
389
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Energy and Processing Time Efficiency for an

Optimal Offloading in a Mobile Edge Computing

Node

Mohamed El Ghmary1*, Youssef Hmimz1, Tarik Chanyour1 and Mohammed Ouçamah Cherkaoui Malki1

1Sidi Mohamed Ben Abdellah University, LIIAN Labo, FSDM, Fez, Morocco.

Abstract: This article describes a processing time, energy and

computing resources optimization in a Mobile Edge Computing

(MEC). We consider a mobile user MEC system, where a smart

mobile device (SMD) demands computation offloading to a MEC

server. For that, we consider a SMD contains a set of heavy tasks

that can be offloadable. The formulated optimization problem takes

into account both the dedicated energy capacity and the processing

times. We proposed a heuristic solution schema. To evaluate our

solution, we realized a range of simulation experiments. The results

obtained in terms of treatment time and energy consumption are

very.

Keywords: Computation Offloading; Mobile Edge Computing;

Energy; Processing time; Bi-objective Optimization; Heuristic;

Multi-task.

1. Introduction

MEC represents a key technological and architectural

concept for enabling 5G evolution as it advances the mobile

broadband network transformation into a programmable

world and helps meet the high demands of 5G, terms of

latency, scalability and automation [1]. It provides services

to consumers, businesses, mobile operators, and adjacent

industries that can now deploy critical applications over the

wireless network. The MEC environment is characterized by

low latency, proximity, high bandwidth, and real-time

visibility of radio network information and location. It

enables massive, low-power devices to handle of

computation-extensive tasks in real-time, which has

therefore attracted growing research interests in both

academia and industry.

MEC allows mobile terminals to access abundant computing

and storage resources in the Edge server. This allows a

mobile terminal to offload resource intensive tasks for

processing and execution in the Edge, when the local

capacity is not sufficient. In the literature, several

"frameworks" which allow offloading in the cloud have been

proposed such as [2-4]. Among the conditions, which

favored the offloading approach, we cite: the available

resources of devices such as the CPU, RAM and the state of

the network. Partition tasks for execution between servers

and devices, in order to reduce the combination of network

bandwidth and CPU consumption [5]. The focus of [6] is to

review the architectures, infrastructure, and algorithms that

underpin resource management in fog/edge computing. Fog

computing is considered a local extension of the cloud, it is a

complementary technology to cloud computing [7]. Fog

nodes have been used to provide computing services close to

endpoint equipment and to minimize the response time of

these nodes under an energy efficiency constraint [8, 9]. The

authors [10] have proposed a heuristic solution to solve a

hard decision problem that jointly optimized the overall

energy of the system and maximized the satisfaction of

SMDs while maintaining their priority. The authors [11]

have built a distributed application that manages

communication and processing by distributing the load

between Cloud Computing and peripherals in order to speed

up processing compared to the Internet of Things (IoT)

application entirely hosted in the Cloud.

In this work, we consider a multitasking offloading

environment with a single user, in order to optimize the

communication resources, the local frequency of the SMD

and the frequency of the Edge Node (EN), by introducing

the available energy of SMD as a constraint. Moreover, we

introduced the Edge server’s frequency as a decision

variable in our optimization problem. Therefore, we can

extend the battery life-time of the SMD and reduce the

processing time of its tasks. The authors of [12, 13] also

proposed multitasking offloading by optimizing

communication resources and local frequency without taking

into account the amount of local energy available. In

addition, they considered the frequency of the Edge server

constant.

In the following, we present the system model and the

optimization problem formulation in sections 2 and 3. Then,

we present the solution of the proposed problem in sections

4 and 5. Evaluation and result are presented in section 6.

Finally, section 7 concludes the paper.

2. System Model

As shown in Figure 1, a SMD containing an offloadable

multi-task set. This SMD is connected to an EN that is

equipped with a resource-rich server. Its intends to offload a

set of independent tasks by the mean of an Edge Access

Point (EAP). In this paper, we plan to study the behavior of

the offloading process in an Edge environment, while we

optimize computing resources available at the SMD as well

as at the EN. Especially, the available energy at the SMD for

tasks execution is limited. Besides, in the context of

offloading, some pieces of a computationally intensive

application are divided into multiple mutually independent

offloadable tasks [3]. Therefore, according to the available

computational and radio resources, some tasks are pick-up

from the resulting tasks set to be offloaded to the EN for

computing. The others are performed locally on the SMD

itself. The execution of the completely set must happen

within the time limit of the application. Additionally, it is

assumed that the SMD concurrently performs computation

and wireless transmission.

