
69
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Adaptive Active Queue Management based on

Queue Ratio of Set-point Weighting

Misbahul Fajri1 and Kalamullah Ramli1

1Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia

Abstract: Presently, active queue management (AQM) is one of

the important considerations in communication networks. The

challenge is to make it simple and robust in bursty traffic and

uncertain network conditions. This paper proposes a new AQM

scheme, an adaptive ratio proportional integral (ARPI), for

adaptively controlling network congestion in dynamic network

traffic conditions. First, AQM was designed by adding a set-point

weighting structure to a proportional integral (PI) controller to

reduce the burstiness of network traffic. Second, an adaptive set-

point weighting based on the ratio of instantaneous queue length to

the set-point queue and the buffer size was proposed to improve the

robustness of a non-linear network. The proposed design integrates

the aforementioned expectations into one function and needs only

one parameter change to adapt to fluctuating network condition.

Hence, this scheme provides lightweight computation and simple

software and hardware implementation. This approach was

analyzed and compared with the PI AQM scheme. Evaluation

results demonstrated that our proposed AQM can regulate queue

length with a fast response, good stability under any traffic

conditions, and small queuing delay.

Keywords: Network traffic, Congestion Control, Active Queue

Management; Adaptive controller, Proportional Integral, Set-point

weighting.

1. Introduction

For a comprehensive network, active queue management

(AQM) is an important intermediate network solution for

network traffic control that could not be obtained by former

attempts. Buffer overflow is one of mainly caused in a node

that makes congestion in communication problem affecting

network performance [1]. AQM performs packet dropping in

a buffer network router before congestion. Concerning in the

buffer occupancy makes AQM to know traffic condition and

decides how to treat the arrival packet, also buffer size

awareness can shorten the delay experienced by packet [2].

The first AQM, random early detection (RED) [3] was

proposed as a solution to support end-to-end transmission

control protocol (TCP) congestion control, i.e., TCP RENO.

RED reduces the synchronization problem because of its

drop-tail mechanism and ability to maintain the desired

queue length. The drawback of RED is its sensitivity to

parameter setting in dynamic network load. Many variants of

RED have been released to tackle the limitation of RED in a

heuristic approach. Hollot proposed proportional integral

(PI) AQM [4] to overcome the challenges faced by RED and

to provide PI tuning parameters using the control theory

approach through the TCP flow model. Nonetheless, PI is

still problematic for obtaining proper parameter values for

good response and robustness in an uncertain traffic network.

From the limitation of two well-known AQMs above arise

enhanced research to introduce the adaptivity of AQM.

Adaptive AQM scheme based on queue length in heuristic

method such as ARED [5] and improved in [6] which varies

the maximum drop probability using two different constant

factors based on the online average queue length. it is simple

but in specific conditions, it has a bad response and the low-

pass filter used for queue averaging leads to the sluggish and

indolence behavior of this scheme [7]. Furthermore,

Adaptive AQM based on queuing delay using PI controller is

PIE [8] which to overcome bufferbloat on access links that

much attention during the past few years. It achieved good

performance in normal delay traffic conditions but worst as

delay increase [9]. However, PIE is not scalable because it is

effective on a medium-scale networks, such as on the access

link of the user. Meanwhile, more advanced PI AQMs have

been proposed using the optimization method. In [10,11]

regulate queue length with adaptive PI with neuron based,

leads to high computation and hard in implementation along

with heuristic optimization algorithm.

Other research [12] was to obtain PID parameters using an

optimization approach and to suggest to develop with

different structure of PID controllers to implement it with an

adaptive mechanism because many AQMs have problems

with robustness, especially in changing traffic conditions and

effectively handling bursty traffic. To overcome this, we

propose an adaptive queue ratio proportional integral (ARPI)

regulates queue length to the reference value. The addition of

set-point weighting at PI AQM is expected to improve

robustness and to reduce burst traffic for controlling dynamic

network traffic. The main contributions of this paper are

summarized as follows. First, a new weighted formula to

estimate traffic load based on the ratio of occupancy queue in

a buffer, and introduces PI Set-point weighting controller to

reduce bursty traffic in AQM. Second, a low-cost self-tuning

algorithm with only one parameter to adjust periodically

adaptive controller, therefore it will be scalable and have a

potentially easy implementation in software and hardware.

