
450
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Simon Atuah Asakipaam, Jerry John Kponyo, Justice Owusu Agyemang and Fredrick Appiah-Twum

Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract: Software-defined networking is a novel concept that is

ported into wireless sensor networks to make them more manageable

and customizable. unfortunately, the topology discovery and

maintenance processes generate high overhead control packet

exchange between the sensor nodes and the central controller leading

to a deterioration of the network's performance. In this paper, a novel

minimal overhead control traffic topology discovery and data

forwarding protocol is proposed and detailed. The proposed protocol

requires some changes to the topology discovery protocol

implemented in SDN-WISE to improve its performance. The

proposed protocol has been implemented within the IT-SDN

framework for evaluation. The results show reduced overhead

control traffic and increase, of about 20%, data packet delivery rate

over the protocol in SDN-WISE.

Keywords: Software-Defined Wireless Sensor Networks, Topology

Discovery Protocol, minimal control overhead, energy.

1. Introduction

Since the term “Internet of Things (IoT)” was first coined

about a decade ago, the concept has been widely accepted and

used in many areas [1]. The general idea revolves around

interconnecting various heterogeneous devices in different

geographical areas to communicate, store, or analyze data

using the internet. Wireless Sensor Networks (WSNs) drive

the growth of the IoT paradigm. WSNs are groups of

specialized sensor nodes that are used to measure physical

quantities such as sound, vibration, humidity, pressure, and

temperature of an environment and convert them to electronic

signals [2]. These signals are sent to a desired central location

where they are used to make decisions. Each sensor node is

equipped with limited resources [3] namely: one or more

sensors, a processing unit, a memory, a power supply, and a

Radio Frequency (RF) transceiver. The sensor nodes also

communicate with one another using low-bandwidth wireless

links.

There are numerous application areas of WSNs including

military applications, weather forecasting, health monitoring,

disaster detection, smart cities/vehicle design, pollution

detection, and power management in schools and office

buildings [4]. Due to the limitations of sensor node resources,

WSNs are unable to satisfy the requirements of all application

scenarios. For instance, some applications may require WSNs

to store information for future retrieval. Others may require

regular user queries to be scheduled and automatically

dispatched without external operator intervention. Still, others

may need to share information among themselves in real-time

to aid in decision-making tasks. These limitations are

considered to be significant drawbacks of the performance of

WSNs and the growth of the IoT paradigm.

Considerable work has been carried out in the area of WSNs

to improve the effective usage of sensor nodes' resources

through the design of routing algorithms [5] and [6], the

design of network architectures and topologies [7]. However,

the task of designing innovative techniques, protocols, and

applications to minimize the impact of WSN limitations

creates the need for the usage of a Software-Defined

Networking (SDN) solution to the WSN limitations. SDN is

envisaged to offer better solutions to WSN limitations by

decoupling the network control logic from the underlying

hardware and by incorporating real-time network

programmability and management [8]. Several latest

recommendations in the SDN literature include: Anadiotis et

al [9] presented SD-WISE, a software abstraction of sensor

node's resources, to expand the SDN approach to WSN. In

three cases, the key operations and characteristics of SDN

were described and demonstrated to test the efficiency of the

approach in WSN. The authors concluded that SDN could be

considered an enabling technology for robust WSNs capable

of performing complex tasks efficiently. Musa et al [10]

reviewed some recent research on traditional WSN and

discussed SDN-based management strategies for WSNs while

at the same time emphasizing the benefits of SDN over

traditional WSN.

The tight interplay between the data plane and the control

plane in traditional WSN makes the sensor nodes consume

high energy when performing tasks. Smitha et al [11]

proposed a distributed energy-efficient Software-Defined

Wireless Sensor Network (SDWSN) and implemented the

controller at the base station. With knowledge of the

network’s global view, the controller selects the cluster heads

based on energy and distance. Similarly, green routing

algorithms were proposed to maximize the lifetime of the

sensor network in [12] and [13]. The communication between

the sensor nodes and the controller in these works was via

OpenFlow protocol. The Problem of OpenFlow [14] is that it

requires a dedicated control channel. It also creates memory

constraints and heavy overhead traffic; therefore, it is not

suitable for SDWSN.

