𝑖 and 𝑙𝑖 = 𝑘𝑖+37 for 0 ≤ 𝑖 < 37. The second

step of initialization involves overwriting the counter 𝐶𝑟 and

the last step of initialization starts from the 81-th clock to the

end of initialization.

During the first initialization phase, the counter is initialized

such that 𝑐0
𝑖 = 0 for 0 ≤ 𝑖 ≤ 6. It is then overwritten in the

second step of initialization where 𝑐80
𝑖 = 𝑛80+𝑖 for 0 ≤ 𝑖 ≤ 5

and 𝑐80
6 = 𝑙80 . The value of 𝑙80 is then set to 1. The

overwritten counter will then be used in the third step of the

initialization.

During the first step of initialization, 𝑧𝑡⊕ 𝑣𝑡 is XORed with

both 𝑛𝑡+37 and 𝑙𝑡+37 respectively before entering as a new bit

into NFSR and LFSR. The bit 𝑧𝑡⊕ 𝑣𝑡 is then disconnected

from NFSR and LFSR during the third step of initialization.

Figure 1 illustrates the structure of the Fruit-80 stream cipher.

Figure 1. Structure of Fruit-80

3. The Notion of Mixed-Integer Linear

Programming (MILP)

Mixed-Integer Linear Programming (MILP) [24] is a

constraint programming used to determine the minimum or

maximum objective of a set of linear equalitions and

inequalities. In this paper, we use Gurobi Optimizer [35],

which is an MILP solver, to find the key and IV pairs which

can fulfill the sliding property. Gurobi Optimizer is also used

in [28–30, 33, 34]. The MILP inequalities which are

equivalent to AND, XOR and OR are shown in Lemma 1, 2

and 3 respectively. Note that the MILP inequalities presented

in [30, 32, 34] describes the MILP inequalities for

propagation of the division property of copy, xor and and.

However, in this paper, we show MILP inequalities which are

equivalent to the bitwise AND, XOR and OR.

Lemma 1. Let 𝑐 = ∏ 𝑎𝑖
𝑗
𝑖=1 be an AND operation. The

equivalent inequalities for the AND operation is as follows.

𝑐 − 𝑎𝑖 ≤ 0 where 1 ≤ 𝑖 ≤ 𝑗
𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗

Proof. By limiting 𝑐 and 𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑗 such that 𝑐 −
𝑎𝑖 ≤ 0, the possibility that 𝑐 = 1 while 𝑎𝑖 = 0 for any 𝑖 is

124
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

eliminated. The constraint 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗

eliminates the possibility that 𝑐 = 0 when 𝑎𝑖 = 1 for all 1 ≤
𝑖 ≤ 𝑗 . All other possibilities are true in bitwise AND

operations. ◻

Lemma 2. Let 𝑐 = 𝑎1⊕𝑎2 be an XOR operation. The

equivalent inequalities for the XOR operation are as follows.

𝑐 − 𝑎1 − 𝑎2 ≤ 0

𝑐 − 𝑎1 + 𝑎2 ≥ 0

𝑐 + 𝑎1 − 𝑎2 ≥ 0

𝑐 + 𝑎1 + 𝑎2 ≤ 2

Proof. The inequality 𝑐 − 𝑎1 − 𝑎2 ≤ 0 eliminates the

possibility that 𝑐 = 1 , 𝑎1 = 0 and 𝑎2 = 0 , which is not in

accordance with a bitwise XOR operation. The second

inequality 𝑐 − 𝑎1 + 𝑎2 ≥ 0 eliminates the possibility that

𝑐 = 0 , 𝑎1 = 1 and 𝑎2 = 0 . The third inequality 𝑐 + 𝑎1 −
𝑎2 ≥ 0 eliminates the possibility that 𝑐 = 0 , 𝑎1 = 0 and

𝑎2 = 1 while the fourth inequality 𝑐 + 𝑎1 + 𝑎2 ≤ 2

eliminates the possibility where 𝑐 = 1, 𝑎1 = 1 and 𝑎2 = 1.