Let note τ ≜ {τ1, τ2, … , τN} a set of N independent tasks,

these tasks are assumed to be computationally intensive and

390
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

delay sensitive and have to be executed by the SMD or at the

EN. In addition, the processing time of the whole tasks set

cannot exceed a required maximum latency 𝑇𝑚𝑎𝑥 and the

total local execution energy must not exceed the tolerated

given amount 𝐸𝑚𝑎𝑥x. Every task is mainly characterized by

two parameters τi ≜ 〈λi, di〉. Also, it represents an atomic

input data that cannot be divided into sub-tasks. The first one

denoted λi [cycles] specifies the workload referring to the

computation amount needed to accomplish the processing of

this task. The second one denoted di [bits] identifies the

amount of the input parameters and program codes to

transfer from the user’s local device to the Edge server. In

addition, In line with Shannon equation, the transmission

rate (bits/s) can be expressed in the following formula as

equation (1).

 r = W log (1 +
𝒑𝑇𝑔

W N0
) (1)

Where W stands for upstream bandwidth, pTis the transmit

power of transmission rate required by SMD to offload the

input data to Edge server, g is its channel gain, and N0 is the

noise power spectral density.

Figure 1. System model illustration

The execution nature decision for a task τi either by SMD or

by offloading to the EN is denoted xi where xi ∈ {0; 1}. xi =
1 indicates that the SMD has to offload τi to the EN, and

xi = 0 indicates that τi is locally processed. If the SMD

locally executes task τi , the completion time of its local

execution is:

ti
L =

λi

fL
 (2)

And for all tasks, we have:

tL = ∑
(1−xi)λi

fL

N
i=1 (3)

Additionally, the corresponding energy consumption is

given by:

ei
L = kLfL

2λi (4)

Hence, the total energy consumption while executing all

tasks that were decided to be locally executed in the SMD is

given by:

eL = ∑ ei
L(1 − xi)

N
i=1 = kLfL

2 ∑ λi(1 − xi)
N
i=1 (5)

If task τi is offloaded to the Edge Node, the offloading

process completion time is:

ti
O = ti

Com + ti
Exec + ti

Res (6)

Where ti
Com is the time to transmit the task to the EAP, and

it is given by:

ti
Com =

di

r
 (7)

𝑡𝑖
𝐸𝑥𝑒𝑐 is the time to execute the task 𝜏𝑖 at the EN, and it can

be formulated as:

ti
Exec =

λi

fS
+ti

Res (8)

ti
Res is the time to receive the result out from the Edge Node.

Because the data size of the result is usually ignored

compared to the input data size, we ignore this relay time

and its energy consumption as adopted by [14]. Hence, for

the τi task:

ti
O = xi (

di

r
+

λi

fS
) (9)

And for all tasks, we have:

 tO = ∑ xi (
di

r
+

λi

fS
)N

i=1 (10)

So, the energy consumption of the communication process

can be obtained by multiplying the resulting transmission

period by the transmission undertaken power pT. Thus, the

energy is:

 eC =
pT ∑ xidi

N
i=1

r
 (11)

Similarly, energy consumption at the Edge server [9] while

executing τi is given by:

ei
S = kS. fS

2. λi (12)

The execution energy for all the offloaded tasks is:

eS = kS. fS
2. ∑ λixi

N
i=1 (13)

Finally, given the offloading decision vector 𝕏 ≜
{x1, x2, … , xN} for all tasks, the local execution frequency 𝒇𝑳

of the SMD, and the server execution frequency 𝒇𝑺 at the

Edge, the total execution time for the SMD is composed of

its local execution time, the communication time as well as

the execution time at the EN, and it is composed as:

T(𝕏, fL, fS) = t
L + tO (14)

Then, according to equations (3) and (10), the total

execution time can be formulated as:

