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Abstract: Presently, active queue management (AQM) is one of 

the important considerations in communication networks. The 

challenge is to make it simple and robust in bursty traffic and 

uncertain network conditions. This paper proposes a new AQM 

scheme, an adaptive ratio proportional integral (ARPI), for 

adaptively controlling network congestion in dynamic network 

traffic conditions. First, AQM was designed by adding a set-point 

weighting structure to a proportional integral (PI) controller to 

reduce the burstiness of network traffic. Second, an adaptive set-

point weighting based on the ratio of instantaneous queue length to 

the set-point queue and the buffer size was proposed to improve the 

robustness of a non-linear network. The proposed design integrates 

the aforementioned expectations into one function and needs only 

one parameter change to adapt to fluctuating network condition. 

Hence, this scheme provides lightweight computation and simple 

software and hardware implementation. This approach was 

analyzed and compared with the PI AQM scheme. Evaluation 

results demonstrated that our proposed AQM can regulate queue 

length with a fast response, good stability under any traffic 

conditions, and small queuing delay.  
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1. Introduction 
 

For a comprehensive network, active queue management 

(AQM) is an important intermediate network solution for 

network traffic control that could not be obtained by former 

attempts. Buffer overflow is one of mainly caused in a node 

that makes congestion in communication problem affecting 

network performance [1]. AQM performs packet dropping in 

a buffer network router before congestion. Concerning in the 

buffer occupancy makes AQM to know traffic condition and 

decides how to treat the arrival packet, also buffer size 

awareness can shorten the delay experienced by packet [2]. 

The first AQM, random early detection (RED) [3] was 

proposed as a solution to support end-to-end transmission 

control protocol (TCP) congestion control, i.e., TCP RENO. 

RED reduces the synchronization problem because of its 

drop-tail mechanism and ability to maintain the desired 

queue length. The drawback of RED is its sensitivity to 

parameter setting in dynamic network load. Many variants of 

RED have been released to tackle the limitation of RED in a 

heuristic approach. Hollot proposed proportional integral 

(PI) AQM [4] to overcome the challenges faced by RED and 

to provide PI tuning parameters using the control theory 

approach through the TCP flow model. Nonetheless, PI is 

still problematic for obtaining proper parameter values for 

good response and robustness in an uncertain traffic network. 

From the limitation of two well-known AQMs above arise 

enhanced research to introduce the adaptivity of AQM. 

Adaptive AQM scheme based on queue length in heuristic 

method such as ARED [5] and improved in [6] which varies 

the maximum drop probability using two different constant 

factors based on the online average queue length. it is simple 

but in specific conditions, it has a bad response and the low-

pass filter used for queue averaging leads to the sluggish and 

indolence behavior of this scheme [7]. Furthermore, 

Adaptive AQM based on queuing delay using PI controller is 

PIE [8] which to overcome bufferbloat on access links that 

much attention during the past few years. It achieved good 

performance in normal delay traffic conditions but worst as 

delay increase [9]. However, PIE is not scalable because it is 

effective on a medium-scale networks, such as on the access 

link of the user. Meanwhile, more advanced PI AQMs have 

been proposed using the optimization method. In [10,11] 

regulate queue length with adaptive PI with neuron based, 

leads to high computation and hard in implementation along 

with heuristic optimization algorithm. 

Other research [12] was to obtain PID parameters using an 

optimization approach and to suggest to develop with 

different structure of PID controllers to implement it with an 

adaptive mechanism because many AQMs have problems 

with robustness, especially in changing traffic conditions and 

effectively handling bursty traffic. To overcome this, we 

propose an adaptive queue ratio proportional integral (ARPI) 

regulates queue length to the reference value. The addition of 

set-point weighting at PI AQM is expected to improve 

robustness and to reduce burst traffic for controlling dynamic 

network traffic. The main contributions of this paper are 

summarized as follows. First, a new weighted formula to 

estimate traffic load based on the ratio of occupancy queue in 

a buffer, and introduces PI Set-point weighting controller to 

reduce bursty traffic in AQM. Second, a low-cost self-tuning 

algorithm with only one parameter to adjust periodically 

adaptive controller, therefore it will be scalable and have a 

potentially easy implementation in software and hardware. 

The paper is organized as follows. The related works of this 

research are reviewed in Section 2. A concept of TCP/AQM 

congestion control is given in Section 3. ARPI AQM design 

is defined in Section 4. Simulation analysis is given in 

Section 5. Section 6 concludes this paper. 
 

