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Abstract: we introduce a password strength metric using the 

Enhanced Fuzzy K-Means clustering algorithm (EFKM 

henceforth). We train the EFKM on the OWASP list of 10002 weak 

passwords. After that, we maximize the optimized centroids to 

develop a password strength metric. We validate the resulting meter 

by contrasting with three entropy-based metrics using two datasets: 

the training dataset (OWASP) and a dataset we collected from the 

GitHub website that contains 5189451 leaked passwords. Our 

metric can recognize all the passwords from the OWASP as weak 

passwords only. Regarding the leaked passwords, the metric 

recognizes almost the entire set as weak passwords. We found that 

the results of the EFKM-based metric and the entropy-based meters 

are consistent. Hence the EFKM metric shows its validity as an 

efficient password strength checker.  
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1. Introduction 
 

Passwords provide a mechanism to verify authenticity [1]. 

They are vital for any system, whether it is online or offline 

[2]. Using passwords is the most common technique for user 

authentication for three reasons: deployability, usability, and 

security [3]. The authors of [4] [5] believe that passwords 

will remain one of the top user authentication techniques 

during the foreseeable future, despite the major shortcoming 

of this approach, which is the difficulty of creating 

passwords that are strong and easy to remember, Moreover, 

they argue that no alternative approach can keep the 

advantages of passwords techniques introducing no 

problems. 

Having strong enough passwords is a very important factor 

for an account to be safe and well-protected. Identifying the 

term “Strong Enough Password” is something not clear nor 

settled, and this explains the existence of a wide range of 

policies that control creating and changing passwords. 

Nowadays, systems provide policies that guide passwords` 

creating process. Such policies consider the crucial attributes 

and require each user to satisfy them properly. So, it is 

possible to say that the user is not completely free to choose 

and design the password [6]. 

Even if a system applies a mandatory and tough policy, the 

threat of creating weak passwords is still possible because 

cyber threats do not relate only to the quality of passwords, 

they also relate to other factors connected to the behavior of 

the user, such as using personal information passwords, 

passwords lending, reusing or writing them down. In [9], the 

authors introduced a statistical study that reveals that 53% of 

the users use the same set of passwords through different 

systems, 21% lend their passwords, and 17% wrote the 

passwords to remember them when needed. 

The authors of [7] suggested a criterion to evaluate the 

quality of the password: “how hard it is for a third part to 

predict a password”. They found that the correlation between 

the easiness of password estimation and its strength is a 

positive correlation. However, a strong password (i.e., good 

password) is that one that satisfies the criteria of the policy 

under consideration. In any system, having no password 

policy at all or having an optional one would increase the 

threat of creating weak passwords, and this because of 

several reasons: the laziness of users, lack of education, lack 

of security awareness… etc. [8]. 

One way to force users to choose strong passwords is the use 

of password meters. The primary goal for a password meter 

is to direct the users to satisfy all the instructions and the 

rules of the policy under consideration while creating or 

updating passwords. So, having clear and specific passwords 

policy is very important for the meter to work properly. The 

computer systems used various policies, and most of them 

focus on the components of the password, such as letters, 

digits, special symbols, the length of the password itself, and 

character frequency. Other policies focus on the user 

behavior that directly affects the type and meaning of a 

password. However, the former policies are easier to 

implement and deploy in the systems since they require 

conventional skills for proper implementation. Whereas the 

later policies need revolutionary techniques and skills related 

to machine learning and data mining methods to satisfy 

them. 

In this paper, we introduce a machine learning-based 

password meter. We applied the EFKM algorithm to fit the 

underlying structure of the OWASP dataset of 10002 weak 

passwords. EFKM algorithm generates a set of centroids that 

each one of them represents a cluster of weak passwords. 

We optimized the result of EFKM into one unified centroid 

by maximizing the resulting centroids. After that, we used 

that unified centroid as the basis to develop our EFKM-

based meter. The EFKM-meter recognizes unobserved 

passwords and evaluates them as strong or weak passwords. 

In the next section, we present the most significant related 

work. In Section 3, we present our methodology to develop 

the proposed EFKM password strength meter. Then we give 

the evaluation methodology in Section 4. In Section 5 we 

show the experiments we carried out and the results we 

found. We discuss the validity of the EFKM meter in section 

6. Finally, we conclude the paper in section 7. 
 

2. Related Work 
 

Most of the systems require users to create diverse and 

complex passwords which make them difficult for users to 

memorize and retrieve [3][10][11][12] especially nowadays 
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that witness an overwhelmed growth of accounts for each 

user [12] and this explains the mentioned habits of the users 

when creating passwords. As part of the efforts to interpret 

how users choose their own passwords, an approach that 

applies the password graphs. Such approaches provide 

important properties of passwords and introduce beneficial 

clusters of them. 