Generally, the SDN concept requires each node to gather

details about the network topology, send these details to the

central controller, and continuously update the controller

about the topology status [15]. The nodes are also required to

request further information from the controller for ambiguous

flows. This results in continuous exchange of control

messages between the central controller and the nodes. The

continuous transmission of control messages impairs the

quality of radio communication and drains the nodes’ energy

Design of A Minimal Overhead Control Traffic

Topology Discovery and Data Forwarding

Protocol for Software-Defined Wireless Sensor

Networks

451
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

faster. This problem is more pronounced when the network

topology is constantly changing due to node mobility or

energy drainage. In any of these scenarios, additional control

messages are shared to update the topology and the flow table,

thus, leading to high traffic overheads. Also, when the hop

count increases in the case of large networks, intermediate

nodes generate flow requests to set up paths. The resultant

effects include congestion, reduced network throughput, short

network lifetime, and inefficient use of sensor node resources

such as bandwidth, battery, CPU, and memory.

To reduce the updates of the flow table, Pineas et al [16]

proposed a flow aggregation mechanism to improve energy

consumption, network performance, and lifetime, but this

could lead to expected errors including accessibility failures,

routing loops, and network traffic isolation. The works in [17],

[18], and [19] investigated the potential for distributing the

control system to minimize congestion and address WSN 's

perpetual limitations. The authors proposed autonomous

controllers, distributed to each domain, to monitor and

effectively secure the domains to prevent external and internal

attacks. To ensure uniformity of network rules and

accessibility of these rules by all controllers, so that a

malfunction in one section of the network will not bring down

the entire network, controllers continuously synchronize data

resulting in high overhead control traffic and inefficient

network operation.

This paper, therefore, focuses on reducing overhead traffic in

topology discovery, topology maintenance, and data

forwarding processes of SDWSNs to improve network

operational efficiency and minimize energy consumption in

the network performance by:

• Designing a distributed SDWSN in which each cluster

head is a sub-controller responsible for collecting the

network topology information, performing low-level

control functions such as admitting or removing sensor

nodes to or from the network, distributing flow table,

filtering and forwarding traffic, and updating the central

controller on the network topology.

• Designing a minimal overhead control traffic topology

discovery, maintenance, and data forwarding protocol to

minimize congestion, increase network throughput, and

lifetime and improve the efficient use of sensor node

resources.

• Assessing protocol performance with different key

network performance metrics within the IT-SDN

framework.

The rest of the paper is organized as follows: Section 2

reviews works related to the research problem. Section 3

discusses the limitations of the existing TD protocol, the

modifications to the existing TD protocol, and the proposed

protocol. Section 4 presents the proposed protocol and section

5 outlines the experimental method used to validate it. In

section 6, the experimental results are presented and analyzed,

and the conclusion and future work are provided in section 7.

2. Related Works

Some research works relating to the work in this article are

presented in this section. Topology information collection is a

critical component of any SDN solution for WSN due to the

limitations of WSNs. This, therefore, calls for the

development of an efficient Topology Discovery (TD)

protocol in SDWSN without compromising the performance

of the network’s throughput, lifetime, and latency. To this end,

Joseph et al [15] addressed how overhead control traffic can

be minimized to improve the efficiency of SDWSN. In a full

literature review of various methods or algorithms, the authors

identified the drawbacks and strengths as well as open issues

and future research directions. Babedi et al [20] proposed a

Request For Comments (RFC) 7567 based SDWSN QoS

resource-aware scheme to minimize overhead traffic in highly

dynamic and large-scale SDWSNs. The proposed scheme

improved data acquisition and network information collection

time as well as network throughput, delay, and packet loss,

compared to other implemented schemes.

The authors in [21] introduced programmable controller logic

in the sensor nodes so that when the nodes receive a new

packet, they can take decisions without often sending flow

requests to the controller. Besides, a new topology

management layer was introduced to collect the local topology

information. The proposed solution was intended to minimize

the exchange of control messages between the SDN controller

and the sensor nodes and to permit the programming of such

sensor nodes as finite-state machines. Building on this work,

Nasim et al [22] proposed and implemented SDWSN “Fuzzy

TD protocol ” to increase the delivery rate of packets, reduce

the loss of packets, and conserve the energy of the network to

further improve the performance of SDWSN. The approach

uses node cost calculated from energy, queue length, and the

number of neighbors of each node to build the flow table and

to distribute it to all the nodes. Though it ensures a fair

distribution of energy consumption, it is computationally

expensive, and it turns to generate high overhead control

traffic. Theodorou et al [23] proposed a separate control

channel in SDWSN to minimize the performance issues of

high control messages associated with the in-band control

channel of SDWSNs. However, this additional network

interface and dedicated channel increase the hardware

complexity and cost of the sensor nodes.