The remaining possibilities are in accordance with bitwise

XOR operations. ◻

Lemma 3. Let 𝑐 = ⋁ 𝑎𝑖
𝑗
𝑖=0 be an OR operation. The

equivalent inequalities for the OR operation are as follows.

𝑐 − 𝑎𝑖 ≥ 0 where 1 ≤ 𝑖 ≤ 𝑗
𝑐 − 𝑎_1 − 𝑎_2−. . . −𝑎_𝑗 ≤ 0

Proof. By limiting 𝑐 and 𝑎_𝑖 for all 1 ≤ 𝑖 ≤ 𝑗 such that 𝑐 −
𝑎𝑖 ≥ 0, the possibility that 𝑐 = 0 while 𝑎𝑖 = 1 for any 𝑖 is

eliminated. The constraint 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗

eliminates the possibility that 𝑐 = 1 when 𝑎𝑖 = 0 for all 1 ≤
𝑖 ≤ 𝑗 . All other possibilities are true in a bitwise OR

operation. ◻

Lemma 3 is equivalent to Proposition 2 in [34]. Note that

Todo et al [30] claim that 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≤ 0 is

redundant and does not affect their result even if the inequality

is not included. However, we found that there is a possibility

for 𝑐 = 1 𝑎𝑛𝑑 ∑ 𝑎𝑖
𝑗
𝑖=1 = 0, which does not correspond to a

bitwise OR operation. Therefore, we adopt the MILP

inequalities introduced in [34] to avoid this possibility.

Both 𝑘𝑡
′ and 𝑘𝑡

∗ are determined by three secret key bits 𝑘𝑟 ,

𝑘𝑝+16 and 𝑘𝑞+48. We show the equations for determining the

value of 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 in Lemma 4.

Lemma 4. Let ℓ be the length of subkey; 𝛾 as the starting

index of key bits for 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 respectively. Next,

let 𝛼 be the starting index of the respective counter bits used

by either 𝑟, 𝑝 or 𝑞; while 𝛽 representing the last index of the

respective counter bits. Then, the value of 𝑘𝑟 , 𝑘𝑝+16 and

𝑘𝑞+48 can be determined by assigning the respective values of

ℓ, 𝛼, 𝛽 and 𝛾 to the following expression.

∑

(

𝑘𝑖 ⋅ (1 − (⋁(𝑐𝑡

𝑗
⊕ ⌊

𝑖 − 𝛾

2𝛽−𝑗
⌋ 𝑚𝑜𝑑 2)

𝛽

𝑗=𝛼

))

)

𝛾+𝑙−1

𝑖=𝛾

Proof. From the round key function of Fruit-80 (cf. Section

2), we know that 𝑘𝑟 ∈ {𝑘0, 𝑘1, . . . , 𝑘15} . Therefore, we

consider 𝑘𝑟 = ∑ (𝑘𝑖 ⋅ 𝜔)
15
𝑖=0 , where 𝜔 ∈ 𝔽2 takes a value of 1

if and only if 𝑖 = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3). The index 𝑖 can be viewed as a

vector 𝑖 = (𝑖0𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6), in which 𝑖𝑗 = ⌊
𝑖

26−𝑗
⌋ 𝑚𝑜𝑑 2.

Since 𝑟 = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3), we focus on obtaining (𝑖0𝑖1𝑖2𝑖3) with

𝑖𝑗 = ⌊
𝑖

23−𝑗
⌋ . Note that (𝑐𝑡

0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) ⊕ (𝑖0𝑖1𝑖2𝑖3) = 0 if and

only if (𝑖0𝑖1𝑖2𝑖3) = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3). In this case, the bitwise OR

operation ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋ 𝑚𝑜𝑑 2)3

𝑗=0 can help in

distinguishing whether (𝑖0𝑖1𝑖2𝑖3) = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) by returning

value 0 when it is true or value 1 if otherwise. However, 𝜔

works the opposite of ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋ 𝑚𝑜𝑑 2)3