In [10], the authors discussed the effect of users’ behavior on 

choosing passwords and its strength. Several researches and 

studies attempt to understand the user-chosen passwords. For 

instance, [13] stated the major reasons that cause the 

problems related to the text-based authentication. They 

believe that creating a memorable password is a challenging 

matter. Hence, they suggested an approach based on the 

psychological factors of the user to encourage creating 

strong enough and memorable passwords.  

However, [14] argue that the crucial reason in the issues of 

secure passwords is reusing the same password for multiple 

accounts. Thus, guessing a password from one account 

implies that all the other accounts are accessible with no 

efforts. Furthermore, the authors of [15] found that almost 

60% of all users use the same password through multiple 

systems, whereas [16] noticed that most users are not aware 

of the best practices in creating strong passwords.  

A fruitful study [17] presented an analysis of the habits of 

the users over Chinese network. The study measured the 

strength of passwords through a comprehensive analysis of 

their length, type, and "other variables", and hence, the 

existence of some repeated patterns in the analyzed 

passwords. Thus, the need of a meter to evaluate the 

password security is a crucial demand [18]. A password 

meter (i.e. password strength checker) is as a common way 

to overcome such threats. Passwords meters provide 

valuable feedback for users on when creating or changing 

passwords to improve the password strength. Many meters 

are available with different approaches and policies. There is 

a necessity to study the effect of the meter-based passwords 

regarding security and usability according to [19]. They 

found that the users place high importance on satisfying the 

policy of stringent meters with visual feedback bars. Such 

findings help researchers to develop efficient meters that 

overcome the major problems towards strong passwords. 

The authors of [20] also mentioned that no meter is 

absolutely better than any other meter among those they 

studied. Moreover, they stated that each meter has its own 

strength and weakness features. So, they extracted a meter 

that uses and combines the strength features from all other 

meters. The authors of [21] developed an efficient meter, 

they used data-based methods to interpret how users create 

their own passwords and how hackers can predict them. 

They believe that a valuable meter is that one which helps 

users to choose a strong and memorable password by 

balancing the importance of those two factors. And in the 

same context, [5] suggested a metric to handle the problem 

of containing personal information in passwords. They 

applied a segmentation algorithm to avoid any personal 

attribute of the user that highly correlates to the selected 

password. The researchers in [22] categorized the meters 

into two categories: 1- Industrial meters and 2- Academic 

meters. They believe that even though the industrial meters 

are not accurate enough, since they use a very simple 

heuristics to help users in creating the needful passwords, 

they are better than the academic meters that are still far 

from any desired satisfaction. The authors noticed that most 

of the users recall passwords similar or identical to what they 

used before. So, to overcome the shortcomings of the 

existing passwords meters, they introduced a password meter 

and made the needed models of the users’ behavior by 

training phases using a set of leaked passwords. For any 

meter, accuracy is as a very important feature to be in 

passwords evaluation since the current meters are not 

reliable enough. Till now it is not clear how to evaluate the 

accuracy of a password strength meter. Hence, a group of 

attributes should be satisfied to develop an accurate meter. 

Hence, [23] emphasized that the lower the accuracy of a 

meter, the higher the risk of passwords leakage. 

A common approach to evaluate a password in terms of its 

strength level is passwords rating. In [24] the authors 

categorized the techniques of the password strength rating 

into two major categories: 1- machine ratings and 2- human 

ratings. After that, they implemented a survey to measure 

how such ratings affect users’ trust. They found that users 

trust machine ratings more than human ratings with a level 

of subjectivity. The principal reason for password leakage 

according to [25] is because of the strength of the password. 

Thus, weak passwords are subject to get leaked more than 

strong passwords. The authors of [6] suggested a meter 

measures the strength of a password in two ways, namely: 

password entropy and password quality. After that, they 

concluded with two rules: high entropy passwords are also 

high-quality passwords, and low-quality passwords are low 

entropy passwords. 

3. Development Methodology 

The methodology of developing our password meter has 

three phases: 1- dataset preprocessing 2- training of the 

learning machine 3- developing the password meter. 