In [24], game theory and fork and join adaptive particle swarm

optimization algorithm was proposed to improve network

efficiency and service life. The authors stated that the

algorithm automates the number and best positions of

controllers, so that control messages can be exchanged with

minimal overhead. While this approach ensures load

balancing, it requires high computational power, and it does

not improve overhead control traffic in dynamic networks. As

data transmission and network communication consume a lot

of resources, sensor node operations need to be altered to

extend the network lifetime [25]. If this is not done properly

in SDWSN, the efficiency of the controller decisions may be

reduced as the controller is unable to have real-time network

topology information. Faiza et al [26] investigated how the

SDN approach was employed to decrease energy consumption

in WSN. The authors provided the SDN architectural

implementation in WSN to deal with energy consumption.

However, this work was merely exploration since it did not

provide implementation details and actual performance

results. Sudip et al [27] proposed a situation-aware SDWSN

protocol switching scheme using an information routing

strategy to improve network efficiency. The proposed scheme

adopts supervised learning algorithms that enable the

controller to take decisions in real-time, based on network

condition and application-specific requirements. However,

changing routing protocols in each sensor node takes more

time, thus, increasing delay and loss of packets.

To the best of our knowledge, the existing literature requires:

452
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

• Sensor nodes to collect and continuously report topology

information to the controller via broadcast,

• Sensor nodes to request flow table for ambiguous flows

by broadcasting the request to immediate neighbors,

• Sensor nodes to install flow table for the entire network,

• Independent controllers to man clusters in distributed

SDWSNs

To fill the required gap, this paper proposes a minimized

overhead traffic topology discovery, maintenance, and data

forwarding protocol for SDWSN.

3. Discussion of Literature Review Findings

The literature review revealed the need for an efficient

topology discovery protocol in SDWSN due to limitations of

sensor node resources. we discuss the limitations of existing

TD protocol and our modifications to it in this section.

 3.1 Topology Discovery Process

The network status collections start with each node

broadcasting Topology Discovery (TD) packet to its

neighbors. A node, upon receipt of a TD packet, inserts into

its neighbor table the list of its current neighbors, the current

RSSI, address, and the battery level. The node then updates its

route towards the controller to enable it to send the neighbor

report and receive flow table. The node also sets its battery

level and address in the corresponding field of the TD packet

and broadcasts the updated TD packet to its neighbors [21].

This process continues until the controller receives the

network status. This process poses a serious challenge to

efficient network operation as the sensor nodes expend limited

resources processing, broadcasting, and relaying control

messages to establish the network global view.

The topology discovery process was modified by putting the

network into clusters, depicted in Figure 1, using the concept

in [17], allowing only the cluster head to broadcast TD

packets, and restricting the sensor nodes to communicate with

the controller and any other node through the cluster head.

However, unlike [17], the cluster heads do not independently

control the respective clusters and cannot modify the flow

table. The cluster heads, here refer to as sub-controllers, (1)

only rebroadcast TD packets on behalf of the central

controller, (3) collate neighbor information and relay it to the

central controller, and (4) distribute the neighbor table to all

sensor nodes in the respective domains. The cluster heads can

also admit or delete a node and update the central controller

of the changes. The introduction of cluster heads, as sub-

controllers, eliminates performance degradation due to

multiple controllers [19], improves network operational

efficiency, and minimizes latency and congestion.

Figure 1: Network Architecture of Proposed Solution

 3.2 Topology Maintenance Process

The existing TD protocol uses periodic beacon messages to

keep the central controller updated on current network

topology when the network is in operation. If one sensor node

receives a beacon packet from another node that is not already

in the neighbor table, it adds the other node’s address, battery

level, and RSSI value into the neighbor table and updates the

controller in the neighbor/network status report which is sent

periodically. However, when the topology fluctuates due to

sensor node failure or mobility, the SDN controller cannot

correctly compute the routing rules and install them. As a

result, the sensor nodes keep sending flow request messages

and dropping packets in queues to be relayed. Besides, when

hop count increases, in the case of large networks, the

intermediate nodes generate flow requests to set up paths. The

resultant effects are congestion and inefficient use of sensor

node resources. To compensate node failure and mobility,

Million et al [28] implemented a keepalive counter to track

and remove dead nodes. However, high dynamism in

topology maintenance puts more constraints on the sensor

nodes since the resources are limited.