2. Related Works 
 

PI controller has been massively used in the industrial 

process until now. PI has been implemented in network 

congestion control protocols for the past decade because it is 

a simple mechanism, easy implementation, and good 

response. Through the control theory approach, AQM can be 

designed and analyzed practically such as PI [4], 2DoF PID 

[13], PI–PD [14] and PID AQM [15] solution to overcome 

lacks of heuristic approach. Likewise, another work [12] uses 

an optimal control method to tune parameters of PID AQM.  

It showed that the structure type of PID can be deployed in 

communication networks. 
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The first AQM was designed using control theory with a PI 

controller and a method for tuning its parameters [4]. 

However, the fixed-parameter PI controller is sluggish and 

hard to speed up a response [16]. Alternatively, an adaptive 

controller to overcome the fixed controller to tackle dynamic 

network conditions. Many proposed adaptive AQMs have 

been implemented proposed, but most of them were not the 

satisfaction of AQM goals, e.g.; the existing adaptive AQM 

schemes are less appropriate under dynamic conditions, their 

need for pre-specification and pre-tuning parameters [17], as 

below. 

Zhang et al. [18] proposed a self-tuning structure AQM 

(STPI) which online estimates link capacity and traffic load, 

this approach is a complex algorithm and difficult to estimate 

network parameters. Chen et al. [19] Proposed adaptive PI 

which adjusts AQM parameters using a pole-placement 

method. But it was a complex tuning algorithm and needed 

unknown network parameters. Chang et al. [20] proposed an 

adaptive PI AQM (RPI), in which queue length error is 

increased cause it is larger than a certain threshold. Then 

they improved this method in terms of transient performance 

over a wide range of network parameters [21]. Hong et al. 

[22] introduced an adaptive PI AQM, that used gain and 

phase margins to adjust parameters. They also improved 

their method [23] in using gain margin specifications. 

However, both of their methods are complex and require 

network parameters, which are hard to get these values in a 

router. 

Xu et al. proposed N-PI [24] based on hyperbolic secant 

function tuning to get robust stability and good dynamic 

result, but it was not simple computation to get controller 

parameters. Sun et al. proposed IAPI in [25] using three 

mechanisms for adaptive PI AQM to regulate queue length, 

therefore, these cannot be considered as an effective scheme 

in long-delay networks [7]. Wang et al. Proposed API [26] 

that adjusts the integral gain to get a faster response and 

dynamically the packet drop probability based on three 

conditions of queue length error. 

In summary, some of those above AQM’s are complex 

computations and difficult to estimate tuning parameters. 

The goal of the AQM scheme should scalable and simple 

algorithm for deployment in software and hardware. The 

AQM algorithms should not require tuning or 

reconfiguration of initial parameters [9], as mention above, 

they should not need pre-specification and pre-tuning 

parameters. 
 

3. TCP Flow and AQM Congestion Control 
 

The TCP flow model in non-linear differential equations has 

been formulated by Misra as a solution for further analysis of 

the network congestion control algorithm [27]: 
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Where W = Average TCP window size (packets), R(t) = 

Round-trip-time = Tp + (q(t)/C) (s), Tp = Propagation delay 

(s), q(t) = Queue length (packets), C = Link capacity 

(packet/s), P = Packet drop probability, and N = Number of 

TCP sessions. Herein, W  denotes the time-derivative of W. 

The initial part of the first formula is the window’s additive 

increase (1/R), while the final part is the window’s 

multiplicative decrease (W/2) in response to packet marking 

p. The second formula in (2) represents the bottleneck queue 

length. 

The differential equation of TCP flow model can assist in 

designing and determining the best AQM controller 

parameters because TCP control has a feedback process, i.e., 

ACK signal, that is generated by a receiver to inform the 

sender when a packet is received; then, it is used by the 

sender to decide whether the packet window size needs to be 

increased or decreased. The existence of a feedback process 

allows the TCP flow model to be analyzed using a control 

theory approach, e.g., the transfer form of the TCP flow 

model. 

In [4,28], the stochastic equation above was transformed by 

classic control theory through linearization and by ignoring 

the time-out mechanism. Assuming that both the TCP load 

and link capacity are constant, i.e., N(t)  N and C(t)  C, W 

with q as the state and p as input and the operating points 

(wo, qo, and po) is derived by W = 0 and q = 0. Continuing to 

simplify this model while ignoring residual behavior means 

focusing on the nominal behavior of the window dynamic. 

The transfer function of TCP/AQM flow is given by: 
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Where Gtcp is the TCP window control mechanism, Ro is 

round-trip time at the operating point, and Gqueue is queue 

dynamic. The feedback of TCP/AQM flow system is shown 

in Figure 1. 
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Figure 1. The Feedback of TCP/AQM system. 