1- Datasets and Preprocessing: 

In order to introduce a reliable enough password meter, we 

believe that using machine learning and data mining 

techniques is a very useful and efficient approach to develop 

a dynamic metric that can handle any suggested password 

and rate its quality effectively. Such techniques and methods 

require convenient data sets to have the machine well trained 

and prepared for any possible unobserved instances. So, we 

will use two datasets: 1- OWASP dataset that we used to 

develop the EFKM metric and 2- Github dataset that we 

used to evaluate the metric. For presentation, we start with 

presenting the later one and then continue by describing the 

training dataset in order to maintain a better flow of ideas. 

•  Github Leaked Passwords: we later use this dataset for 

meter validation purposes. It contains 5189451 leaked 

passwords from several websites and obtained from 

GitHub website. As expected, we classify the 

characters that compose any password into four 

categories, namely: Lowercase, Uppercase, Digits, and 

Symbols. Figure 1 shows the probabilities of character 

categories in this dataset. 
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Figure 1. Probabilities of Characters Categories in GitHub 

Dataset  

•  OWASP Weak Passwords [26]: we use this dataset to 

train the EFKM algorithm in order to develop the 

suggested metric. The dataset contains 10002 

passwords, all of them are weak passwords in the form 

of plain text (i.e. text-based values). Thus, to prepare it 

for further usage we will map it to represent it as 

numerical vectors, each one has five discrete features: 

Length L∈3, 4, 5, …, 16 that tells how many letters, 

digits and symbols a password contains. Lowercase 

LC∈{0, 1, 2, …, 12} and Uppercase UC∈{0, 1, 2, …, 

8} respectively represent the number of lowercase and 

uppercase letters in each password. Digits D∈0, 1, 2… 

8, Symbols S∈ {0, 1, 2, …, 12}. Figure 2 below 

illustrates the distribution of each features’ values in 

the OWASP dataset. 

• Figure 2 illustrates that the portion of the uppercase 

letters regarding all characters we use in the 

passwords dataset is about %0.4, whilst it is %0.1 

for the symbols. Such distribution makes sense 

regarding the weakness level of these passwords. 

• However, having the training dataset with this size 

and presented in this manner produces a 

complicated underlying structure that cannot easily 

be recognized or understood. Hence, applying a 

machine learning technique for data mining 

application is a convenient option to use and 

understand the dataset properly. 

 
Figure 2. Probabilities of Characters Categories in OWASP 

Dataset 
 

2- Training of the Learning Machine: 

As mentioned earlier, the dataset we have here contains 

passwords that are weak passwords only that do not have the 

same level of weakness. Some are extremely weak, while 

some are very weak or weak. As any similar dataset, the 

instances in the OWASP set altogether form some patterns 

and underlying structures that are difficult to catch due to 

their nature and size. In this manner, we can use this 

structure and its intercorrelations to introduce a meter that 

evaluates the strength level of unobserved passwords 

according to its training on the OWASP dataset.  

Since all the instances are weak passwords, we use a 

clustering technique to identify groups of similar instances. 

To that end, we used the Enhanced Fuzzy K-Means (EFKM) 

that the authors of [27] introduced. The EFKM technique 

involves a modification on the traditional FKM. EFKM 

improved the performance of the clustering and the 

calculations of the membership values. 

The training session of the EFKM aims to produce n 

clusters, where n=3, 4, 5, 6. A tuple of five centroids (i.e. 

quintuple henceforth) represents each cluster. Recall that we 

describe each of the passwords by a vector of five features. 

Therefore, each of the runs of EFKM generates a set of n 

quintuples denoted by Cn. We denote the ith quintuple in the 

nth cluster by Cin=(Cin1,Cin2,Cin3,Cin4,Cin5). For instance, the 

set of centroids that EFKM generates for n clusters is 

Cn={C1n,C2n,…,Cnn}, such that C2n is the second centroid out 

of n centroids. Moreover, the second quintuple of the EFKM 

run to generate 5 clusters that we denote by 

C25=(C251,C252,C253,C254,C255), hence C253 represents the third 

value of the second centroid produced by the run of the 

EFKM that generates five centroids (clusters).  