𝑗=0 , thus 𝜔 =

1 − ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋ 𝑚𝑜𝑑2)3

𝑗=0 . Therefore, 𝑘𝑟 = ∑ (𝑘𝑖 ⋅
15
𝑖=0

(1 − (⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋ 𝑚𝑜𝑑 2)3

𝑗=0))) . We apply the same

procedure for 𝑘𝑝+16 and 𝑘𝑞+48. Since 𝑘𝑝+16 ∈

{𝑘16, 𝑘17, . . . , 𝑘47}, then 𝑘𝑝+16 = ∑ (𝑘𝑖 ⋅ (1 −
47
𝑖=16

(⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−16

25−𝑗
⌋ 𝑚𝑜𝑑 2)5

𝑗=1))) ; and since 𝑘𝑞+48 ∈

{𝑘48, 𝑘49, . . . , 𝑘79}, then 𝑘𝑞+48 = ∑ (𝑘𝑖 ⋅ (1 −
79
𝑖=48

(⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−48

26−𝑗
⌋ 𝑚𝑜𝑑 2)6

𝑗=2))). The expressions for finding

𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 can then be generalized to ∑ (𝑘𝑖 ⋅
𝛾+𝑙−1
𝑖=𝛾

(1 − (⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−𝛾

2𝛽−𝑗
⌋ 𝑚𝑜𝑑 2)

𝛽
𝑗=𝛼))). Hence, we require to

give the respective value of 𝛼, 𝛽, 𝛾 and l to the expression,

such that, 𝛼 = 0, 𝛽 = 3, 𝛾 = 0 and 𝑙 = 16 (for finding 𝑘𝑟);

𝛼 = 0 , 𝛽 = 3 , 𝛾 = 0 and 𝑙 = 16 (for finding 𝑘𝑝+16); and,

𝛼 = 2, 𝛽 = 6, 𝛾 = 48 and 𝑙 = 32 (for finding 𝑘𝑞+48). ◻

Lemma 4 can be converted into MILP equations by making

use of the MILP inequalities shown in Lemma 1, Lemma 2

and Lemma 3 accordingly.

4. Finding Slid Pairs on Fruit-80

A general rule for a slid pair to exist in a stream cipher is to

have the first starting state initialized with (𝑘, 𝑣) to produce

the second starting state which can be initialized with (𝑘′, 𝑣′)
at different clock-shifts [26]. The key factor for two key and

IV pairs to generate identical keystreams is due to the

symmetrical structure between round functions after the first

starting state, and round functions after the second starting

state. To be more precise, the round function at clock t must

be symmetrical to the round function at clock 𝑡 + 𝑢 in order

to produce keystreams with u clock-shifts. There are several

components in Fruit-80 that may remove the symmetry.

However, when certain variables (as explained later in Rule

1, 2, 3 and 4) hold specific values, every round function at

clock t behaves similarly to the round function at clock 𝑡 + 𝑢,

thus allowing slidable keystreams to be generated. Moreover,

we notice that slid pairs does not always exist arbitrarily. We

have found specific rules in which, when all rules being

fulfilled by two pairs of key and IV, Fruit-80 generates

identical keystreams. We define the rules as follows:

Rule 1. 𝑘𝑡
′ and 𝑘𝑡

∗ must be the same for all clocks in the first

and third steps of the initialization.

For each clock, 𝑘𝑡
′ and 𝑘𝑡

∗ are generated based on the counter

𝐶𝑟 (cf. Section 2). The counter is initially set to 0. It is then

125
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

overwritten after the first step of the initialization based on the

value of k. Thus, the variables 𝑘𝑡
′ and 𝑘𝑡

∗ may provide

assymetry between the first step and the third step of the

initialization. Since 𝑘𝑡
′ and 𝑘𝑡

∗ are not hardcoded, there are

possibilities for the value of 𝑘𝑡
′ and 𝑘𝑡

∗ are not changed during

the third step of the initialization, even if the counter is

updated with different values. Thus, it is not possible for a slid

pair to occur when the values of 𝑘𝑡
′ and 𝑘𝑡

∗ during the first step

of the initialization is different from the values during the

third step of the initialization. Therefore, it is required for 𝑘𝑡
′

and 𝑘𝑡
∗ to be the same for all clocks in both steps.

