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Abstract: Fruit is a small-state stream cipher designed for 

securing communications among resource-constrained devices. The 

design of Fruit was first known to the public in 2016. It was later 

improved as Fruit-80 in 2018 and becomes the latest and final 

version among all versions of the Fruit stream ciphers. In this paper, 

we analyze the Fruit-80 stream cipher. We found that Fruit-80 

generates identical keystreams from certain two distinct pairs of key 

and IV. Such pair of key and IV pairs is known as a slid pair. 

Moreover, we discover that when two pairs of key and IV fulfill 

specific characteristics, they will generate identical keystreams. This 

shows that slid pairs do not always exist arbitrarily in Fruit-80. We 

define specific rules which are equivalent to the characteristics. 

Using the defined rules, we are able to automate the searching 

process using an MILP solver, which makes searching of the slid 

pairs trivial.  
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1. Introduction 
 

Stream ciphers play a prominent role in protecting digital 

communications. While there is a myriad of stream ciphers 

available in the literature, considerations of these ciphers for 

real-world applications are hindered by "security" concerns. 

This problem can be witnessed from several practical 

applications such as RC4 [25], A5/1 [9] and E0 [27]. The RC4 

stream cipher, which is a well-known primitive for protecting 

wireless networks, has been used as the underlying algorithm 

for Wired Equivalent Privacy (WEP) protocol. The aim of this 

protocol is to provide confidentiality comparable to wired 

networks. Nowadays, RC4 can no longer provide a sufficient 

level of security as it is vulnerable to attacks such as in [14, 

22]. A5/1, which is another example of stream cipher, adopted 

in the Global System for Mobile Communications (GSM) 

protocol, is a well-known primitive for securing 

telecommunications. Unfortunately, the A5/1 stream cipher 

can be broken [5, 6, 8, 12] as well, which has become one of 

the factors that renders GSM insecure. The E0 stream cipher, 

which had been implemented in Bluetooth networks, has also 

been practically broken [21]. Although stream ciphers encrypt 

faster than block ciphers, their security margins are unclear as 

the design principle of stream ciphers is not well understood 

as in block ciphers. Thus, in order to understand a “good” 

design principle for stream ciphers, an extensive effort to 

analyze existing design structures is required. 

Due to limitation of resource in Internet of Things (IoT) 

devices,  implementation of security features have become a 

challenge to cryptographers [1], especially in this era where 

IoT is on the rise. Most modern ciphers are designed to be 

lightweight for resource-constrained devices. However, The 

design of stream ciphers often involves internal states which 

are at least twice as large as their key size [2, 7, 10, 11, 19, 

20], which requires larger area size. This design strategy is 

adopted due to its resistance against the time-memory-data 

tradeoff (TMDTO) attack, which can render the effective key 

length into half of the original key size. Nevertheless, this 

does not stop cryptographers in designing stream ciphers with 

small internal states which are suitable for ultra-lightweight 

applications such as Internet of Things. In FSE 2015, Sprout 

[4], a new stream cipher has been proposed with shorter 

internal state, allowing the construction to have a smaller area 

size and lower power consumption than ciphers with large 

internal state size. However, Sprout was later proven to be 

insecure [13] against the time-memory-data tradeoff attack, 

which breaks Sprout practically. Nevertheless, studies on 

small-state stream ciphers remain active, with the emergence 

of new design proposals such as Fruit [3], Plantlet [23] and 

Lizard [17] with similar design principle which are based on 

Grain [19]. Among all these Grain-like ciphers, Fruit has 

undergone several modifications [3, 16], until being finalized 

in [15] and has been called Fruit-80. 

The Fruit-80 stream cipher has a faster initialization than 

Plantlet, Sprout and Lizard [15]. It is the lightest stream cipher 

compared with other Grain-like stream ciphers. Although 

small-state stream ciphers may incur TMDTO distinguishing 

attacks, the designers of Fruit-80 ruled out the possibility the 

cipher to be susceptible to this attack depending on the 

application scenario [15, 18]. Nevertheless, in order to avoid 

this attack, one of the countermeasures proposed by the 

designers is to limit the number of keystream bits to 216 . 