The paper is organized as follows. The related works of this

research are reviewed in Section 2. A concept of TCP/AQM

congestion control is given in Section 3. ARPI AQM design

is defined in Section 4. Simulation analysis is given in

Section 5. Section 6 concludes this paper.

2. Related Works

PI controller has been massively used in the industrial

process until now. PI has been implemented in network

congestion control protocols for the past decade because it is

a simple mechanism, easy implementation, and good

response. Through the control theory approach, AQM can be

designed and analyzed practically such as PI [4], 2DoF PID

[13], PI–PD [14] and PID AQM [15] solution to overcome

lacks of heuristic approach. Likewise, another work [12] uses

an optimal control method to tune parameters of PID AQM.

It showed that the structure type of PID can be deployed in

communication networks.

70
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

The first AQM was designed using control theory with a PI

controller and a method for tuning its parameters [4].

However, the fixed-parameter PI controller is sluggish and

hard to speed up a response [16]. Alternatively, an adaptive

controller to overcome the fixed controller to tackle dynamic

network conditions. Many proposed adaptive AQMs have

been implemented proposed, but most of them were not the

satisfaction of AQM goals, e.g.; the existing adaptive AQM

schemes are less appropriate under dynamic conditions, their

need for pre-specification and pre-tuning parameters [17], as

below.

Zhang et al. [18] proposed a self-tuning structure AQM

(STPI) which online estimates link capacity and traffic load,

this approach is a complex algorithm and difficult to estimate

network parameters. Chen et al. [19] Proposed adaptive PI

which adjusts AQM parameters using a pole-placement

method. But it was a complex tuning algorithm and needed

unknown network parameters. Chang et al. [20] proposed an

adaptive PI AQM (RPI), in which queue length error is

increased cause it is larger than a certain threshold. Then

they improved this method in terms of transient performance

over a wide range of network parameters [21]. Hong et al.

[22] introduced an adaptive PI AQM, that used gain and

phase margins to adjust parameters. They also improved

their method [23] in using gain margin specifications.

However, both of their methods are complex and require

network parameters, which are hard to get these values in a

router.

Xu et al. proposed N-PI [24] based on hyperbolic secant

function tuning to get robust stability and good dynamic

result, but it was not simple computation to get controller

parameters. Sun et al. proposed IAPI in [25] using three

mechanisms for adaptive PI AQM to regulate queue length,

therefore, these cannot be considered as an effective scheme

in long-delay networks [7]. Wang et al. Proposed API [26]

that adjusts the integral gain to get a faster response and

dynamically the packet drop probability based on three

conditions of queue length error.

In summary, some of those above AQM’s are complex

computations and difficult to estimate tuning parameters.

The goal of the AQM scheme should scalable and simple

algorithm for deployment in software and hardware. The

AQM algorithms should not require tuning or

reconfiguration of initial parameters [9], as mention above,

they should not need pre-specification and pre-tuning

parameters.

3. TCP Flow and AQM Congestion Control

The TCP flow model in non-linear differential equations has

been formulated by Misra as a solution for further analysis of

the network congestion control algorithm [27]:

))((
))((

))((

2

)(

)(

1
)(tRtp

tRtR

tRtWtW

tR
tW −

−

−
−= (1)













=








+−

+−

=

0,)(
)(

)(
,0max

0)(
)(

)(

qtW
tR

tN
C

qtW
tR

tN
C

q
 (2)

Where W = Average TCP window size (packets), R(t) =

Round-trip-time = Tp + (q(t)/C) (s), Tp = Propagation delay

(s), q(t) = Queue length (packets), C = Link capacity

(packet/s), P = Packet drop probability, and N = Number of

TCP sessions. Herein, W denotes the time-derivative of W.