In the suggested framework, the training phase starts by 

feeding the passwords from the training dataset (OWASP) 

into the EFKM. After that, EFKM generates the clusters by 

optimizing a set of quintuple centroids, such that a single 

quintuple centroid is produced for each cluster. To analyze 

and understand the entire process to develop the proposed 

meter, we implemented four training sessions for the EFKM 

under different parameters. In each training session we 

changed only one parameter, which is the number of clusters 

n. Hence, we train the EFKM four times, starting with 3 

clusters up to 6 clusters in the last training session. 

3- EFKM Meter Development: 

We develop an efficient enough meter via a combination of 

the quintuples we had from a specific training session. So, 

we defined an extra centroid (Cxn) for each n. Cxn is a 

quintuple calculated by maximizing the set of the optimized 

centroids that we generate by EFKM trainings for a given n. 

More precisely, Cxn is: 

Cxn=(max(C1n1,C2n1,…,Cnn1), 

               max(C1n2,C2n2,…,Cnn2), 

               max(C1n3,C2n3,…,Cnn3), 

                max(C1n4,C2n4,…,Cnn4), 

                 max(C1n5,C2n5,…,Cnn5)) 

 

Where max(.,.,.,.,.) finds the maximum value of its five 

parameters. For instance, the set of centroids generated by 

EFKM for 3 clusters (C3) as illustrated in Table 1.  

Table 1. Three Clusters Quintuples 

Quintuple 1 C131 C132 C133 C134 C135 
Quintuple 2 C231 C232 C233 C234 C235 
Quintuple 3 C331 C332 C333 C334 C335 
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Table 1 is another way to show the set of the three 

quintuples produced by EFKM for three clusters. C134 

denotes the fourth term of the first centroid out of three 

clusters. The actual values (rounded up to 3 decimal places) 

that we obtained by running EFKM for three clusters are in 

the following table:  

C13 7.416 0.065 0.009 0.004 7.337 

C23 5.565 5.423 0.018 0.002 0.121 

C33  7.646 7.539 0.012 0.001 0.094 

The last step is to find Cx3 by maximizing C3. There for the 

values of Cx3 are as follows:  

Cx3 7.646 7.539 0.018 0.004 7.337 

Hence, after applying the maximization step over all sets of 

quintuples from the training session, four maximized 

centroids will be produced: 

Cx3 7.646 7.539 0.018 0.004 7.337 

Cx4 7.992 7.550 0.073 0.012 7.946 

Cx5 8.186 8.085 0.030 0.006 8.012 

Cx6 8.047 7.663 0.070 0.011 8.024 

The goal of this maximization step is to harden the 

optimized centroids as a password meter. Such an approach 

makes the proposed meter more reliable since it will not be 

easy to be satisfied (i.e. any accepted password satisfies 

tough criteria). 

To evaluate a password s using EFKM of n clusters, we first 

calculate the five features (f1, f2, f3, f4 and f5) of the password 

s getting a quintuple. We denote the result with 

ff(s)=(f1,f2,f3,f4,f5). Then we calculate the distance between 

the password's quintuple ff(s) and Cxn. To calculate the 

distance between ff(s)=(f1,f2,f3,f4,f5) and Cxn=(Cxn1, Cxn2, 
Cxn3, Cxn4, Cxn5) we use the following function: 

distance(ff(s),Cxn)=(f1-Cxn1,f2-Cxn2,  f3-Cxn3,f4-Cxn4,f5-Cxn5) 

= (d1, d2, d3, d4, d5)                                (1) 

Where di is just a notation for the result to use it later. Note 

that this function produces signed values (positive and 

negative) such that the lower the value, the weaker the 

password, and vice versa. Finally, we map distance(.) to a 

single value. This mapping enables us to perform systematic 

comparisons between EFKM metric and the entropy-based 

metrics that we show later. We base this mapping on the 

complements of probabilities of each of the features in the 

dataset of five-million leaked passwords shown in Figure 1. 

The reason behind the complementation step is to give more 

value to unlikely characters. We derived this from Shannon's 

uncertainty principle. The final EFKM metric for a password 

s is therefore: 

EFKM-Metric(s) = pc(lower) × d2 + pc(upper) × d3 + 
pc(digits) × d4 + pc(symbols) × d5 

Where pc(.)=1-p(.), is the probability complement, and the 

dis are as denoted in (1) above.  Note that we omit the first 

feature from our mapping, recall that the first feature 

represents the length of the password, and the length of 

passwords have no probability in our model. 
 

4. Evaluation Methodology 
 

To evaluate the EFKM meter, we use the following three 

entropy-based metrics: 
 

1- NIST entropy: this metric is the well-known NIST 

entropy [28] that is an approximation to Shannon's entropy. 