According to (3) and Figure 1, TCP/AQM dynamic can be 

expressed as  
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AQM is presented by the Gc function, which is applied with 

a PI controller. The transfer function of the PI controller is 

given by  
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Where Kp is proportional gain and Ki is integral gain. To 

obtain the z-domain transfer function, equation (5) is 

converted from the s-domain using bilinear transform 

(Tustin’s rule) to preserve stability [29]. Then the discrete PI 

controller is given by 

)1(.)(.)1()( −++−= nebneanpnp  (6) 

Where Ts is the sampling time and 
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4. Design of ARPI AQM 
 

To achieving better robustness, the controller should adapt to 

changing network conditions by adjusting its parameters. 

Therefore, the challenge is to design and find the proper 

formula for the abovementioned purpose. Based on the TCP 

flow model, a non-linear factor is caused by three 

parameters:  load network (N), round-trip time (RTT), and 

link capacity (C). These parameters are difficult to obtain in 

real-time processes. Simplifying the implementation is also 

challenging. We design ARPI AQM to overcome the above 

problems as below. 

    4.1 Proportional Integral Controller with Set-point 

Weighting 

Firstly we used the PI set-point weighting controller to 

design our proposed AQM, it enhances from PI controller 

and its transfer function is. 

 ( ) )()()()( se
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Where  is a set-point weighting. The function of set-point 

weighting reduces the overshoot response in a transient 

process [30]. In a case of network congestion, the function is 

to reduce bursty or bulk traffic. The dynamic network shows 

non-linear behavior. In a non-linear process, properly tuned 

parameters are not suitable for other circumstances, and 

constant values of the parameters will generate a 

conservative response [31]. 

Implementing set-point weighting is modified in the 

proportional term [32] that to include a parameter weighting 

factor  on the reference. Because proportional action is the 

present value of error [33], so the discrete of the proposed 

adaptive PI AQM (ARPI) as given. 

   )1(.)()(.)1()( −+−+−= nebnrnyanpnp   (9) 

    4.2 Adaptive Queue Ratio for ARPI 

Secondly, we present an ARPI controller to periodically 

adjust the parameter of set-point weighting in (9), based on 

the instantaneous queue occupancy over time in the router. 

The proposed design is shown in Figure 2. 

 

Adaptive Ratio Reference 
Algoritm

+PI

Random Drop Buffer

Queue Length

Buffer Size

Qref

p 1-p

ARPI AQM  
Figure 2. The Design of proposed AQM system. 

One of the literature presented online adaptive tuning set-

point weighting using sigmoid function based on changing of 

variable process error [34], but still needs pre-tuning of the 

other parameter. Our proposed design determines set-point 

weighting by an analytical approach instead of a control 

theory method, to avoid high computation costs. Thus,  

value is computed periodically in every arrival packet of the 

buffer based on the ratio of instantaneous queue length to 

reference queue length. 

Queue ratio is divided into upper and lower ratios. The upper 

ratio is a condition when the error is more than zero and is 

seen as an overshoot response. This ratio is the error divided 

by buffer size minus the queue reference. A lower ratio 

indicates an error that is less than or equal to zero and is 

perceived as an overdamped response. This ratio is the error 

divided by queue length minus the queue reference. 

According to the above values, if error = 0, queue ratio = 0, 

then  = 1. Hence, this formula is one minus the queue ratio. 

The proposed formula for adaptive set-point weighting is 

given below: 
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Where, q(t)= Instantaneous queue length, qref = Queue 

reference, qsize= Buffer size of router, and (t)= Set-point 

weighting. The characteristic of  against all of the 

instantaneous queue length in buffer size is depicted in 

Figure 3 (a) the black line represents buffer sizes of 800 

packets, and the grey lines denote buffer sizes of 400 

packets. The variance range of the queue length varies from 

empty to full, dynamically generating set-point weighting 

values between 0 and 2 for both overshoots and overdamped 

processes. 
 