The initial part of the first formula is the window’s additive

increase (1/R), while the final part is the window’s

multiplicative decrease (W/2) in response to packet marking

p. The second formula in (2) represents the bottleneck queue

length.

The differential equation of TCP flow model can assist in

designing and determining the best AQM controller

parameters because TCP control has a feedback process, i.e.,

ACK signal, that is generated by a receiver to inform the

sender when a packet is received; then, it is used by the

sender to decide whether the packet window size needs to be

increased or decreased. The existence of a feedback process

allows the TCP flow model to be analyzed using a control

theory approach, e.g., the transfer form of the TCP flow

model.

In [4,28], the stochastic equation above was transformed by

classic control theory through linearization and by ignoring

the time-out mechanism. Assuming that both the TCP load

and link capacity are constant, i.e., N(t)  N and C(t)  C, W

with q as the state and p as input and the operating points

(wo, qo, and po) is derived by W = 0 and q = 0. Continuing to

simplify this model while ignoring residual behavior means

focusing on the nominal behavior of the window dynamic.

The transfer function of TCP/AQM flow is given by:

0

0

0

2

2

0

1
,

2
2)(

R
s

R

N

G

CR

N
s

N

CR

sG queuetcp

+

=

+

=
 (3)

Where Gtcp is the TCP window control mechanism, Ro is

round-trip time at the operating point, and Gqueue is queue

dynamic. The feedback of TCP/AQM flow system is shown

in Figure 1.

e-sR GtcpGc Gqueue

AQM TCP Flow

Qref Q+

-

pe

Error
signal

Control
signal

Controlled
output

Reference
input

Figure 1. The Feedback of TCP/AQM system.

According to (3) and Figure 1, TCP/AQM dynamic can be

expressed as

 sR

queuetcpp esGsGsG 0)()()(
−

= (4)

AQM is presented by the Gc function, which is applied with

a PI controller. The transfer function of the PI controller is

given by

)()()(se
s

K
seKsG i

pc += (5)

Where Kp is proportional gain and Ki is integral gain. To

obtain the z-domain transfer function, equation (5) is

converted from the s-domain using bilinear transform

(Tustin’s rule) to preserve stability [29]. Then the discrete PI

controller is given by

)1(.)(.)1()(−++−= nebneanpnp (6)

Where Ts is the sampling time and

71
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

2

2

sI
p

sI
P

TK
Kb

TK
Ka

−=

+=
 (7)

4. Design of ARPI AQM

To achieving better robustness, the controller should adapt to

changing network conditions by adjusting its parameters.

Therefore, the challenge is to design and find the proper

formula for the abovementioned purpose. Based on the TCP

flow model, a non-linear factor is caused by three

parameters: load network (N), round-trip time (RTT), and

link capacity (C). These parameters are difficult to obtain in

real-time processes. Simplifying the implementation is also

challenging. We design ARPI AQM to overcome the above

problems as below.

 4.1 Proportional Integral Controller with Set-point

Weighting

Firstly we used the PI set-point weighting controller to

design our proposed AQM, it enhances from PI controller

and its transfer function is.

 ())()()()(se
s

K
sysrKsG i

pc +−=  (8)

Where  is a set-point weighting. The function of set-point

weighting reduces the overshoot response in a transient

process [30]. In a case of network congestion, the function is

to reduce bursty or bulk traffic. The dynamic network shows

non-linear behavior. In a non-linear process, properly tuned

parameters are not suitable for other circumstances, and

constant values of the parameters will generate a

conservative response [31].

Implementing set-point weighting is modified in the

proportional term [32] that to include a parameter weighting

factor  on the reference. Because proportional action is the

present value of error [33], so the discrete of the proposed

adaptive PI AQM (ARPI) as given.

  )1(.)()(.)1()(−+−+−= nebnrnyanpnp  (9)

 4.2 Adaptive Queue Ratio for ARPI

Secondly, we present an ARPI controller to periodically

adjust the parameter of set-point weighting in (9), based on

the instantaneous queue occupancy over time in the router.