Recently, Todo et al [31] discovered that Fruit-80 can be 

broken in a time complexity of 277.8702 when 243 keystream 

bits is allowed to be generated per one key and IV pair. Thus, 

by limiting the number of keystream bits to 216 as suggested, 

the attack by Todo on Fruit-80 can be avoided as well. In this 

paper, we show that the initialization and keystream 

generation of Fruit-80 is slidable, proving that there are more 

than one pair of key and IV pairs that can produce the same 

keystream. Thus, by limiting the number of keystream bits to 

216  is not sufficient to strengthen the cipher from its 

weaknesses. 

An ideal stream cipher should produce keystreams which are 

indistinguishable from truly-random sequence. In this paper 

we would like to point out that, there exists slid key-IV pairs 

(alternatively “slid pairs”) in Fruit-80. To begin, denote 𝑓𝑟 
and 𝑓𝑠  as 𝑟 -clock and 𝑠 -clock variants of the same cipher 

respectively which only differ in the number of clocks. Given 

a key-IV pair, (𝑥, 𝑣)  and (𝑥′, 𝑣′) , if both 𝑓𝑟+𝑡(𝑥, 𝑣)  and 

𝑓𝑠+𝑡(𝑥
′, 𝑣′) can produce the same keystream for any clock 

𝑡 > 0, such key-IV pair is known as a slid pair. 

The existence of slid pairs in a stream cipher clearly shows 

that there are more than one key-IV pair that can produce the 

same keystream. In principle, each keystream should only be 

used once. By having different messages being encrypted 

using the same keystream will cause a catastrophic failure to 

the cipher system in preserving the confidentiality of the 

messages. To be more precise, let 𝑐 and 𝑐′ be two different 

ciphertexts obtained by encrypting two different plaintexts m 
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and m' using the same keystream k, such that, 𝑐𝑖 = 𝑚𝑖⊕𝑘𝑖   
and 𝑐𝑖

′ = 𝑚𝑖
′⊕𝑘𝑖. Thus, by XORing 𝑐𝑖 and 𝑐𝑖

′, we have 𝑐𝑖⊕
𝑐𝑖
′ = 𝑚𝑖⊕𝑚𝑖

′ which simplifies the recovery of both 𝑚𝑖 and 

𝑚𝑖
′. 

OUR CONTRIBUTION. In this paper, we investigate Fruit-80 of 

such behavior. We found that, by setting specific distinct key 

and IV pairs, Fruit-80 will generate identical keystreams with 

clock-shifts. Moreover, finding slid pairs in Fruit-80 is trivial. 

We propose specific rules for key and IV pairs to become a 

slid pair in Fruit-80. These rules can be translated into MILP 

inequalities to be solved automatically by an MILP solver. By 

the aid of an MILP solver, slid pairs can be generated easily. 

The result of our work shows that slid pairs in Fruit-80 is easy 

to be generated, which implies the weakness of the cipher in 

generating random keystreams. Moreover, by observing the 

slid pairs, we found that both combination of key and IV pairs 

in most slid pairs do not have a definite pattern, suggesting 

that slid pairs can also occur even if keys and IVs are 

randomly generated. 

ORGANIZATION OF THE PAPER. In Section 2, we review the 

design of the Fruit-80 stream cipher. Section 3 describes the 

construction of MILP inequalities for MILP solver to find slid 

pairs. Section 4, shows how to find slid pairs in Fruit-80 and 

describes the result of our work. Section 5 concludes the 

paper. 
 

2. A Brief Description of the Fruit-80 Stream 

Cipher 
 

Fruit-80 [15] is a GRAIN-like stream cipher. It has a 37-bit 

non-linear feedback shift register (NFSR) 𝑛  and a 43-bit 

linear feedback shift register (LFSR) 𝑙. It receives a 80-bit 

secret key 𝑘  and a 70-bit initialization vector 𝑣  where 𝑘 =
(𝑘1, 𝑘2, . . . , 𝑘80)  and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣70) . The feedback 

function of NFSR is as follow. 

𝑛𝑡+37 = 𝑘𝑡
′⊕ 𝑙𝑡⊕𝑛𝑡⊕𝑛𝑡+10⊕𝑛𝑡+20⊕𝑛𝑡+12 

 ⋅ 𝑛𝑡+3⊕𝑛𝑡+14⊕𝑛𝑡+5 ⋅ 𝑛𝑡+23 ⋅ 𝑛𝑡+31 
 ⊕𝑛𝑡+8 ⋅ 𝑛𝑡+18⊕𝑛𝑡+28 ⋅ 𝑛𝑡+30 ⋅ 𝑛𝑡+32 
 ⋅ 𝑛𝑡+34 

 

while the feedback function of LFSR is 
 

𝑙𝑡+43 = 𝑙𝑡⊕ 𝑙𝑡+8⊕ 𝑙𝑡+18⊕ 𝑙𝑡+23⊕ 𝑙𝑡+28⊕ 𝑙𝑡+37  
 

where 𝑛 ∈ 𝒏 and 𝑙 ∈ 𝒍. 
The output function produces an output bit 𝑧𝑡 in every clock. 