The topology maintenance process was modified to allow only

the cluster heads to periodically broadcast the beacon

messages to the respective domains. A node, upon receipt of

a beacon message, unicasts its response to the cluster head

with an update of its current status. If a node receives two

beacon messages from two different cluster heads, it responds

to the one with stronger RSSI. If a node moves out of coverage

range of a cluster head, it listens for broadcast beacons

continuously, and upon receipt of a beacon message, it

requests to join that cluster. In this way, only the cluster heads

collate the changes in the network and update the controller

about them and also distribute the updated flow table to all the

sensor nodes in the respective domains. Advantage was taken

of the small size of a cluster, compared to the entire network,

to limit the impact of the keepalive counter, implemented with

the broadcast beacons, so that the cluster heads use it to

remove dead nodes. It was assumed that since the controller

has information about every node in the network, it can

automatically select a cluster head for any cluster if an existing

cluster head runs out of energy/dies or cannot meet the

minimum threshold, set by the central controller, to be a

cluster head. The central controller then sets a new threshold

and uses it to select a normal node to act while a notification

is sent to the administrator.

3.3 Data Forwarding Process

Nodes farther away from the destination of packets forward

them to the closest neighbors, and nodes receiving packets

directed towards the central controller relay them to the closest

nodes (in terms of the number of hops) to the central

controller. This approach was modified by restricting sensor

nodes to only sense and forward traffic to the closest sub-

controller which has the entire network’s flow table. The cost

of sending traffic to the sub-controller (cluster head) was made

lowest so that nodes still forward traffic to the cluster head

even though they may have closest physical neighbors.

4. Proposed Protocol Algorithm

The burden of topology information collection was shifted to

the cluster heads (sub-controllers) with enhanced resources to

eliminate the exchange of control messages among the sensor

nodes and between the sensor nodes and the central controller

453
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

and reduce the hop count of data packets. Algorithm 1

illustrates the logic of the proposed protocol and the

flowcharts for topology discovery and data forwarding are

shown in figure 2 and 3 respectively.

Require: Let C = controller, n = set of sensor nodes in a

cluster (neighbors to CH) and t = timer for topology updates

and r = requests send to CH by n.

Upon receiving an event, E do

 if E==Flow Table then

 Broadcast to n

 end

 if E==data then

 Forward to destination

 end

 if E==t or r

 while t<Tmax or n<Nmax do

Broadcast neighbor discovery message or

receive a cluster head discovery message

if a new neighbor is found from cluster head

discovery message then

 Add to neighbor table

 end

if neighbor is found and neighbor ID exists and

status is the same as status data then

Ignore cluster head discovery message for that

neighbor

 end

if the neighbor is found and status is not the same

as status data then

 Update status data

 end

 send the neighbor table to C

 end

 end

wait for the event, E

end procedure

Figure 2: Controller Discovery Process

CH broadcasts neighbor discovery messages to all sensor

nodes within its radius and sensor nodes send cluster head

discovery messages by unicast to a CH with stronger RSSI to

join that cluster.

Figure 3: Data Forwarding Process

5. Experimental Setup and Evaluation

Procedure

The proposed algorithm was validated using the IT-SDN

framework [29]. The framework runs on COOJA, a network

simulator of emulated Contiki WSN nodes [30] using the

ContikiOS. Detailed description of COOJA is provided in

[31]. Two experiments were performed comparatively: a

distributed SDWSN with cluster heads as sub-controllers to

evaluate the proposed protocol and implementation of the

concept of topology discovery in SDN-WISE [21]. Figure 4

depicts the distributed SDWSN, referred herein as the

proposed solution. This experiment consists of one central

controller and two sub-controllers. The second experiment,

shown in Figure 5, depicts the implementation of SDN-WISE,

referred herein as the traditional solution. We evaluated the

number of control messages and the impact of these messages

on key network metrics: traffic delay, traffic delivery rate,

network initialization time, and energy consumption by

comparing the two experiments. Both experiments were

implemented on the same platform using the same framework.

Table 1 summarizes the configuration parameters for the

framework and the experiments. 10 sensor nodes and 1 central

controller including 2 sub-controllers for the proposed

solution were considered for both experiments. The choice

was reasonable enough to analyze and compare both

protocols. All nodes were manually positioned at a fairly equal

distance from each other in both experiments and maintained

constant throughout the experiments. Following a complete

network initialization, the nodes began to send data packets at

constant intervals, apart from sub-controllers and the central

controller. A random initial delay was applied to avoid

artificial data transmission synchronization. The packet loss

and overhead control messages were assumed to depend on

the intensity of the generated packets, so the packets were

generated at intervals of 30 seconds. Each simulation was run

for 10 minutes and repeated 12 times with random seeds,

increasing the time of each run by 10 minutes. Since the

performance evaluation was primarily time-related, each

event that occurred in the sensor nodes, and the controller was

time-stamped to make the measurement possible. After the

simulation was run, the sender node log, the receiver node log,

Algorithm 1: Procedure for CHs in topology discovery,

maintenance, and data forwarding

454
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

and the controller node log were saved to a file. The logged

file was later processed to extract values for the performance

metrics. The simulation setup and flow table distribution are

shown in Figure 6 and 7 respectively .