For any password, we calculate its NIST as follows: 

a) 4 bits for the 1st character. 

b) 2 bits for the next 7 characters. 

c) 1.5 bits for the next 12 characters. 

d) 1 bit for the remaining characters. 

e) 6 bonus bits if the password contains a 

combination of an uppercase and a digit or a 

symbol. 

f) 6 bonus bits if the password passes a dictionary 

check (we have not considered this step in our 

calculations). 

Figure 3 shows the histogram for calculating NIST entropy 

for leaked passwords. It shows that most of the leaked 

passwords are weak. 

 
Figure 3. NIST Metric for Leaked Passwords 

 

2- Uniform entropy: this metric is based on the 

assumption that all passwords' characters have equal 

probabilities, i.e., have a uniform distribution and therefore 

have equal probabilities. This is basically Hartley's entropy 

with base 2. More precisely, for a password s of length n, the 

uniform entropy of s is: Hu(s) = log2 n 𝐻𝑢(𝑠) = 𝑙𝑜𝑔2 𝑛 

Figure 4 shows the histogram for calculating Uniform 

entropy for leaked passwords. It again shows that most of 

the leaked passwords are weak. 

3- Pure entropy: this metric is a trial to implement 

Shannon's entropy. We calculate it based on the probabilities 

of character category in the set of the leaked passwords. The 

probabilities are given in Figure 1 and Shannon's entropy for 

a password p=s1s2…sn is: 𝐻(𝑝) = − ∑ 𝑝(𝑠𝑖)𝑙𝑜𝑔2𝑝(𝑠𝑖)𝑛
𝑖=1  

 

 
Figure 4. Uniform Metric for Leaked Passwords 
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Figure 5. Pure Metric for Leaked Passwords 

 

Figure 5 shows the histogram for calculating Pure entropy 

for leaked passwords. It also shows that most of the leaked 

passwords are weak. 

5. Experiments and Results 

Up to this point, we explained how to compute the EFKM 

meter. We also presented the evaluation methodology of the 

EFKM meters that we use based on three entropy-based 

metrics for passwords strength. As explained earlier, we use 

any of the maximized quintuples that we have from EFKM 

meter development phase with any unobserved password in 

order to identify how far it is from that quintuple. We do so 

to state the strength or weakness of the unobserved 

password. Now, we present our experimental results that we 

obtained from applying the EFKM Metric on the set of 

leaked passwords. More precisely, we applied four different 

versions of the EFKM metric. We obtained those four 

versions from running EFKM algorithm for 3, 4, 5 and 6 

clusters. Figure 6 illustrates the results after calculating the 

distances between each password in the leaked passwords 

dataset and the EFKM meter versions. More specifically, the 

figure shows the distribution of the passwords by 

representing the occurrences of the passwords regarding 

each distance we have with the maximized quintuples 

generated by EFKM for 3, 4, 5 and 6 clusters (sub-figures a, 

b, c, d respectively). The y-axis in each figure represents the 

distance between a password and the maximized quintuple, 

such that the negative distance means the password is weak 

(i.e. the lower the distance, the weaker the password and 

vice versa). It is possible to make the results from figure 6 

clearer by categorizing the leaked passwords into six 

categories, such that each password is: Extremely Weak, 

Very Weak, Weak, Strong, Very Strong, or Extremely 

Strong. The four sub-figures that we have in Figure 7 

represent the results of leaked passwords categorization, 

such that figure 7-a, 7-b, 7-c and 7-d illustrate the results of 

categorization after applying the maximized centroids that 

we produced from the training sessions under 3, 4, 5, and 6 

clusters respectively. Figures 7-a, 7-b and 7-c show that 

increasing the number of clusters increases the number of 

extremely weak passwords. However, figure 7-d contradicts 

this conclusion. We have this situation for two reasons: 1) 