Rule 2. 𝑙80 and 𝑙80+𝑢 must be set to 1.

After the overwriting of 𝐶𝑟, the value of 𝑙80 is set to 1 to

prevent the LFSR from being all zeros throughout the third

initialization step. By default, the value of 𝑙80 will be set to 1

during the 81-st clock. However, the value of 𝑙80+𝑢 may differ

from 𝑙80 . If this happens, it will prevent the symmetry

between the round function on the 81-st clock and the round

function at the (81 + 𝑢) -th clock. Thus, to ensure the

symmetry between these two clocks, we set 𝑙80+𝑢 to 1 as well.

Rule 3. 𝑧𝑡⊕ 𝑣𝑡 = 0, for all clocks in the first and third steps

of the initialization.

During the first step of the initialization, the feedback

functions for both NFSR and LFSR are XORed with 𝑧𝑡⊕𝑣𝑡.
After the first step of initialization, 𝑧𝑡⊕𝑣𝑡 are disconnected

from the feedback functions, results in 𝑧𝑡⊕ 𝑣𝑡 = 0. Thus, the

disconnection of 𝑧𝑡⊕ 𝑣𝑡 may provide assymetry between the

first step and the third step of the initialization. It is not

possible for a slid pair to occur when 𝑧𝑡⊕𝑣𝑡 = 1 during the

first step of the initialization. Therefore, it is required that

𝑧𝑡⊕ 𝑣𝑡 = 0 for all clocks in the first step of the initialization.

Rule 4. 𝑣𝑡 = 𝑣𝑡+𝑢, for all 0 ≤ 𝑡 < 10.

During the key and IV loading, the 70-bit v will be padded

with 10 constant bits to form an 80-bit v. The 10 padded bits

are used in clock 0 ≤ 𝑡 < 10 . The constant values may

induce asymmetry between the first 10 clocks after the

starting state and the first 10 clocks after the second starting

state. To remove the asymmetry, we set 𝑣𝑡+𝑢 = 𝑣𝑡 for all 0 ≤
𝑡 < 10.

Table 1: The number of slid pairs in Fruit-80 based on the

number of clock-shifts
Number of clock-shifts Number of Slid Pairs

20 212.81

40 213.32

60 212.99

80 212.08

With these predefined rules, we can automate the process of

finding these slid pairs using an MILP solver. We run our

experiment for several weeks using a single PC to find slid

pairs applying our predefined rules. From our experiment we

have been able to find 212.81 slid pairs considering a 20-clock

shift. We continue our experiment considering other number

of clock-shifts, i.e. 40, 60, and 80 clocks and have been able

to find 213.32 , 212.99 and 212.08 slid pairs respectively. We

summarize our findings in Table 1. Examples of slid pairs

obtained through several clock-shifts are listed in Appendix

A.

5. Conclusions

We investigated the existence of slid pair in the Fruit-80

stream cipher that can generate an identical keystream. We

employed an MILP solver to help us finding these pairs by

applying our predefined rules. Our result shows that slid pairs

in Fruit-80 can be found with deterministic rules. This proves

that it is possible for Fruit-80 to generate the same keystream

after resynchronization if the key and IV are not properly

selected. Our result should provide insights to designs of more

secure and random stream ciphers for constrained

environments.

6. Acknowledgement

The authors would like to express sincere appreciation to

CyberSecurity Malaysia for supporting this research.

References

[1] Ali M.A. Abuagoub, “Iot security evolution : challenges and

countermeasures review,” International Journal of

Communication Networks and Information Security, pp. 342–

351, 2019.

[2] M. Ågren, M. Hell, T. Johansson, W. Meier, “Grain-128a: a

new version of Grain-128 with optional authentication,”

International Journal of Wireless and Mobile Computing, pp.

48-59, 2011.

[3] A. Ghafari, H. Hu, “Fruit: ultra-lightweight stream cipher with

shorter internal state,” IACR Cryptology ePrint Archive, pp. 1-

5, 2016.