T(𝕏, fL, fS) = {
∑ λi
N
i=1 −∑ λixi

N
i=1

fL
+

∑ dixi
N
i=1

r
+

∑ λixi
N
i=1

fS
} (15)

Similarly, the total energy consumption for the SMD is

composed of its local energy consumption, the

communication energy as well as the execution energy at the

EN, and it is composed as:

E(𝕏, fL, fS) = e
L + eC + eS (16)

Then, according to equations (5), (11) and (13), the total

execution time can be formulated as:

 E(𝕏, fL, fS) = (kSfS
2 − kLfL

2) ∑ λixi
N
i=1 +

pT

r
∑ dixi
N
i=1 +

 kLfL
2∑ λi

N
i=1 (17)

3. Problem Formulation

In this section, we present our optimization problem

formulation that aims to minimize the overall energy

consumption and overall processing time in the offloading

391
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

process, while maintaining the battery lifetime. The obtained

problem is formulated as:

CTE(𝕏, fL, fS) =
α

Tmax
T(𝕏, fL, fS) +

β

Emax
E(𝕏, fL, fS) (18)

Where α and β are the weights given to the two objectives,

respectively, with α + β = 1. The role of Emax and Tmax is to

normalize the energy and processing time for the objective

function, and to eliminate their units.

𝓟𝟏: 𝑚𝑖𝑛
{𝑥,𝑓𝐿,𝑓𝑆}

{𝐶𝑇𝐸(𝕏, 𝑓𝐿 , 𝑓𝑆)}

s.t. (𝐶1.1) 𝑥𝑖 ∈ {0; 1}; 𝑖 ∈ ⟦1; 𝑁⟧;

 (𝐶1.2) 𝐹𝐿
𝑚𝑖𝑛 ≤ 𝑓𝐿 ≤ 𝐹𝐿

𝑚𝑎𝑥 ;

 (𝐶1.3) 0 < 𝑓𝑆 ≤ 𝐹𝑆 ;

 (𝐶1.4) 𝑡
𝐿 =∑

𝜆𝑖
𝑓𝐿
(1 − 𝑥𝑖)

𝑁

𝑖=1

≤ 𝑇𝑚𝑎𝑥 ;

 (𝐶1.5) 𝑡𝑖
𝑂 = 𝑥𝑖∑𝑥𝑖 (

𝑑𝑖
𝑟
+
𝜆𝑖
𝑓𝑆
)

𝑖

𝑘=1

≤ 𝑇𝑚𝑎𝑥 ;

 (𝐶1.6) 𝑒
𝐿 + 𝑒𝐶 = 𝑘𝐿𝑓𝐿

2∑ 𝜆𝑖(1 − 𝑥𝑖) +
𝑁
𝑖=1

𝑝𝑇

𝑟
∑ 𝑑𝑖𝑥𝑖
𝑁
𝑖=1 ≤ 𝐸𝑚𝑎𝑥 .

In this work, each one of the available tasks can be either

executed locally or offloaded to the Edge Node. Thus, every

feasible offloading decision solution has to satisfy the above

constraints:

Table 1. Problem constraints

Constraints Signification

(𝐶1.1)
Refers to the offloading decision variable 𝒙𝒊 for task 𝝉𝒊
which equals 0 or 1

(𝐶1.2)
Indicates that the allocated variable local frequency f_L

belongs to a priori fix interval given by [𝑭𝑳
𝒎𝒊𝒏, 𝑭𝑳

𝒎𝒂𝒙]

(𝐶1.3)
Indicates that the allocated variable remote Edge server

frequencyf_Sbelongs to the interval]𝟎, 𝑭𝑺
𝒎𝒂𝒙]

(𝐶1.4)
Shows that the execution time of all decided local tasks

must be less than the given latency requirement 𝑻𝒎𝒂𝒙

(𝐶1.5)
The offloading time of all decided remote tasks must

satisfy the same latency requirement 𝑻𝒎𝒂𝒙

(𝐶1.6)
Is important especially if the SMD’s battery power is

critical. It imposes that the total local execution energy

must not exceed the tolerated given amount 𝑬𝒎𝒂𝒙

4. Problem Resolution

In this section, we will introduce how we derive our solution

from the obtained optimization problem.