The proposed design is shown in Figure 2.

Adaptive Ratio Reference
Algoritm

+PI

Random Drop Buffer

Queue Length

Buffer Size

Qref

p 1-p

ARPI AQM
Figure 2. The Design of proposed AQM system.

One of the literature presented online adaptive tuning set-

point weighting using sigmoid function based on changing of

variable process error [34], but still needs pre-tuning of the

other parameter. Our proposed design determines set-point

weighting by an analytical approach instead of a control

theory method, to avoid high computation costs. Thus, 

value is computed periodically in every arrival packet of the

buffer based on the ratio of instantaneous queue length to

reference queue length.

Queue ratio is divided into upper and lower ratios. The upper

ratio is a condition when the error is more than zero and is

seen as an overshoot response. This ratio is the error divided

by buffer size minus the queue reference. A lower ratio

indicates an error that is less than or equal to zero and is

perceived as an overdamped response. This ratio is the error

divided by queue length minus the queue reference.

According to the above values, if error = 0, queue ratio = 0,

then  = 1. Hence, this formula is one minus the queue ratio.

The proposed formula for adaptive set-point weighting is

given below:














−
−

−

−
−

=

qref

qreftq

qrefqsize

qreftq

t

)(
1

)(
1

)(

0)(

0)(

−

−

qreftq

qreftq

 (10)

Where, q(t)= Instantaneous queue length, qref = Queue

reference, qsize= Buffer size of router, and (t)= Set-point

weighting. The characteristic of  against all of the

instantaneous queue length in buffer size is depicted in

Figure 3 (a) the black line represents buffer sizes of 800

packets, and the grey lines denote buffer sizes of 400

packets. The variance range of the queue length varies from

empty to full, dynamically generating set-point weighting

values between 0 and 2 for both overshoots and overdamped

processes.

(a)

(b)

Figure 3. Value of  with: (a) Qref 200 for different buffer

sizes; (b) buffer size of 800 for different Qref.

72
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

Our proposed method is simple because only one adaptive

parameter (), that does not yield complex formula is

required. Thus, it makes lightweight computation and easy

implementation in software and in hardware possible. ARPI

pseudo-code algorithm for implementation is as below:

Algorithm 1. ARPI (*Called upon arrival a new packet*)
qer=qlen-qref;

 If (qer> 0) spw=1-(qer/brw);

 Else spw=1-(qer/qref);

 p=a(qlen-spw*qref)-b(qold-qref)+pold

 If (p<0) p=0

 Else (p>1) p =1

 Random = uniformRandom(0,1);

 If (Random > p) Enqueue the packet;

 Else Drop the packet;

Parameter:

 qref: Reference of queue length

 qlen: Queue length

 qer: Queue error

 brw: Buffer reference weighting (buffer limit–qref)

 spw: Set-point weighting

 qold: Old queue

 pold: Old probability

 p: Drop probability

 a: Proportional gain

 b: Integral gain

5. Simulation and Result

ARPI AQM protocol algorithm is implemented in an NS2

simulator [35] to evaluate its performance in six scenarios.

Another AQM, i.e., PI, is also simulated for comparison. The

PI parameters tuned by Hollot are still used in our proposed

PI, i.e., a = 1.822 × 10−5, b = 1.816 × 10−5, and Fs = 160. This

work focuses on the evolution of queue length, as one of the

strategic keys for AQM performance. If an AQM scheme

quickly regulates queue length to the desired value and

maintains stability with less oscillation, then the desired

network performance is expected to be achieved. Two of the

desired network performance criteria predicted are queuing

delay and high link utilization [36].

.

.

.

.

.

.

N Senders N Receivers

10Mbps
5ms

C=15Mbps Tp=5ms

Sn

S1

S2

Router 2Router 1

Bottleneck link

D1

D2

Dn

10Mbps
5ms

Figure 4. Network simulation topology.