However, 𝑧𝑡 is discarded when 0 ≤ 𝑡 < 160. Therefore 𝑧160 

is the first output bit in the keystream. The output function is 

as follows.  
 

𝑧𝑡 = ℎ𝑡⊕𝑛𝑡⊕𝑛𝑡+7⊕𝑛𝑡+19⊕𝑛𝑡+29⊕𝑛𝑡+36⊕ 𝑙𝑡+38 
 

The output function involves h function and round keys. The 

h function is as follows.   
 

ℎ𝑡 = 𝑘𝑡
′ ⋅ (𝑛𝑡+36⊕ 𝑙𝑡+19) ⊕ 𝑙𝑡+6 ⋅ 𝑙𝑡+15⊕ 𝑙𝑡+1 

 ⋅ 𝑙𝑡+22⊕𝑛𝑡+35 ⋅ 𝑙𝑡+27⊕𝑛𝑡+1 ⋅ 𝑛𝑡+24 
 ⊕𝑛𝑡+1 ⋅ 𝑛𝑡+33 ⋅ 𝑙𝑡+42 

 

There are two round keys, 𝑘𝑡
′  and 𝑘𝑡

∗  used in the round 

function. The generation of 𝑘𝑡
′  and 𝑘𝑡

∗  is based on three 

selected key bits 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48. 
 

𝑘𝑡
′ = 𝑘𝑟 ⋅ 𝑘𝑝+16 ⋅ 𝑘𝑞+48⊕𝑘𝑟 ⋅ 𝑘𝑝+16⊕ 𝑘𝑝+16 ⋅ 𝑘𝑞+48 

 ⊕𝑘𝑟 ⋅ 𝑘𝑞+48⊕𝑘𝑝+16 
  

𝑘𝑡
∗ = 𝑘𝑟 ⋅ 𝑘𝑝+16⊕𝑘𝑝+16 ⋅ 𝑘𝑞+48⊕ 𝑘𝑟 ⋅ 𝑘𝑞+48⊕ 𝑘𝑟 

 ⊕𝑘𝑝+16⊕𝑘𝑞+48 
 

The indices of the selected key bits are based on the value of 

a counter 𝐶𝑟  which consists of 7 bits 𝐶𝑟 =
(𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5𝑐𝑡
6) , where 𝑟 = (𝑐𝑡

0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) , 𝑝 =

(𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5) and 𝑞 = (𝑐𝑡

2𝑐𝑡
3𝑐𝑡
4𝑐𝑡
5𝑐𝑡
6). 

The initialization phase is divided into three steps. The first 

step of the initialization starts from the first clock until the 80-

th clock. Both NFSR and LFSR are first initialized with 𝑘, 

such that, 𝑛𝑖 = 𝑘𝑖 and 𝑙𝑖 = 𝑘𝑖+37 for 0 ≤ 𝑖 < 37. The second 

step of initialization involves overwriting the counter 𝐶𝑟 and 

the last step of initialization starts from the 81-th clock to the 

end of initialization. 

During the first initialization phase, the counter is initialized 

such that 𝑐0
𝑖 = 0 for 0 ≤ 𝑖 ≤ 6. It is then overwritten in the 

second step of initialization where 𝑐80
𝑖 = 𝑛80+𝑖 for 0 ≤ 𝑖 ≤ 5 

and 𝑐80
6 = 𝑙80 . The value of 𝑙80  is then set to 1. The 

overwritten counter will then be used in the third step of the 

initialization. 

During the first step of initialization, 𝑧𝑡⊕ 𝑣𝑡 is XORed with 

both 𝑛𝑡+37 and 𝑙𝑡+37 respectively before entering as a new bit 

into NFSR and LFSR. The bit 𝑧𝑡⊕ 𝑣𝑡 is then disconnected 

from NFSR and LFSR during the third step of initialization. 