4.1. Problem Decomposition

In our proposed model, the offloading decision vector for all

the tasks is denoted 𝕏. Let define the vector that contains the

offloadable tasks’ identifiers:

𝕏1 = {i ∈ 𝕏 / xi = 1 } (19)

𝕏0 = {i ∈ 𝕏 / xi = 0 } (20)

For ease of use, let note:

Λi = ∑ λi
i
k=1 ,

Λ1 = ∑ xiλi
N
i=1 , (21)

D1 = ∑ xidi
N
i=1 , (22)

 Where Λ1 is the total CPU cycles of all offloadable
tasks and D1 is the total data of all offloadable tasks.

Λ0 = Λ − Λ1 (23)

fL
− =

Λ0

Tmax
 (24)

fL
+ = √Emax−

pT D1
r

kLΛ0
 (25)

fS
− =

Λ1

Tmax−
 D1
r

. (26)

In addition, constraint (𝐶1.4) can be reformulated as
Λ0

Tmax
≤

𝑓𝐿 and constraint (𝐶1.5) can be similarly reformulated as:
Λ1

Tmax−
 D1
r

≤ 𝑓𝑆. Thus, for a given offloading decision vector

𝕏, Considering the continuous variables 𝑓𝐿 and 𝑓𝑆, problem

P1 is a continuous multi-variable optimization problem. The

objective function 𝐶𝑇𝐸(𝕏, 𝑓𝐿 , 𝑓𝑆) can be decomposed into

the following two independent functions 𝐶𝑇𝐸1(𝑓𝐿) and

𝐶𝑇𝐸2(𝑓𝑆) where:

CTE1(fL) = Λ0 (
α

TmaxfL
+

βkLfL
2

Emax
) (27)

𝐶𝑇𝐸2(𝑓𝑆) = Λ1 (
α

Tmax𝑓𝑆
+

βkSfS
2

Emax
) +

D1

r
(

α

Tmax
+

βpT

Emax
) (28)

This last can be equivalently decomposed into the following

two independent optimization sub-problems.

𝓟𝟏. 𝟏(𝕏): min
{fL}

{𝐶𝑇𝐸1(𝑓𝐿)}

 s.t. (C1.1.1) FL
min ≤ fL ≤ FL

max;

 (C1.1.2) fL
− ≤ fL ≤ fL

+.

𝓟𝟏. 𝟐(𝕏): min
{fS}

{𝐶𝑇𝐸2(𝑓𝑆)}

 s.t. (C1.2.1) fS
− ≤ fS ≤ FS.

4.2. Problems Resolution

For the 𝓟𝟏. 𝟏 problem, the objective function CTE1(fL) is a

continuous function according to its variable fLwith a first

order derivate:
∂𝐶𝑇𝐸1(𝑓𝐿)

∂fL
= 𝛬0 (

2𝛽𝑘𝐿𝑓𝐿

𝐸𝑚𝑎𝑥
−

𝛼

𝑇𝑚𝑎𝑥fL
2).

Consequently, 𝐶𝑇𝐸1 (fL) decreases on]0, √
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
] and

increases on [√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
, +∞[. Then, 𝐶𝑇𝐸1 has an optimal

minimum value at the point√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝐿𝑇
𝑚𝑎𝑥

3
 without considering

constraint (C1.2.1). Therefore, with (C1.2.1) , we can derive

the following function’s optimum fL
∗ given by:

392
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

fL
∗ =

{

0 if 𝕏 = 𝕏1

∅ if Emax ≤
pT D1

r
 or fL

− > FL
max

 or fL
+ < FL

min or fL
− > fL

+

fL
− if √

αEmax

2βkLT
max

3
< fL

−

fL
+

√
αEmax

2βkLT
max

3

if √
αEmax

2βkLT
max

3
> fL

+

otherwise

 (29)

For the 𝓟𝟏. 𝟐 problem, the objective function 𝐶𝑇𝐸2(𝑓𝑆) is a

continuous function according to its variable fS with a first

order derivate:
∂𝐶𝑇𝐸2(𝑓𝐿)

∂fS
= 𝛬0 (

2𝛽𝑘𝑆𝑓𝑆

𝐸𝑚𝑎𝑥
−

𝛼

𝑇𝑚𝑎𝑥fS
2).