[4] F. Armknecht, V. Mikhalev, “On lightweight stream ciphers

with shorter internal states,” International Workshop on Fast

Software Encryption, Instanbul, Turkey, pp. 451-470, 2015.

[5] E. Barkan, E. Biham, “Conditional estimators: an effective

attack on a5/1,” International Workshop on Selected Areas in

Cryptography, Kingston, ON, Canada, pp. 1-19, 2005.

[6] E. Barkan, E. Biham, N. Keller, “Instant ciphertext-only

cryptanalysis of gsm encrypted communication,” Annual

International Cryptology Conference, Santa Barbara, CA,

USA, pp. 600-616, 2003.

[7] D.J. Bernstein, “The salsa20 family of stream ciphers,” New

Stream Cipher Designs, pp. 84-97, 2008.

[8] E. Biham, O. Dunkelman, “Cryptanalysis of the a5/1 gsm

stream cipher,” International Conference on Cryptology in

India, Calcutta, India, pp. 43-51, 2000.

[9] A. Biryukov, A. Shamir, D. Wagner, “Real time cryptanalysis

of a5/1 on a pc,” International Workshop on Fast Software

Encryption, New York, USA, pp. 1-18, 2000.

[10] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, O.

Scavenius, “Rabbit: a new high-performance stream cipher,”

International Workshop on Fast Software Encryption, Lund,

Sweden, pp. 307-329, 2003.

[11] D. C. Canniere, “Trivium: a stream cipher construction

inspired by block cipher design principles,” International

Conference on Information Security, Samos, Greece, pp. 171-

186, 2006.

[12] P. Ekdahl, T. Johansson, “Another attack on a5/1,” IEEE

Transactions on Information Theory, pp. 284-289, 2003.

[13] M.F. Esgin, O. Kara, “Practical cryptanalysis of full sprout

with tmd tradeoff attacks,” International Conference on

Selected Areas in Cryptography, Sackville, Canada, pp. 67-85,

2015.

[14] S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the key

scheduling algorithm of rc4,” International Workshop on

Selected Areas in Cryptography, Toronto, ON, Canada, pp. 1-

24, 2001.

[15] V.A. Ghafari, H. Hu, “Fruit-80: a secure ultra-lightweight

stream cipher for constrained environments,” Entropy, pp. 1-

3, 2018.

126
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

[16] V.A. Ghafari, H. Hu, M. Alizadeh, “Necessary conditions for

designing secure stream ciphers with the minimal internal

states,” IACR Cryptology ePrint Archive, pp. 1-16, 2017.

[17] M. Hamann, M. Krause, W. Meier, “Lizard – a lightweight

stream cipher for power-constrained devices,” IACR

Transactions on Symmetric Cryptology, pp. 45-79, 2017.

[18] M. Hamann, M. Krause, W. Meier, B. Zhang, “Design and

analysis of small-state grain-like stream ciphers,”

Cryptography and Communications, pp. 803-834, 2018.

[19] M. Hell, T. Johansson, A. Maximov, W. Meier, “A stream

cipher proposal: grain-128,” 2006 IEEE International

Symposium on Information Theory, Seattle, WA, pp. 1-6,

2006.

[20] Y. Lee, K. Jeong, J. Sung, S. Hong, “Related-key chosen iv

attacks on grain-v1 and grain-128,” Australasian Conference

on Information Security and Privacy, Wollongong, NSW,

Australia, pp. 321-335, 2008.

[21] Y. Lu, W. Meier, S. Vaudenay, “The conditional correlation

attack: a practical attack on Bluetooth encryption,” Annual

International Cryptology Conference, Santa Barbara, CA,

USA, pp. 97-117, 2005.

[22] I. Mantin, A. Shamir, “A practical attack on broadcast rc4,”

International Workshop on Fast Software Encryption,

Yokohama, Japan, pp. 152-164, 2001.

[23] V. Mikhalev, F. Armknecht, C Müller, “On ciphers that

continuously access the non-volatile key,” IACR Transactions

on Symmetric Cryptology, pp. 52-79, 2017.