Figure 1 illustrates the structure of the Fruit-80 stream cipher. 
 

 

Figure 1. Structure of Fruit-80 
 

3. The Notion of Mixed-Integer Linear 

Programming (MILP) 
 

Mixed-Integer Linear Programming (MILP) [24] is a 

constraint programming used to determine the minimum or 

maximum objective of a set of linear equalitions and 

inequalities. In this paper, we use Gurobi Optimizer [35], 

which is an MILP solver, to find the key and IV pairs which 

can fulfill the sliding property. Gurobi Optimizer is also used 

in [28–30, 33, 34]. The MILP inequalities which are 

equivalent to AND, XOR and OR are shown in Lemma 1, 2 

and 3 respectively. Note that the MILP inequalities presented 

in [30, 32, 34] describes the MILP inequalities for 

propagation of the division property of copy, xor and and. 

However, in this paper, we show MILP inequalities which are 

equivalent to the bitwise AND, XOR and OR. 
 

Lemma 1. Let 𝑐 = ∏ 𝑎𝑖
𝑗
𝑖=1  be an AND operation. The 

equivalent inequalities for the AND operation is as follows. 
 

𝑐 − 𝑎𝑖 ≤ 0 where 1 ≤ 𝑖 ≤ 𝑗 
𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗 

 

Proof. By limiting 𝑐  and 𝑎𝑖  for all 1 ≤ 𝑖 ≤ 𝑗  such that 𝑐 −
𝑎𝑖 ≤ 0, the possibility that 𝑐 = 1 while 𝑎𝑖 = 0 for any 𝑖  is 
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eliminated. The constraint 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗 

eliminates the possibility that 𝑐 = 0 when 𝑎𝑖 = 1 for all 1 ≤
𝑖 ≤ 𝑗 . All other possibilities are true in bitwise AND 

operations.                              ◻ 
 

Lemma 2. Let 𝑐 = 𝑎1⊕𝑎2  be an XOR operation. The 

equivalent inequalities for the XOR operation are as follows. 
 

𝑐 − 𝑎1 − 𝑎2 ≤ 0 

𝑐 − 𝑎1 + 𝑎2 ≥ 0 

𝑐 + 𝑎1 − 𝑎2 ≥ 0 

𝑐 + 𝑎1 + 𝑎2 ≤ 2 
 

Proof. The inequality 𝑐 − 𝑎1 − 𝑎2 ≤ 0  eliminates the 

possibility that 𝑐 = 1 , 𝑎1 = 0 and 𝑎2 = 0 , which is not in 

accordance with a bitwise XOR operation. The second 

inequality 𝑐 − 𝑎1 + 𝑎2 ≥ 0  eliminates the possibility that 

𝑐 = 0 , 𝑎1 = 1  and 𝑎2 = 0 . The third inequality 𝑐 + 𝑎1 −
𝑎2 ≥ 0  eliminates the possibility that 𝑐 = 0 , 𝑎1 = 0  and 

𝑎2 = 1  while the fourth inequality 𝑐 + 𝑎1 + 𝑎2 ≤ 2 

eliminates the possibility where 𝑐 = 1, 𝑎1 = 1 and 𝑎2 = 1. 

The remaining possibilities are in accordance with bitwise 

XOR operations.                         ◻ 
 

Lemma 3. Let 𝑐 = ⋁ 𝑎𝑖
𝑗
𝑖=0   be an OR operation. The 

equivalent inequalities for the OR operation are as follows. 
 

𝑐 − 𝑎𝑖 ≥ 0 where 1 ≤ 𝑖 ≤ 𝑗 
𝑐 − 𝑎_1 − 𝑎_2−. . . −𝑎_𝑗 ≤ 0 

 

Proof. By limiting 𝑐 and 𝑎_𝑖 for all 1 ≤ 𝑖 ≤ 𝑗 such that 𝑐 −
𝑎𝑖 ≥ 0, the possibility that 𝑐 = 0  while 𝑎𝑖 = 1 for any 𝑖  is 

eliminated. The constraint 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≥ 1 − 𝑗 

eliminates the possibility that 𝑐 = 1 when 𝑎𝑖 = 0 for all 1 ≤
𝑖 ≤ 𝑗 . All other possibilities are true in a bitwise OR 

operation.                           ◻ 
 

Lemma 3 is equivalent to Proposition 2 in [34]. Note that 

Todo et al [30] claim that 𝑐 − 𝑎1 − 𝑎2−. . . −𝑎𝑗 ≤ 0  is 

redundant and does not affect their result even if the inequality 

is not included. However, we found that there is a possibility 

for 𝑐 = 1 𝑎𝑛𝑑 ∑ 𝑎𝑖
𝑗
𝑖=1 = 0, which does not correspond to a 

bitwise OR operation. Therefore, we adopt the MILP 

inequalities introduced in [34] to avoid this possibility. 