 
(a) 

 
(b) 

Figure 3. Value of  with: (a) Qref 200 for different buffer 

sizes; (b) buffer size of 800 for different Qref. 
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Our proposed method is simple because only one adaptive 

parameter (), that does not yield complex formula is 

required. Thus, it makes lightweight computation and easy 

implementation in software and in hardware possible. ARPI 

pseudo-code algorithm for implementation is as below: 
 

Algorithm 1. ARPI  (*Called upon arrival a new packet*) 
qer=qlen-qref; 

 If (qer> 0) spw=1-(qer/brw); 

 Else spw=1-(qer/qref); 

 p=a(qlen-spw*qref)-b(qold-qref)+pold 

 If (p<0) p=0 

 Else (p>1) p =1 

 Random = uniformRandom(0,1); 

 If (Random > p) Enqueue the packet; 

 Else Drop the packet; 
 

Parameter: 

 qref: Reference of queue length 

 qlen: Queue length 

 qer: Queue error 

 brw: Buffer reference weighting (buffer limit–qref) 

 spw: Set-point weighting 

 qold: Old queue 

 pold: Old probability 

 p: Drop probability 

 a: Proportional gain 

 b: Integral gain 
 

5. Simulation and Result 
 

ARPI AQM protocol algorithm is implemented in an NS2 

simulator [35] to evaluate its performance in six scenarios. 

Another AQM, i.e., PI, is also simulated for comparison. The 

PI parameters tuned by Hollot are still used in our proposed 

PI, i.e., a = 1.822 × 10−5, b = 1.816 × 10−5, and Fs = 160. This 

work focuses on the evolution of queue length, as one of the 

strategic keys for AQM performance. If an AQM scheme 

quickly regulates queue length to the desired value and 

maintains stability with less oscillation, then the desired 

network performance is expected to be achieved. Two of the 

desired network performance criteria predicted are queuing 

delay and high link utilization [36]. 
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Figure 4. Network simulation topology. 

Simulation topology with a bottleneck link is shown in 

Figure 4, where the dumbbell network with multiple TCP 

connections from S1,2,…N to D1,2,…N, shares a bottleneck 

link between routers R1 and R2. Configuration of link 

capacity and propagation delay is also shown in Figure 4. 

The link capacity of C is set to 15 Mbps, and the propagation 

delay Tp is set to 5 ms in a normal traffic scenario. Other 

links, their capacities in 10 Mbps and propagation delay 5 

ms. The maximum buffer size of each router is set to 800 

packets, and the queue length target is set to 200 packets. 

The average packet size is 500 bytes and the simulation 

running time is 60 s. 

    5.1 Performance in Normal Traffic 

This simulation demonstrates the performance in normal 

traffic that is regular traffic condition, where there is a 

greedy 100 long-lived TCP flow, sharing bottleneck link 

with 15 Mbps capacity, and propagation delay Tp of 5 ms. 

Figure 5 (a) illustrates the evolution of queue length for both 

ARPI and PI. PI shows a sluggish response, which yields a 

big overshoot queue and long transient response time. 

However, ARPI reduces the big overshoot and quickly 

regulates the queue length to the target value. 

Figure 5 (b) shows that ARPI has queuing delay under 50 

seconds and small jitter, and both values are smaller than PI. 

A Jitter is approximated by the length from the lower to 

upper boundaries of the boxplot in the graph of queuing 

delay. Table 1. presents that both algorithms have the same 

throughput.  However, ARPI has a smaller value of average 

queue length and shorter bottleneck link delays. 

 
(a) 

 
(b) 

Figure 5. Performance in normal traffic based on (a) queue 

length and (b) queuing delay. 

Table 1. AQM performance analysis at nominal traffic. 

KPI PI ARPI 

Average of queue (Packets) 301 179 

Throughput (Kbps) 14993 14993 

Bottlenect link delay (ms) 93 58 

    5.2 Performance in Heavy Traffic 

The case of overload traffic with 300 greedy TCP 

connections and long delay propagation time, 50 ms. Figure 

6 (a) shows that the PI cannot handle a big load initially. 

This leads to drop packets due to buffer overflow. PI also 

requires a long settling time. However, ARPI depicted by the 
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red line can maintain a good response and a little overshoot 

in the overload packet. The queuing delay for Figure 6 (b) in 

this scenario points out that ARPI is having a smaller jitter 

than PI. The average queue length and the link delay for both 

AQMs are shown in Table 2. That ARPI is better than PI. 

 
(a) 

 
(b) 

Figure 6. Performance in heavy traffic based on (a) queue 

length and (b) queuing delay. 

Table 2. AQM performance analysis in heavy traffic. 

KPI PI ARPI 

Average of queue (Packets) 407 231 

Throughput (Kbps) 14971 14971 

Bottlenect link delay (ms) 169 117 

    5.3 Performance for Small Buffer Size 

Next, the proposed method is validated versus the well-

known PI scheme by reducing the buffer size to 400 packets. 

In Figure 7 (a), the PI algorithm generates long buffer flow 

in 20 s, which means almost all of the arrived packets are 

dropped; this leads to a synchronization problem. 