Simulation topology with a bottleneck link is shown in

Figure 4, where the dumbbell network with multiple TCP

connections from S1,2,…N to D1,2,…N, shares a bottleneck

link between routers R1 and R2. Configuration of link

capacity and propagation delay is also shown in Figure 4.

The link capacity of C is set to 15 Mbps, and the propagation

delay Tp is set to 5 ms in a normal traffic scenario. Other

links, their capacities in 10 Mbps and propagation delay 5

ms. The maximum buffer size of each router is set to 800

packets, and the queue length target is set to 200 packets.

The average packet size is 500 bytes and the simulation

running time is 60 s.

 5.1 Performance in Normal Traffic

This simulation demonstrates the performance in normal

traffic that is regular traffic condition, where there is a

greedy 100 long-lived TCP flow, sharing bottleneck link

with 15 Mbps capacity, and propagation delay Tp of 5 ms.

Figure 5 (a) illustrates the evolution of queue length for both

ARPI and PI. PI shows a sluggish response, which yields a

big overshoot queue and long transient response time.

However, ARPI reduces the big overshoot and quickly

regulates the queue length to the target value.

Figure 5 (b) shows that ARPI has queuing delay under 50

seconds and small jitter, and both values are smaller than PI.

A Jitter is approximated by the length from the lower to

upper boundaries of the boxplot in the graph of queuing

delay. Table 1. presents that both algorithms have the same

throughput. However, ARPI has a smaller value of average

queue length and shorter bottleneck link delays.

(a)

(b)

Figure 5. Performance in normal traffic based on (a) queue

length and (b) queuing delay.

Table 1. AQM performance analysis at nominal traffic.

KPI PI ARPI

Average of queue (Packets) 301 179

Throughput (Kbps) 14993 14993

Bottlenect link delay (ms) 93 58

 5.2 Performance in Heavy Traffic

The case of overload traffic with 300 greedy TCP

connections and long delay propagation time, 50 ms. Figure

6 (a) shows that the PI cannot handle a big load initially.

This leads to drop packets due to buffer overflow. PI also

requires a long settling time. However, ARPI depicted by the

73
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

red line can maintain a good response and a little overshoot

in the overload packet. The queuing delay for Figure 6 (b) in

this scenario points out that ARPI is having a smaller jitter

than PI. The average queue length and the link delay for both

AQMs are shown in Table 2. That ARPI is better than PI.

(a)

(b)

Figure 6. Performance in heavy traffic based on (a) queue

length and (b) queuing delay.

Table 2. AQM performance analysis in heavy traffic.

KPI PI ARPI

Average of queue (Packets) 407 231

Throughput (Kbps) 14971 14971

Bottlenect link delay (ms) 169 117

 5.3 Performance for Small Buffer Size

Next, the proposed method is validated versus the well-

known PI scheme by reducing the buffer size to 400 packets.

In Figure 7 (a), the PI algorithm generates long buffer flow

in 20 s, which means almost all of the arrived packets are

dropped; this leads to a synchronization problem.

Contrastingly, the ARPI scheme has a stable response by

keeping the queue length around the desired target from the

beginning of the process. Also, our proposed schema has

better performance in regulating queuing delay as shown in

Figure 7 (b) Even jitter ARPI is smaller than PI. Table 3

figures out that ARPI reduces the average of queue length

and link delay up to 33 percent as compared to PI.

(a)

(b)

Figure 7. Performance for small buffer size based on (a)

queue length and (b) queuing delay.

Table 3. AQM performance analysis in small buffer size.

KPI PI ARPI

Average of queue (Packets) 299 209

Throughput (Kbps) 14993 14993

Bottlenect link delay (ms) 92 66

 5.4 Performance for Changing of Set-Point

Different target values are tested by increasing the reference

queue from 200 packets to 300 packets in a heavy traffic

scenario. This is shown in Figure 8 (a) PI represented by the

green line has a bad response with buffer overflow in the

initial process, along with a long settling time of 33 s. ARPI

represented by the red line is good enough to regulate the

queue length around the set-point value and has a quick

settling time of 8 s. Figure 8 (b) Depicts that ARPI has better

performance in keeping shorter queuing delay and smaller

jitter as compared with PI. ARPI can regulate the queue

length close to the target value 300 and keep the small link

delay as shown in Table 4.