Figure 4: Experiment 1, Proposed Solution

Figure 5: Experiment 2, Traditional Solution

Table 1: Simulation Parameters

Simulation parameters

Topology used Manually positioned

Number of sensor nodes 10

Number of sub-controllers 2

Number of controllers 1

Payload max size 116 bytes

Buffer size 10 bytes

Simulation time 120 minutes

ContikiMAC channel check

rate

128Hz

MAC layer CSMA

Radio Medium Model UDGM

Node type Sky mote

Transmission Range 50

Interference Range 100

IT-SDN Tool parameters

Version number 0.4

Packet retransmission time 60s

Link metric ETX

Flow table size 15 entries

Route calculation algorithm Dijkstra

Figure 6: Simulation Setup

Figure 7: Controller (1) and Sub-controllers (2 & 3)

distributing flow table

6. Results Analysis and Discussion

6.1 Network Initialization Time

The controller discovers the entire topology before making

any routing decisions. The initialization time is the time it

takes the central controller to learn of the entire network

topology and install flow tables in all the nodes in the network.

In the network initialization time measurement, the central

controller and all the sensor nodes were started at the same

time, and the instant at which a node received a data flow setup

was recorded. The time at which the last node received its

data flow setup marked the full network initialization time. At

this time, all the nodes in the network could forward traffic.

The network initialization time for both experiments is shown

in Figure 8. The graph indicates that the proposed solution has

converged the network faster than the traditional solution. In

the proposed solution, each sensor node only needs to discover

a cluster head and send a flow request to and obtain the flow

table from the central controller through that cluster head. This

reduced the computation requirement and the hop count in

building the global network view. The shorter convergence

time could also be attributed to the introduction of sub-

controllers as cluster heads with enhanced capabilities to

process neighbor related information on behalf of the sensor

nodes. The cluster heads keep track of all sensor nodes joining

the network and update the central controller, and the

controller, in turn, computes/updates the flow table promptly.

However, in the traditional solution, each sensor node needs

to learn of all its neighbors before discovering the central

controller and receiving the flow table. This slowed down the

455
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

network initialization time. The network converged 30s faster

in the proposed solution than in the traditional solution.

Figure 8: Network Initialization Time

6.2 Control Message Overhead

Control message overhead is defined as the number of specific

control messages that are exchanged between the sensor nodes

and the central controller. Control messages include the

periodic topology reports by each sensor node and request and

response messages for flow entries. Approximately, 200

topology report messages alone are sent every 10 minutes to

the SDN controller [32].

The numbers of control messages over the simulation time is

shown in Figure 9. The graph shows that the proposed solution

generated fewer control messages than the traditional solution.

This can be attributed to congestion or retransmission in the

traditional solution. For instance, when the topology

fluctuates due to the failure of a sensor node, some sensor

nodes send repeated flow request messages, in addition to the

usual topology report messages, to create new routes. Besides,

the intermediate nodes often generate flow requests to help

construct routes. This increases the overhead control message

in the network. However, in the proposed solution, only the

cluster heads generated flow request messages to setup new

paths as intermediate nodes, and if a cluster head failed as a

result of running out of a certain resource, the controller could

pre-emptively select a new cluster head since the controller

knows the status of each node in the network. These could be

the reasons for the minimal control overhead in the proposed

solution.

Figure 9: Average Control Overhead

6.3 Average Traffic Delay

The end-to-end Packet delay can be defined as the time

difference between when a packet is sent and when it is

received. Packet delay can be computed by summing

transmission delay, propagation delay, the processing time of

the controller, and queue delay. However, it is highly difficult

to compute these delays in WSNs due to synchronization

problems. The commonest approach is to use the individual

time of each node and sum them [28]. The delay, in this case,

considered all the above for each node and was measured by

calculating the time difference between when a packet was

generated and when the packet was received.

Heavy loading of requests in SDWSN may result in the central

controller taking a longer time to process and respond to flow

requests. This may also result in network congestion due to

packets taking a longer time to reach the destination. As the

proposed solution introduced sub-controllers to service low-

level requests and relay packets, this could account for the

lower average delay of packets than the traditional solution, as

shown in Figure 10.