Both 𝑘𝑡
′  and 𝑘𝑡

∗  are determined by three secret key bits 𝑘𝑟 , 

𝑘𝑝+16 and 𝑘𝑞+48. We show the equations for determining the 

value of 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 in Lemma 4. 
 

Lemma 4. Let ℓ be the length of subkey; 𝛾  as the starting 

index of key bits for 𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 respectively. Next, 

let 𝛼 be the starting index of the respective counter bits used 

by either 𝑟, 𝑝 or 𝑞; while 𝛽 representing the last index of the 

respective counter bits. Then, the value of 𝑘𝑟 , 𝑘𝑝+16  and 

𝑘𝑞+48 can be determined by assigning the respective values of 

ℓ, 𝛼, 𝛽 and 𝛾 to the following expression. 
 

∑

(

 
 
𝑘𝑖 ⋅ (1 − (⋁(𝑐𝑡

𝑗
⊕ ⌊

𝑖 − 𝛾

2𝛽−𝑗
⌋  𝑚𝑜𝑑 2)

𝛽

𝑗=𝛼

))

)

 
 

𝛾+𝑙−1

𝑖=𝛾

 

 

Proof. From the round key function of Fruit-80 (cf. Section 

2), we know that 𝑘𝑟 ∈ {𝑘0, 𝑘1, . . . , 𝑘15} . Therefore, we 

consider 𝑘𝑟 = ∑ (𝑘𝑖 ⋅ 𝜔)
15
𝑖=0 , where 𝜔 ∈ 𝔽2 takes a value of 1 

if and only if 𝑖 = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3). The index 𝑖 can be viewed as a 

vector 𝑖 = (𝑖0𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6),  in which 𝑖𝑗 = ⌊
𝑖

26−𝑗
⌋  𝑚𝑜𝑑 2. 

Since 𝑟 = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3), we focus on obtaining (𝑖0𝑖1𝑖2𝑖3) with  

𝑖𝑗 = ⌊
𝑖

23−𝑗
⌋ . Note that (𝑐𝑡

0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) ⊕ (𝑖0𝑖1𝑖2𝑖3) = 0  if and 

only if (𝑖0𝑖1𝑖2𝑖3) = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3). In this case, the bitwise OR 

operation ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋  𝑚𝑜𝑑 2)3

𝑗=0   can help in 

distinguishing whether (𝑖0𝑖1𝑖2𝑖3) = (𝑐𝑡
0𝑐𝑡
1𝑐𝑡
2𝑐𝑡
3) by returning 

value 0 when it is true or value 1 if otherwise. However, 𝜔 

works the opposite of ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋   𝑚𝑜𝑑 2)3

𝑗=0 , thus 𝜔 =

1 − ⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋  𝑚𝑜𝑑2)3

𝑗=0 .  Therefore, 𝑘𝑟 = ∑ (𝑘𝑖 ⋅
15
𝑖=0

(1 − (⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖

23−𝑗
⌋   𝑚𝑜𝑑 2)3

𝑗=0 ))) . We apply the same 

procedure for 𝑘𝑝+16  and 𝑘𝑞+48.  Since 𝑘𝑝+16 ∈

{𝑘16, 𝑘17, . . . , 𝑘47},  then 𝑘𝑝+16 = ∑ (𝑘𝑖 ⋅ (1 −
47
𝑖=16

(⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−16

25−𝑗
⌋   𝑚𝑜𝑑 2)5

𝑗=1 ))) ;  and since 𝑘𝑞+48 ∈

{𝑘48, 𝑘49, . . . , 𝑘79},  then 𝑘𝑞+48 = ∑ (𝑘𝑖 ⋅ (1 −
79
𝑖=48

(⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−48

26−𝑗
⌋   𝑚𝑜𝑑 2)6

𝑗=2 ))). The expressions for finding 

𝑘𝑟, 𝑘𝑝+16 and 𝑘𝑞+48 can then be generalized to ∑ (𝑘𝑖 ⋅
𝛾+𝑙−1
𝑖=𝛾

(1 − (⋁ (𝑐𝑡
𝑗
⊕ ⌊

𝑖−𝛾

2𝛽−𝑗
⌋   𝑚𝑜𝑑 2)