74
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

(a)

(b)

Figure 8. Performance for changing set-point based on (a)

queue length and (b) queuing delay.

Table 4. AQM performance analysis in changing set-point.

KPI PI ARPI

Average of queue (Packets) 454 295

Throughput (Kbps) 14945 14912

Bottlenect link delay (ms) 233 186

 5.5 Performance for Different Link Capacities

The next scenario is changing the link capacity from 15

Mbps to 10 Mbps. This was presented in Figure 9 (a) PI

(green line) experienced a long overshoot and failed to

achieve the reference value of 200. Conversely, the proposed

solution, i.e., ARPI (red line) has an excellent response,

keeping the queue length to the desired reference value and

offering a fast settling time of 3 s. ARPI queuing delay is

kept small as illustrated in Figure 9 (b). Characteristics of PI

and ARPI mechanisms are shown in Table 5 ARPI is more

powerful than PI for average queue length and link delay,

which is in 206 packets and 95 seconds, respectively.

(a)

(b)

Figure 9. Performance for different link capacities based on

(a) queue length and (b) Queuing delay.

Table 5. AQM performance analysis at different link

capacities.

KPI PI ARPI

Average of queue (Packets) 321 206

Throughput (Kbps) 9995 9995

Bottlenect link delay (ms) 145 95

 5.6 Mix Traffic TCP and UDP

The final examination is mixing 100 UDP flows to the first

scenario conditions, these UDP traffics follow an exponential

ON/OFF traffic model with the idle and burst times have

means of 0.5 second and 1 second respectively. The packet

size is set at 500 bytes with the sending rate during on-time

being 64 Kbps. Figure 10 (a) presents the queue lengths for

both AQMs. We can see again that ARPI reacts and

converges to the target queue length faster than PI that can

not regulate it under this scenario. Queuing delay is depicted

in Figure 10 (b) that ARPI has under 50 ms and small jitter

comparing with PI. Table 6 presents that the average of

queue length ARPI is 189, which is closest to the target of

200, and the bottleneck link delay of ARPI is lower than PI.

75
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

(a)

(b)

Figure 10. Performance for mix TCP and UDP based on (a)

queue length and (b) queuing delay

Table 6. AQM performance analysis at mix TCP and UDP.

KPI PI ARPI

Average of queue (Packets) 354 189

Throughput (Kbps) 14993 14993

Bottlenect link delay (ms) 106 58

6. Conclusions

This paper presented a new method of adaptive AQM

protocol called ARPI. ARPI was analyzed for six network

traffic scenarios. In addition to simple and low-cost

computation, by adaptively setting the PI set-point weighting

(), ARPI offers a robust response in a dynamic network. In

all simulated scenarios, ARPI is superior to PI AQM; i.e., it

is robust and stable, has a small queuing delay, and it rapidly

regulates queue to the desired values. Moreover, ARPI is

adaptive not only to various network conditions but also to

different router device specifications, i.e., buffer sizes. The

new scheme is also potentially easier to implement in

software and hardware.

7. Acknowledgement

The authors would like to thank the Funding of Doctor

Dissertation Program (PDD), Ministry of Higher Education

and Technology Research of the Republic of Indonesia, for

supporting this research.

References

[1] Y. N. Reddy and P. Srinivas, "A Routing Delay Predication

Based on Packet Loss and Explicit Delay Acknowledgement

for Congestion Control in MANET," International Journal of

Communication Networks and Information Security, vol. 10,

pp. 447, 2018.

[2] O. A. Fdili, Y. Fakhri, and D. Aboutajdine, "Impact of queue

buffer size awareness on single and multi service real-time

routing protocols for WSNs," International Journal of

Communication Networks and Information Security, vol. 4,

pp. 104, 2012.