Figure 10: Average Packet Delay

6.4 Average Data Delivery Rate

The data delivery rate measures the ratio of receive data

packets to send data packets at the destination. Data delivery

rate is a very important network metric since it indicates

network congestion, interference, or a yet to be established

path in the network. Each node keeps a counter that is

incremented every time the node sends or receives a packet.

This counter is sent to the controller in the report message.

The data delivery rate was measured by checking which and

how many of the packets sent were received at the destination.

The data packets were generated at a 30-second interval after

the network had been converged. Figure 11 shows the

distribution of the data packets. The graph shows that the

proposed solution has a higher data packet delivery rate than

the traditional solution. In the traditional solution, some

packets were lost due to network congestion. Besides, the

nodes used broadcast beacons with higher priority to establish

and maintain the network global view. During the

broadcasting period, data packets were buffered and lost when

the underlying network could no longer accommodate

incoming packets. With the proposed solution, only the cluster

heads used broadcast beacons to establish and maintain the

network global view, hence, packet loss would greatly relate

to the capacity of the cluster head to collect topology

information, update the central controller, and relay packets.

Since sub-controllers have been used as cluster heads with

enhanced capabilities, it is not unexpected that the proposed

solution has shown a delivery rate of 20% higher than the

traditional solution.

456
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Figure 11: Average Packet Delivery Rate

6.5 Energy Measurements

Many factors affect node power consumption in WSNs. These

factors include the network topology, the transmission ratio of

each node, the propagation distance of the packets, and the

type of transmissions such as broadcast or unicast

transmission as well as synchronized or non-synchronized

transmission [33]. Taking all these factors into consideration,

the topology and the transmission ratio of each node were

maintained constant for both experiments, and the energy of

the Central Processing Unit (CPU), the energy of Low Power

Mode (LPM), the energy of Radio Transmit, and energy of

Radio Listen or receive were measured. The energy of CPU is

defined as the total energy used for active computation, the

energy of LPM refers to the total energy used when the sensor

node is in the power saving condition or the idle state, and the

energy of Radio Transmit (TX) and energy of Radio Listen or

receive (RX) refer to the total energy used by the radio devices

to send and receive data packets respectfully. Energest was

used to track the energy consumption of each node, and the

data were logged into a file.

Figures 12-15 show the average distribution of power

consumption for the different parameters. In Figure 12, the

average CPU power consumed is lower in the proposed

solution than in the traditional solution. This is because the

sensor nodes performed less active computation when

establishing and maintaining the global network view since

this burden was shifted to the cluster heads and the hop count

is significantly reduced to 1. However, as explained in Figure

8, this is not the case for the traditional solution. Figure 13 also

shows that the sensor nodes consume more power in the power

saving or idle condition, a confirmation to the explanation for

Figure12.

Figure 12: Average CPU Energy Consumption

Figure 13: Average LPM Energy Consumption

Figure 14 shows that the proposed solution produced a slightly

lower transmit power consumption effect on the nodes than

the traditional solution. Since packets were retransmitted by

fewer nodes in the proposed solution, it can be deduced that

the average power consumed to transmit a packet across the

network will be lower than in the traditional solution.

Figure 14: Average TX Energy Consumption

Figure 15 shows the average power consumed by the nodes in

listening to the radio channel or receiving incoming packets.

The data shows that the traditional solution outperforms the

proposed solution when the network was in operation for more

than 10 minutes. It can be deduced that because the average

distance at which a node received a packet from a sender in

the proposed solution was always longer than that of the

traditional solution and since more distance means more

interference, the nodes increased the received power to be able

to detect incoming packets. This accounted for an increase in

receive power after the 10th minute when the network was

completely initialized, and all the nodes began to forward

packets, thus increasing the interference in the network.