Contrastingly, the ARPI scheme has a stable response by 

keeping the queue length around the desired target from the 

beginning of the process. Also, our proposed schema has 

better performance in regulating queuing delay as shown in 

Figure 7 (b)  Even jitter ARPI is smaller than PI. Table 3 

figures out that ARPI reduces the average of queue length 

and link delay up to 33 percent as compared to PI. 

 
(a) 

 
(b) 

Figure 7. Performance for small buffer size based on (a) 

queue length and (b) queuing delay. 

Table 3. AQM performance analysis in small buffer size. 

KPI PI ARPI 

Average of queue (Packets) 299 209 

Throughput (Kbps) 14993 14993 

Bottlenect link delay (ms) 92 66 

    5.4 Performance for Changing of Set-Point 

Different target values are tested by increasing the reference 

queue from 200 packets to 300 packets in a heavy traffic 

scenario. This is shown in Figure 8 (a) PI represented by the 

green line has a bad response with buffer overflow in the 

initial process, along with a long settling time of 33 s. ARPI 

represented by the red line is good enough to regulate the 

queue length around the set-point value and has a quick 

settling time of 8 s. Figure 8 (b) Depicts that ARPI has better 

performance in keeping shorter queuing delay and smaller 

jitter as compared with PI. ARPI can regulate the queue 

length close to the target value 300 and keep the small link 

delay as shown in Table 4. 
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(a) 

 
(b) 

Figure 8. Performance for changing set-point based on (a) 

queue length and (b) queuing delay. 

Table 4. AQM performance analysis in changing set-point. 

KPI PI ARPI 

Average of queue (Packets) 454 295 

Throughput (Kbps) 14945 14912 

Bottlenect link delay (ms) 233 186 

    5.5 Performance for Different Link Capacities 

The next scenario is changing the link capacity from 15 

Mbps to 10 Mbps. This was presented in Figure 9 (a) PI 

(green line) experienced a long overshoot and failed to 

achieve the reference value of 200. Conversely, the proposed 

solution, i.e., ARPI (red line) has an excellent response, 

keeping the queue length to the desired reference value and 

offering a fast settling time of 3 s. ARPI queuing delay is 

kept small as illustrated in Figure 9 (b). Characteristics of PI 

and ARPI mechanisms are shown in Table 5 ARPI is more 

powerful than PI for average queue length and link delay, 

which is in 206 packets and 95 seconds, respectively. 

 
(a) 

 
(b) 

Figure 9. Performance for different link capacities based on 

(a) queue length and (b) Queuing delay. 

Table 5. AQM performance analysis at different link 

capacities. 

KPI PI ARPI 

Average of queue (Packets) 321 206 

Throughput (Kbps) 9995 9995 

Bottlenect link delay (ms) 145 95 

    5.6 Mix Traffic TCP and UDP 

The final examination is mixing 100 UDP flows to the first 

scenario conditions, these UDP traffics follow an exponential 

ON/OFF traffic model with the idle and burst times have 

means of 0.5 second and 1 second respectively. The packet 

size is set at 500 bytes with the sending rate during on-time 

being 64 Kbps. Figure 10 (a) presents the queue lengths for 

both AQMs. We can see again that ARPI reacts and 

converges to the target queue length faster than PI that can 

not regulate it under this scenario. Queuing delay is depicted 

in Figure 10 (b) that ARPI has under 50 ms and small jitter 

comparing with PI. Table 6 presents that the average of 

queue length ARPI is 189, which is closest to the target of 

200, and the bottleneck link delay of ARPI is lower than PI. 
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(a) 

 
(b) 

Figure 10. Performance for mix TCP and UDP based on (a) 

queue length and (b) queuing delay 

Table 6. AQM performance analysis at mix TCP and UDP. 

KPI PI ARPI 

Average of queue (Packets) 354 189 

Throughput (Kbps) 14993 14993 

Bottlenect link delay (ms) 106 58 

 

6. Conclusions 
 

This paper presented a new method of adaptive AQM 

protocol called ARPI. ARPI was analyzed for six network 

traffic scenarios. In addition to simple and low-cost 

computation, by adaptively setting the PI set-point weighting 

(), ARPI offers a robust response in a dynamic network. In 

all simulated scenarios, ARPI is superior to PI AQM; i.e., it 

is robust and stable, has a small queuing delay, and it rapidly 

regulates queue to the desired values. Moreover, ARPI is 

adaptive not only to various network conditions but also to 

different router device specifications, i.e., buffer sizes. The 

new scheme is also potentially easier to implement in 

software and hardware. 
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