[3] S. Floyd and V. Jacobson, "Random early detection gateways

for congestion avoidance," IEEE/ACM Transactions on

Networking, vol. 1, pp. 397-413, 1993.

[4] C. V. Hollot, V. Misra, D. Towsley, and G. Weibo, "Analysis

and design of controllers for AQM routers supporting TCP

flows," IEEE Transactions on Automatic Control, vol. 47, pp.

945-959, 2002.

[5] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, "A self-

configuring RED gateway," Conference on Computer

Communications. Proceedings Eighteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies, New York, USA, vol.3, pp. 1320-1328, 1999.

[6] S. Floyd, R. Gummadi, and S. Shenker, "Adaptive RED: An

algorithm for increasing the robustness of RED’s active queue

management," ed: Technical report, ICSI, 2001.

[7] G. Kahe and A. H. Jahangir, "A self-tuning controller for

queuing delay regulation in TCP/AQM networks,"

Telecommunication systems, vol. 71, pp. 215-229, 2019.

[8] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V.

Subramanian, F. Baker, et al., "PIE: A lightweight control

scheme to address the bufferbloat problem," IEEE 14th

International Conference on High Performance Switching and

Routing (HPSR), Taipei, Taiwan, pp. 148-155, 2013.

[9] Z. Liu, J. Sun, S. Hu, and X. Hu, "An Adaptive AQM

Algorithm Based on a Novel Information Compression

Model," IEEE Access, vol. 6, pp. 31180-31190, 2018.

[10] W.-h. Dou, M. Liu, H.-y. Zhang, and Y.-x. Zheng, "A

Framework for Designing Adaptive AQM Schemes,"

International Conference on Networking and Mobile

Computing, Berlin, Heidelberg, pp. 789-799, 2005.

[11] L. Qing, Q. Zhu, and M. Wang, "Designing adaptive PI

algorithm based on single neuron," International Conference

on Networking and Mobile Computing, Berlin Heidelberg,

pp. 800-807, 2005.

[12] M. Fajri and K. Ramli, "Optimizing PID TCP/AQM using

nelder-mead simplex approach," Proceedings of the 3rd

International Conference on Communication and Information

Processing, Tokyo, Japan, pp. 292-295, 2017.

[13] R. Vilanova and V. M. Alfaro, "Robust 2-DoF PID control for

Congestion control of TCP/IP Networks," International

Journal of Computers Communications & Control, vol. 5, pp.

968-975, 2010.

[14] P. K. Padhy and R. K. Sundaram, "Analysis and design of

improved PI-PD controller for TCP AQM routers,"

International Conference on Power, Control and Embedded

Systems (ICPCES), Allahabad, India, pp. 1-5, 2010.

[15] Y. Fan, F. Ren, and C. Lin, "Design a PID controller for active

queue management," Proceedings of the Eighth IEEE

International Symposium on Computers and Communication

(ISCC), Kemer-Antalya, Turkey, vol.2, pp. 985-990, 2003.

[16] Y. Chait, C. V. Hollot, V. Misra, S. Oldak, D. Towsley, and G.

Wei-Bo, "Fixed and adaptive model-based controllers for

active queue management," Proceedings of the American

Control Conference, Arlington, VA, USA, vol.4, pp. 2981-

2986, 2001.

[17] J. H. Novak and S. K. Kasera, "Auto-tuning active queue

management," 9th International Conference on

Communication Systems and Networks (COMSNETS),

Bangalore, India, pp. 136-143, 2017.

76
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 1, April 2020

[18] Z. Honggang, C. V. Hollot, D. Towsley, and V. Misra, "A self-

tuning structure for adaptation in TCP/AQM networks,"

IEEE Global Telecommunications Conference

(GLOBECOM), San Francisco, CA, USA, pp. 3641-3646,

vol.7, 2003.