Figure 15: Average RX Energy Consumption

457
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

7. Conclusion and Future Work

The SDN concept is still at its novel stage regarding its

utilization in WSN. Though the concept is envisioned to solve

the various limitations of WSNs, its implementation in WSNs

comes with many challenges. One of the most important

challenges is how to reduce the overhead control traffic in

topology discovery and maintenance. There are several

proposals in literature on how to resolve this challenge. One

of these proposals is SDN-WISE which seeks to minimize the

exchange of control messages in the network and improve the

network performance. However, its approach has serious

limitations. These limitations were modified in this paper to

propose an improved topology discovery protocol. The

proposed protocol initializes the network faster, reduces the

overhead control traffic significantly, requires less

consumption of sensor node energy, and improves the

SDWSN performances. The proof of concept experiments

revealed that the proposed solution increased the data packet

delivery rate by 20% and converges the network 49% faster

than the traditional solution. Similar research on performance

analysis of topology control techniques for SDWSNs using

CORAL-SDN was carried out in [34]. The authors obtained

an average convergence time of around 120 seconds for a

linear topology of 25 sensor nodes whereas the result obtained

for convergence time in this paper is about 60 seconds. This

shows that the performance of the proposed solution is

optimal. A correlation observed in the experiment is the effect

of propagation distance on the consumption of energy to

receive incoming packets. It was observed that as the

propagation distance increases, the consumption of received

energy increases. This has been explained as the sensor nodes

having to increase sensitivity to be able to detect incoming

packets as a result of increased radio interference. There is a

possibility of tweaking the proposed algorithm to make

routing decisions to take into account the battery levels of each

sensor node. In the future, the authors intend to implement and

evaluate the proposed protocol on a large-scale scenario to

verify its scalability.

8. Acknowledgement

The authors would like to thank MTN Ghana for funding this

research.

References

[1] J. E. Ibarra-Esquer, F. F. González-Navarro, B. L. Flores-

Rios, L. Burtseva, and M. A. Astorga-Vargas, “Tracking the

evolution of the internet of things concept across different

application domains,” Sensors (Switzerland), vol. 17, no. 6,

pp. 1–24, 2017.

[2] M. A. Zibouda Aliouat, “Efficient Management of Energy

Budget for PEGASIS Routing Protocol,” HAL Arch., p. 215,

2012.

[3] M. L. F. Miguel, E. Jamhour, M. E. Pellenz, and M. C.

Penna, “SDN architecture for 6LoWPAN wireless sensor

networks,” Sensors (Switzerland), vol. 18, no. 11, pp. 1–23,

2018.

[4] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and

A. M. Abu-Mahfouz, “Software defined wireless sensor

networks application opportunities for efficient network

management: A survey,” Comput. Electr. Eng., vol. 66, pp.

274–287, 2018.

[5] A. Jedidi, “Workload cluster balance algorithm to improve

Wireless sensor Network performance,” Int. J. Commun.

Networks Inf. Secur., vol. 11, no. 1, pp. 105–111, 2019.

[6] M. Razzaq, D. Devi Ningombam, and S. Shin, “Energy

efficient K-means clustering-based routing protocol for

WSN using optimal packet size,” Int. Conf. Inf. Netw., vol.

2018-Janua, no. 1, pp. 632–635, 2018.

[7] M. J. McGrath, C. N. Scanaill, M. J. McGrath, and C. N.

Scanaill, “Sensor Network Topologies and Design

Considerations,” in Sensor Technologies, 2013, pp. 79–95.

[8] T. Bakhshi, “State of the art and recent research advances in

software defined networking,” Wirel. Commun. Mob.

Comput., vol. 2017, p. 36, 2017.

[9] A. Anadiotis, L. Galluccio, S. Milardoc, G. Morabito, and

S. Palazzo, “SD-WISE : A Software-Defined Wireless

SEnsor network ",” Elsevier, vol. 159, pp. 84–95, 2019.

[10] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz,

“Software defined networking for improved wireless sensor

network management: A survey,” Sensors (Switzerland),

vol. 17, no. 5, pp. 1–32, 2017.

[11] B. Smitha and D. Annapurna, “Software defined network

for conservation of energy in wireless sensor network,”

2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput.

ICECDS 2017, pp. 591–596, 2018.

[12] D. P. V. Neetesh Kumar, “A Green Routing Algorithm for

IoT-Enabled Software Defined Wireless Sensor Network,”

IEEE Sens. J., vol. 18, no. 22, p. 12, 2018.

[13] M. S. Azizi and M. L. Hasnaoui, “Software defined

networking for energy efficient wireless sensor network,”

Proc. - 2019 Int. Conf. Adv. Commun. Technol. Networking,

CommNet 2019, p. 7, 2019.

[14] D. Hasan and M. Othman, “Efficient Topology Discovery

in Software Defined Networks: Revisited,” Procedia

Computer Science, vol. 116. pp. 539–547, 2017.

[15] J. Kipongo, T. O. Olwal, and A. M. Abu-Mahfouz,

“Topology Discovery Protocol for Software Defined

Wireless Sensor Network: Solutions and Open Issues,”

IEEE Int. Symp. Ind. Electron., vol. 2018-June, pp. 1282–

1287, 2018.