Consequently, 𝔼𝐶𝑇𝐸2(fS) decreases on]0, √
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
] and

increases on [√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
, +∞[. Then, 𝐶𝑇𝐸2 has an optimal

minimum value at the point√
𝛼𝐸𝑚𝑎𝑥

2𝛽𝑘𝑆𝑇
𝑚𝑎𝑥

3
 without considering

constraint (C3.2.1). Therefore, with (C3.2.1), we can derive

the following function’s optimum fS
∗ given by:

fS
∗ =

{

0 if 𝕏 = 𝕏0

∅ if fS
− > FS or

D1

r
> Tmax

fS
− if √

αEmax

2βkST
max

3
< fS

−

FS

√
αEmax

2βkST
max

3

if √
αEmax

2βkST
max

3
> FS

otherwise

 (30)

5. Proposed Solutions

Next, the problem relies on determining the optimal

offloading decision vector 𝕏 that gives the optimal energy

consumption and the optimal processing time. However, to

iterate over all possible combinations of a set of N binary

variables, the time complexity is exponential. That is not

practical for large values of N. In the following, we propose

a low complexity approximate algorithm to solve this

question.

5.1 Exhaustive Search Solution

For comparison purpose, we introduce the Exhaustive

Search method for feasible small values of N. This method

explores all cases of offloading decisions and saves the one

with the minimum trade-off the energy and processing time

as well as its completion time.

5.2 Simulated Annealing based Solution

For our proposed solution, we use a Simulated Annealing

based method [15, 16]. We start by a random offloading

decision state X. Then, at every step, some neighboring state

𝕏∗ of the current state 𝕏 and probabilistically decides

between moving the system to state 𝕏∗ or staying in state 𝕏.

Practical, a state’s variation consists of changing the

offloading decision of some tasks among the set. These

probabilistic transitions ultimately lead the system to move

to states of lower energy. Generally, this step is repeated

until getting a good trade-off for energy and processing time

is reached, or until a given number of iterations is reached.

6. Results and Discussion

In this section, we carried out a serie of experiments to

evaluate the performance of our proposed solution. First, we

present simulation setup parameters. Then, several

performance analysis are detailed to prove the efficiency of

our approach.

6.1. Simulation Setup

The presented results in this work are averaged for 100 time

executions. All developed C++ simulation programs were

built with GCC version 6.4.0 and run using a 2.7GHz Intel

Core i7-2620M processor in a PC with a maximum 8GB of

RAM. Moreover, the basic parameters of the simulation

experiments are listed in Table 2.

Table 2. Simulations’ parameters

Parameters Values

𝐹𝐿
𝑚𝑖𝑛 1

𝐹𝐿
𝑚𝑎𝑥 60MHz

𝐹𝑆 6GHz

𝐹𝐿 10−26

𝐾𝐿 10−29

𝑇𝑚𝑎𝑥 [0.5, 2]

𝐸𝑚𝑎𝑥 [0.6,0.8] Λ 𝐾𝐿 (𝐹𝐿
𝑚𝑎𝑥)2

𝑝𝑡 0.1Watt

𝑟 100Kb/s

𝑑𝑖 [30, 300]Kb

𝜆𝑖 [60, 600]MCycles

𝛼 0.5

6.2. Evaluation

We start by studying the Trade-off between Energy

Efficiency and Processing Time for each method. Thus, we

carried an experiment where we vary the number of tasks

parameter between 3 and 26. The experiment's results are

depicted in the following tow figures. Figure 2 represents the

obtained results for both Exhaustive Search Offloading

based solution (ESO) and Simulated Annealing Offloading

based solution (SAO). It shows a small distance between the

curves representing the realized averaged tasks' energy

consumption and processing time. Accordingly, the

differences between the optimal ESO method and the SAO

method vary from 0.00% to 0.63%.

Now, Figure 3 depicts the average of the execution time in

ms to get the offloading decisions for both schemes. While

the tasks count N is between 2 and 26, it clearly shows the

exponential variation of the ESO execution time w.r.t. N.

Additionally, The SAO solution gives a stable execution

time that reached only 0.05ms for N=26.