[19] C. Qiang and O. W. W. Yang, “On designing self-tuning

controllers for AQM routers supporting TCP flows based on

pple placement,” IEEE Journal on Selected Areas in

Communications, vol. 22, pp. 1965-1974, 2004.

[20] C. XiaoLin, J. K. Muppala, and Y. Jen-te, "A robust nonlinear

PI controller for improving AQM performance," IEEE

International Conference on Communications, Paris, France

Vol. 4, pp. 2272-2276, 2004.

[21] X. Chang and J. K. Muppala, "A stable queue-based adaptive

controller for improving AQM performance," Computer

Networks, vol. 50, pp. 2204-2224, 2006.

[22] H. Yang, O. W. W. Yang, and H. Changcheng, "Self-tuning PI

TCP flow controller for AQM routers with interval gain and

phase margin assignment," IEEE Global Telecommunications

Conference (GLOBECOM), Dallas, TX, USA, Vol. 3, pp.

1324-1328, 2004.

[23] Y. Hong and O. w. w. Yang, "Self-tuning tcp traffic controller

using gain margin specification," IET Communications, vol.

1, pp. 27-33, 2007.

[24] X. Yue-Dong, Y. Jie, and D. Qing, "Nonlinear PI active queue

management based on hyperbolic secant functions,"

International Conference on Machine Learning and

Cybernetics, Guangzhou, China, Vol. 2, pp. 715-720, 2005.

[25] J. Sun, S. Chan, and M. Zukerman, "IAPI: An intelligent

adaptive PI active queue management scheme," Computer

Communications, vol. 35, pp. 2281-2293, 2012.

[26] H. Huang, G. Xue, Y. Wang, and H. Zhang, "An adaptive

active queue management algorithm," International

Conference on Consumer Electronics, Communications and

Networks (CECNet), Xianning, China, pp. 72-75, 2013.

[27] V. Misra, W.-B. Gong, and D. Towsley, "Fluid-based analysis

of a network of AQM routers supporting TCP flows with an

application to RED," SIGCOMM Comput. Commun. Rev.,

vol. 30, pp. 151-160, 2000.

[28] C. V. Hollot, V. Misra, D. Towsley, and G. Wei-Bo, "On

designing improved controllers for AQM routers supporting

TCP flows," Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies, Achorage, AK,

USA, pp. 1726-1734 vol.3, 2001.

[29] Y. Li, K. T. Ko, and G. R. Chen, "Transient behaviour of PI-

controlled AQM," Electronics Letters, vol. 42, pp. 494-495,

2006.

[30] R. K. Mudi and C. Dey, "Performance improvement of PI

controllers through dynamic set-point weighting," ISA

Transactions, vol. 50, pp. 220-230, 2011.

[31] R. J. Mantz, "A PI Controller with Dynamic Set-Point

Weighting for Nonlinear Processes," Proceedings of IFAC

Conference on Advances in PID Control, Brescia, Italia, vol.

45, pp. 512-517, 2012.

[32] C. C. Hang, K. J. Astrom, and W. K. Ho, "Refinements of the

Ziegler-Nichols tuning formula," IEE Proceedings D -

Control Theory and Applications, vol. 138, pp. 111-118,

1991.

[33] K. Astrom and R. Murray, "Analysis and design of feedback

systems," Preprint, 2005.

[34] P. Mitra, C. Dey, and R. K. Mudi, "An Improved Dynamic Set

Point Weighted PI Controller for Servo Position Control

Application," 2nd International Conference on Computational

Intelligence and Networks (CINE), Bhubaneswar, India, pp.

145-149, 2016.

[35] T. Issariyakul and E. Hossain, "Introduction to Network

Simulator 2 (NS2)," ed: Springer, pp. 1-18, 2012.

[36] H. Wang, W. Wei, Y. Li, C. Liao, Y. Qiao, and Z. Tian, "Two-

Degree-of-Freedom Congestion Control Strategy against

Time Delay and Disturbance," IEEE Global

Telecommunications Conference (GLOBECOM), Miami, FL,

USA, pp. 1-5, 2010.