𝛽
𝑗=𝛼 ))). Hence, we require to 

give the respective value of 𝛼, 𝛽, 𝛾 and l to the expression, 

such that, 𝛼 = 0, 𝛽 = 3, 𝛾 = 0 and 𝑙 = 16 (for finding 𝑘𝑟 ); 

𝛼 = 0 , 𝛽 = 3 , 𝛾 = 0  and 𝑙 = 16  (for finding 𝑘𝑝+16 ); and, 

𝛼 = 2, 𝛽 = 6, 𝛾 = 48 and 𝑙 = 32  (for finding 𝑘𝑞+48).   ◻ 
 

Lemma 4 can be converted into MILP equations by making 

use of the MILP inequalities shown in Lemma 1, Lemma 2 

and Lemma 3 accordingly. 

4. Finding Slid Pairs on Fruit-80 

A general rule for a slid pair to exist in a stream cipher is to 

have the first starting state initialized with (𝑘, 𝑣) to produce 

the second starting state which can be initialized with (𝑘′, 𝑣′) 
at different clock-shifts [26]. The key factor for two key and 

IV pairs to generate identical keystreams is due to the 

symmetrical structure between round functions after the first 

starting state, and round functions after the second starting 

state. To be more precise, the round function at clock t must 

be symmetrical to the round function at clock 𝑡 + 𝑢 in order 

to produce keystreams with u clock-shifts. There are several 

components in Fruit-80 that may remove the symmetry. 

However, when certain variables (as explained later in Rule 

1, 2, 3 and 4) hold specific values, every round function at 

clock t behaves similarly to the round function at clock 𝑡 + 𝑢, 

thus allowing slidable keystreams to be generated. Moreover, 

we notice that slid pairs does not always exist arbitrarily. We 

have found specific rules in which, when all rules being 

fulfilled by two pairs of key and IV, Fruit-80 generates 

identical keystreams. We define the rules as follows: 
 

Rule 1. 𝑘𝑡
′  and 𝑘𝑡

∗ must be the same for all clocks in the first 

and third steps of the initialization. 
 

For each clock, 𝑘𝑡
′  and 𝑘𝑡

∗ are generated based on the counter 

𝐶𝑟 (cf. Section 2). The counter is initially set to 0. It is then 
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overwritten after the first step of the initialization based on the 

value of k. Thus, the variables 𝑘𝑡
′  and 𝑘𝑡

∗  may provide 

assymetry between the first step and the third step of the 

initialization. Since 𝑘𝑡
′  and 𝑘𝑡

∗  are not hardcoded, there are 

possibilities for the value of 𝑘𝑡
′  and 𝑘𝑡

∗ are not changed during 

the third step of the initialization, even if the counter is 

updated with different values. Thus, it is not possible for a slid 

pair to occur when the values of 𝑘𝑡
′  and 𝑘𝑡

∗ during the first step 

of the initialization is different from the values during the 

third step of the initialization. Therefore, it is required for 𝑘𝑡
′  

and 𝑘𝑡
∗ to be the same for all clocks in both steps. 

 

Rule 2. 𝑙80  and 𝑙80+𝑢 must be set to 1. 
 

After the overwriting of 𝐶𝑟, the value of 𝑙80  is set to 1 to 

prevent the LFSR from being all zeros throughout the third 

initialization step. By default, the value of 𝑙80 will be set to 1 

during the 81-st clock. However, the value of 𝑙80+𝑢 may differ 

from 𝑙80 . If this happens, it will prevent the symmetry 

between the round function on the 81-st clock and the round 

function at the (81 + 𝑢) -th clock. Thus, to ensure the 

symmetry between these two clocks, we set 𝑙80+𝑢 to 1 as well. 
 

Rule 3. 𝑧𝑡⊕ 𝑣𝑡 = 0, for all clocks in the first and third steps 

of the initialization. 
 