393
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Figure 2. Trade-off energy-time w.r.t. N.

Figure 3. Decision time w.r.t. N.

This experiment shows that our proposed heuristic scheme

achieves a good trade-off between the solution's execution

time and the accomplished processing delays of the

offloaded tasks within the EN.

7. Conclusion

In this paper, we propose a heuristic solution to solve a hard

decision problem that jointly optimizes the computing

resources, as well as trade-off between both the energy

consumption and the processing time in a MEC node. A

calculation task is authorized to be offloaded when the

offloading consumes less time and energy than the local

execution. The obtained results in terms of processing time

and energy consumption are very encouraging. In addition,

the proposed solution performs the offloading decisions

within an acceptable and feasible timeframes.

References

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,

"Mobile edge computing—A key technology towards 5G,"

ETSI white paper, vol. 11, no. 11, pp. 1-16, 2015.

[2] E. Cuervo et al., "MAUI: making smartphones last longer with

code offload," in Proceedings of the 8th international

conference on Mobile systems, applications, and services, pp.

49-62, 2010.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,

"Clonecloud: elastic execution between mobile device and

cloud," presented at the Proceedings of the sixth conference

on Computer systems, pp. 301-314, 2011.

[4] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

"Thinkair: Dynamic resource allocation and parallel

execution in the cloud for mobile code offloading," in 2012

Proceedings IEEE Infocom, pp. 945-953: IEEE, 2012.

[5] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S.

Madden, "Wishbone: Profile-based Partitioning for Sensornet

Applications," in NSDI, vol. 9, pp. 395-408, 2009.

[6] C.-H. Hong and B. Varghese, "Resource management in

fog/edge computing: A survey on architectures,

infrastructure, and algorithms, " ACM Computing Surveys

(CSUR), vol. 52, no 5, pp. 1-37, 2019.

[7] T. A. Ahanger, U. Tariq, and M. Nusir, "Mobility of Internet

of Things and Fog Computing: Concerns and Future

Directions," International Journal of Communication

Networks and Information Security, vol. 10, no. 3, pp. 534,

2018.

[8] Y. Xiao and M. Krunz, "QoE and power efficiency tradeoff

for fog computing networks with fog node cooperation," in

IEEE INFOCOM 2017-IEEE Conference on Computer

Communications, IEEE, pp. 1-9, 2017.

[9] X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient multi-user

computation offloading for mobile-edge cloud computing,"

IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp.

2795-2808, 2016.

[10] Y. Hmimz, T. Chanyour, M. El Ghmary, and M. O.

Cherkaoui. Malki, "Energy Efficient and Devices Priority

Aware Computation Offloading to a Mobile Edge Computing

Server," in 2019 5th International Conference on

Optimization and Applications (ICOA), IEEE, pp. 1-6, 2019.

[11] O. Carvalho, M. Garcia, E. Roloff, E. D. Carreño, and P. O.

Navaux, "IoT workload distribution impact between edge and

cloud computing in a smart grid application," in Latin

American High Performance Computing Conference,

Springer, pp. 203-217, 2017.

[12] M.-H. Chen, B. Liang, and M. Dong, "Joint offloading

decision and resource allocation for multi-user multi-task

mobile cloud," presented at the 2016 IEEE International

Conference on Communications (ICC), pp. 1-6, 2016.

[13] L. Cui et al., "Joint optimization of energy consumption and

latency in mobile edge computing for Internet of Things,"

IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4791-4803,

2018.

[14] K. Zhang et al., "Energy-efficient offloading for mobile edge

computing in 5G heterogeneous networks," IEEE access, vol.

4, pp. 5896-5907, 2016.

[15] Z. Fan, H. Shen, Y. Wu, and Y. Li, "Simulated-Annealing

Load Balancing for Resource Allocation in Cloud

Environments," presented at the 2013 International

Conference on Parallel and Distributed Computing,

Applications and Technologies, pp.1-6, 2013.

[16] L. Chen, J. Wu, X. Long, and Z. Zhang, "ENGINE: Cost

Effective Offloading in Mobile Edge Computing with Fog-

Cloud Cooperation," arXiv preprint arXiv:1711.01683, pp. 1-

11, 2017.