[16] G. P. H. Egidius, Pineas M., Adnan M. Abu-Mahfouz, Musa

Ndiaye, “Data Aggregation in Software-Defined Wireless

Sensor Networks: A Review,” IEEE Access, vol. 9, p. 6,

2019.

[17] B. T. De Oliveira and Ć. B. Margi, “Distributed control

plane architecture for software-defined Wireless Sensor

Networks,” Proc. Int. Symp. Consum. Electron. ISCE, pp.

85–86, 2016.

[18] O. Flauzac, C. Gonzalez, and F. Nolot, “Developing a

Distributed Software Defined Networking Testbed for IoT,”

Procedia Comput. Sci., vol. 83, pp. 680–684, 2016.

[19] H. I. Kobo, G. P. Hancke, A. M. Abu-Mahfouz, and G. P.

Hancke, “Towards a distributed control system for software

defined Wireless Sensor Networks,” Proc. IECON 2017 -

43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua,

pp. 6125–6130, 2017.

[20] B. B. Letswamotse, R. Malekian, C. Y. Chen, and K. M.

Modieginyane, “Software defined wireless sensor networks

and efficient congestion control,” IET Networks, vol. 7, no.

6, pp. 460–464, 2018.

[21] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo,

“SDN-WISE: Design, prototyping and experimentation of a

stateful SDN solution for WIreless SEnsor networks,” Proc.

- IEEE INFOCOM, vol. 26, pp. 513–521, 2015.

[22] S. M. Nasim Abdolmaleki, Mahmood Ahmadi, Hadi

Tabatabaee Malazi, “Fuzzy topology discovery protocol for

SDN-based wireless sensor networks,” Elsevier, vol. 79, pp.

54–68, 2017.

[23] T. Theodorou and L. Mamatas, “A Versatile Out-of-Band

Software-Defined Networking Solution for the Internet of

Things,” IEEE Access, vol. 8, p. 24, 2020.

[24] L. I. Peizhe, W. U. Muqing, L. Wenxing, and Z. Min, “A

Game-Theoretic and Energy-Efficient Algorithm in an

Improved Software-Defined Wireless Sensor Network,”

IEEE Access, vol. 5, p. 16, 2017.

458
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

[25] J. Long and O. Büyüköztürk, “Collaborative duty cycling

strategies in energy harvesting sensor networks,” Comput.

Civ. Infrastruct. Eng., vol. 35, no. 6, pp. 534–548, 2020.

[26] N. F. Ali, A. M. Said, K. Nisar, and I. A. Aziz, “A Survey

on Software Defined Network Approaches for Achieving

Energy Efficiency in Wireless Sensor Network,” 2017 IEEE

Conf. Wirel. Sensors, vol. 2018-Janua, pp. 28–33, 2017.

[27] S. Misra, S. Bera, M. P. Achuthananda, S. K. Pal, and M. S.

Obaidat, “Situation-aware protocol switching in software-

defined wireless sensor network systems,” IEEE Syst. J.,

vol. 12, no. 3, pp. 2353–2360, 2018.

[28] M. A. Beyene, “Evaluation of SDN in Small Wireless-

capable and Resource-constrained Devices,” Norwegian

University of Science and Technology, 2017.

[29] R. C. A. Alves, D. A. G. Oliveira, N. S. Gustavo, and C. B.

Margi, “IT-SDN: Improved architecture for SDWSN,”

XXXV Brazilian Symp. Comput. Networks Distrib. Syst.,

2017.

[30] A. Dunkels, “Contiki - a Lightweight and Flexible

Operating System for Tiny Networked Sensors,” IEEE

Access, p. 8, 2010.

[31] M. Q. Thomson, Craig, Ahmed Yassin Al-Dubai, Imed

Romdhani, “Cooja Simulator Manual,” ResearchGate, no.

July, p. 26, 2016.

[32] T. C. Luz et al., “In - network performance measurements

for Software,” Proc. 2019 IEEE 16th Int. Conf. Networking,

Sens. Control, pp. 206–211, 2019.

[33] M. Tutunovic and P. Wuttidittachotti, “Discovery of

Suitable Node Number for Wireless Sensor Networks Based

on Energy Consumption using Cooja,” Int. Conf. Adv.

Commun. Technol. ICACT, p. 5, 2019.

[34] T. Theodorou and L. Mamatas, “Software defined topology

control strategies for the internet of things,” 2017 IEEE

Conf. Netw. Funct. Virtualization Softw. Defin. Networks,

NFV-SDN 2017, vol. 2017-Janua, no. November, pp. 236–

241, 2017.