During the first step of the initialization, the feedback 

functions for both NFSR and LFSR are XORed with 𝑧𝑡⊕𝑣𝑡. 
After the first step of initialization, 𝑧𝑡⊕𝑣𝑡  are disconnected 

from the feedback functions, results in 𝑧𝑡⊕ 𝑣𝑡 = 0. Thus, the 

disconnection of 𝑧𝑡⊕ 𝑣𝑡 may provide assymetry between the 

first step and the third step of the initialization. It is not 

possible for a slid pair to occur when 𝑧𝑡⊕𝑣𝑡 = 1 during the 

first step of the initialization. Therefore, it is required that 

𝑧𝑡⊕ 𝑣𝑡 = 0 for all clocks in the first step of the initialization. 
 

Rule 4. 𝑣𝑡 = 𝑣𝑡+𝑢, for all 0 ≤ 𝑡 < 10.  
 

During the key and IV loading, the 70-bit v will be padded 

with 10 constant bits to form an 80-bit v. The 10 padded bits 

are used in clock 0 ≤ 𝑡 < 10 . The constant values may 

induce asymmetry between the first 10 clocks after the 

starting state and the first 10 clocks after the second starting 

state. To remove the asymmetry, we set 𝑣𝑡+𝑢 = 𝑣𝑡 for all 0 ≤
𝑡 < 10. 
 

Table 1: The number of slid pairs in Fruit-80 based on the 

number of clock-shifts 
Number of clock-shifts Number of Slid Pairs 

20 212.81 

40 213.32 

60 212.99 

80 212.08 
 

With these predefined rules, we can automate the process of 

finding these slid pairs using an MILP solver. We run our 

experiment for several weeks using a single PC to find slid 

pairs applying our predefined rules. From our experiment we 

have been able to find 212.81 slid pairs considering a 20-clock 

shift. We continue our experiment considering other number 

of clock-shifts, i.e. 40, 60, and 80 clocks and have been able 

to find 213.32 , 212.99  and 212.08  slid pairs respectively. We 

summarize our findings in Table 1. Examples of slid pairs 

obtained through several clock-shifts are listed in Appendix 

A. 

 

5. Conclusions 
 

We investigated the existence of slid pair in the Fruit-80 

stream cipher that can generate an identical keystream. We 

employed an MILP solver to help us finding these pairs by 

applying our predefined rules. Our result shows that slid pairs 

in Fruit-80 can be found with deterministic rules. This proves 

that it is possible for Fruit-80 to generate the same keystream 

after resynchronization if the key and IV are not properly 

selected. Our result should provide insights to designs of more 

secure and random stream ciphers for constrained 

environments.  
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A. Results on Selected Slid Pairs 
 

We investigated the existence of slid pair in the Fruit-80 

stream cipher 
 

A.1. A Slid Pair with a 20 clock-shifts 
 

Key    : C67BFFED58E7F743695F 

IV    : 310800001289621C08 

Keystream : AA2E4 

     94FEB25422A1914CA6ADA49… 

 

Key    : FED5B6F3FC3695FD79D6 

IV    : 0001289621C08AD1A1 

Keystream : 94FEB25422A1914CA6ADA49… 
 

 

A.2. A Slid Pair with a 40 clock-shifts 
 

Key    : C625020054820218AE54 

IV    : 2D369DF8800010A874 

Keystream : 444C31ADDA 

     498B156E08324F36FC2F4F9… 

 

Key    : 58BB9FF1E406BCBE1C0F 

IV    : 0010A874677CD5BBFA 

Keystream : 498B156E08324F36FC2F4F9… 
 

 

A.3. A Slid Pair with a 60 clock-shifts 
 

Key    : 1012932001519735626A 

IV    : 1A9E5A63999BDA0117 

Keystream : 9D6747794A93E12 

     06F37DEC94E5A5024C41009… 

 

Key    : 7BB65D5F3E7FA3DFFAAB 

IV    : 11723DDA7AA63C3C4C 

Keystream : 06F37DEC94E5A5024C41009… 
 

 

A.4. A Slid Pair with an 80 clock-shifts 
 

Key    : 874F13DB769E49B609F6 

IV    : 22611AFA9CAE02E3FF 

Keystream : 3B13EF3DFF53D34E3F8F 

     9E208C2C18F431D2F415… 

 

Key    : 520AC8AB352ABAFF97AA 

IV    : 13A93C3727FFA229C3 

Keystream : 9E208C2C18F431D2F415… 
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