the optimal number of clusters we need. For any clustering 

problem, it is difficult to specify the most suitable number of 

clusters. Specially that one should determine in advance as 

an input which makes it one of the most significant issues in 

the clustering techniques [29]. 2) having one more cluster 

besides the five clusters that we already have produces 

centroids that will be closer to some vectors than any other 

centroid among the existing centroids. Nevertheless, the 

results of the maximization we have here are all true results 

and can be used for further applications to identify 

unobserved passwords. Recalling the primary goal of this 

paper, which is developing a password metric based upon 

optimizing and maximizing centroids according to a set of 

weak passwords, we still can use any centroids we produced 

from the previous training sessions. We believe that using 

the maximized centroid Cx5 would produce the strongest 

password meter in comparison with the meters from Cx3, Cx4 

or Cx6. Whereas developing a meter according to Cx3 would 

be the most tolerant among all other meters that we have 

from the maximization process.  
(a)   EFKM 3 

 
(b) EFKM 4 

 
(c) EFKM 5 

 
(d) EFKM 6 

 
Figure 6. Passwords Distance-Based Distributions using 

EFKM Metric 
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(a) EFKM 3 

 
(b) EFKM 4 

 
(c) EFKM 5 

 
(d) EFKM 6 

 
Figure 7. Passwords Categories using EFKM Metric 

 

6. EFKM Meter Validity 
 

To show the validity of EFKM metric as an efficient 

password metric, we build our argument on three bases: 1- 

EFKM metric application on OWASP passwords. 2- EFKM 

metric application on leaked passwords with comparison to 

entropy-based metrics application. 3- EFKM metric 

statistical correlation with entropy-based metrics. 

1- EFKM metric application on OWASP passwords:  

To evaluate the performance of the EFKM metric, we 

applied it on the OWASP dataset. Since the OWASP 

contains weak passwords only, the EFKM metric showed an 

excellent performance as it successfully recognized all the 

passwords in OWASP dataset as weak passwords, and this 

reflects the quality and the efficiency of our EFKM meter. 

Table 2 below shows that the average distance between 

OWASP passwords and the maximized quintuple under 

consideration is negative, so most OWASP passwords have 

definitely negative distances, and therefore they are weak 

passwords and none of them holds any level of strength. The 

averages show that all the metrics are good meters, 

regardless of what the number of clusters is. However, we 

consider the EFKM meter with 5 clusters to be the best one. 

Table 2. OWASP Passwords Distances 

 EFKM3 EFKM4 EFKM5 EFKM6 

MIN -7.962 -8.433 -8.646 -8.527 

MAX 1.011 0.541 0.327 -4.525 

AVG -5.342 -5.812 -6.026 -5.259 
 

2- EFKM metric application on leaked passwords: 

The key idea of this validation of EFKM metric is 

contrasting figure 2 and figure 3 from one side with 

entropies figures from the other side. This contrasting shows 

that EFKM metric has preserved the distributions of leaked 

passwords intact. In other words, the passwords we labeled 

as weak in entropy-based metrics remained weak in EFKM 

metric. Moreover, EFKM metric was even harder than 

entropy-based metrics.  

3- EFKM metric statistical correlation with entropy-based 

metric: 

 Table 3. Pearson’s Correlations of the Metrics 

 NIST PURE UNIFORM EFKM 

NIST 1.00 0.78 0.91 0.81 

PURE 0.78 1.00 0.79 0.52 

UNIFORM 0.91 0.79 1.00 0.70 

EFKM 0.81 0.52 0.70 1.00 
 

Table 3 shows the Pearson’s correlations between different 

metrics that we used. Note that they are all positive values 

grater that 0.5, meaning that EFKM metric is positively 

correlated with the other metrics. It is even close to 1 in case 

of NIST and UNIFORM. This value shows a very high 

positive correlation with EFKM. This supports and 

concludes our argument on the validity of EFKM metric for 

password strength. Interestingly, the EFKM metric correlates 

to other metrics with the same value regardless of the 

number of clusters. 

7. Conclusions 
 

In this paper we introduced a password strength metric using 

the EFKM clustering algorithm. We trained the EFKM on 

the OWASP dataset that comprises 10002 weak passwords. 

After that, we maximized the optimized centroids to develop 

the required password strength metric. We tested the validity 

of the meter using two datasets: the training dataset 

(OWASP) and the leaked passwords dataset that we 

collected from the GitHub website and contains 5189451 

leaked passwords.  

Our EFKM metric could recognize all the passwords from 

the OWASP as weak passwords only. Regarding the leaked 

passwords, the metric recognized almost the entire set as 

weak passwords. As the passwords in the leaked dataset 

have no labels, we used other meters (NIST, UNIFORM and 

Pure Entropies) besides the EFKM-based meter for 

comparison purposes. We found that the results of the 

EFKM-based metric and the entropy-based meters were 

consistent. Hence the EFKM-base metric demonstrated its 

validity as an efficient password strength checker. 
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