[24] N. Mouha, Q. Wang, D. Gu, B. Preneel, “Differential and

Linear Cryptanalysis using Mixed-Integer Linear

Programming ⋆ ,” International Conference on Information

Security and Cryptology, Beijing, China, pp. 57-76, 2011.

[25] G. Paul, S. Maitra, “RC4 Stream Cipher and Its Variants,”

2011.

[26] D. Priemuth-Schmid, A. Biryukov, “Slid pairs in salsa20 and

trivium,” International Conference on Cryptology in India,

Kharagpur, India, pp. 1–14, 2008.

[27] Y. Shaked, A. Wool, “Cryptanalysis of the bluetooth e0 cipher

using obdd’s,” International Conference on Information

Security, Samos, Greece, pp. 187-202, 2006.

[28] Khan, J. Loo, “Milp-aided bit-based division property for arx-

based block cipher,” IACR Cryptology ePrint Archive, pp. 1-

37, 2016.

[29] L. Sun, W. Wang, M. Wang, “Milp-aided bit-based division

property for primitives with non-bit-permutation linear

layers,” IET Information Security, pp. 12-20, 2020.

[30] Y. Todo, T. Isobe, Y. Hao, W. Meier, “Cube attacks on non-

blackbox polynomials based on division property,” IEEE

Transactions on Computers, pp. 1720-1736, 2018.

[31] Y. Todo, W. Meier, K. Aoki, “On the data limitation of small-

state stream ciphers: correlation attacks on fruit-80 and

plantlet,” International Conference on Selected Areas in

Cryptography, Waterloo, ON, Canada, pp. 1-29, 2020.

[32] Y. Todo, M. Morii, “Bit-based division property and

application to simon family,” International Conference on Fast

Software Encryption, Bochum, Germany, pp. 357-377, 2016.

[33] Q. Wang, Y. Hao, Y. Todo, C. Li, T. Isobe, W. Meier,

“Improved division property based cube attacks exploiting

algebraic properties of superpoly,” Annual International

Cryptology Conference, Santa Barbara, CA, USA, pp. 275-

305, 2018.

[34] Z. Xiang, W. Zhang, Z. Bao, D. Lin, “Applying milp method

to searching integral distinguishers based on division property

for 6 lightweight block ciphers,” International Conference on

the Theory and Application of Cryptology and Information

Security, Hanoi, Vietnam, pp. 648-678, 2016.

[35] Gurobi - The fastest solver. https://www.gurobi.com/

A. Results on Selected Slid Pairs

We investigated the existence of slid pair in the Fruit-80

stream cipher

A.1. A Slid Pair with a 20 clock-shifts

Key : C67BFFED58E7F743695F

IV : 310800001289621C08

Keystream : AA2E4

 94FEB25422A1914CA6ADA49…

Key : FED5B6F3FC3695FD79D6

IV : 0001289621C08AD1A1

Keystream : 94FEB25422A1914CA6ADA49…

A.2. A Slid Pair with a 40 clock-shifts

Key : C625020054820218AE54

IV : 2D369DF8800010A874

Keystream : 444C31ADDA

 498B156E08324F36FC2F4F9…

Key : 58BB9FF1E406BCBE1C0F

IV : 0010A874677CD5BBFA

Keystream : 498B156E08324F36FC2F4F9…

A.3. A Slid Pair with a 60 clock-shifts

Key : 1012932001519735626A

IV : 1A9E5A63999BDA0117

Keystream : 9D6747794A93E12

 06F37DEC94E5A5024C41009…

Key : 7BB65D5F3E7FA3DFFAAB

IV : 11723DDA7AA63C3C4C

Keystream : 06F37DEC94E5A5024C41009…

A.4. A Slid Pair with an 80 clock-shifts

Key : 874F13DB769E49B609F6

IV : 22611AFA9CAE02E3FF

Keystream : 3B13EF3DFF53D34E3F8F

 9E208C2C18F431D2F415…

Key : 520AC8AB352ABAFF97AA

IV : 13A93C3727FFA229C3

Keystream : 9E208C2C18F431D2F415…

https://www.gurobi.com/

