
440 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

Cost Effective Cloud Storage Interoperability 

Between Public Cloud Platforms 
  

Yassine Serhane, Abderrahim Sekkaki, Karim Benzidane and Mehdi Abid 
 

Computer Science Department, Laboratory of Research in Computer Science and Innovation 

Faculty of Sciences Ain Chock, University Hassan II Casablanca, Morocco 

 

 

Abstract: With recent advancement in technology, cloud storage 

became cheaper enabling organizations around the world to store 

more data on the cloud (texts, images, videos, databases etc.), 

whereas it’s for a backup, archiving or just storing data streams. New 

digital laws and regulation (e.g., General Data Protection Regulation) 

require these organizations to change their way of processing or 

handling data, which results usually in a change of cloud providers or 

adoption of hybrid architecture or multi-cloud one. With the amount 

of data stored increasing year after year, it becomes difficult for these 

organizations to change cloud platforms or cloud provider and 

migrate their data without thinking about the technical complexity, 

the time, and the huge cost it may incur. 

This article discusses the data migration and interoperability issues 

between cloud platforms; the proposed approach provides a simple 

cost-effective migration that would help organizations save time and 

money in this process based on a hybrid ontology approach for the 

brokerage of data transfers. 
 

Keywords—Cloud Computing, Storage, Security, Ontologies, 

Data, Interoperability, Migration, Cost Optimization. 

1. Introduction 

Technology has evolved in a way to facilitate the accessibility 

and consumption of IT resources as a service provided by 

another entity, thus, giving customers the opportunity to 

request and use a small or huge infrastructure outside of their 

premises. Cloud computing has made these infrastructures 

globally available over the internet, making it easy to share 

data, applications, and highly available services, to be 

reachable from anywhere and anytime, while being agnostic to 

the underlying devices being used to consume these resources 

(computer, tablet, smartphone, IoT device, etc.). The use of 

cloud computing allows information sharing at any time 

through cloud services based on configurable IT resources 

(servers, applications, networks, storage...) which ease the 

accessibility to any user. These cloud services may be fitted 

and defined in three models [1]: 

Infrastructure as a Service (IaaS) [2], services that make the 

base infrastructure, such as servers, networks, and storage, 

virtualized and make infrastructure resources available as 

needed. 

Platform as a Service (PaaS) [3], services that provides an 

integrated platform for users to develop, test and build their 

applications. 

Software as a Service (SaaS) [4], Service provided as an app 

hosted on the cloud to be consumed by users and doesn’t 

require maintenance from their perspective. 

With cloud becoming more conventional, cloud storage 

became cheaper and affordable for companies to store more 

data and offload their archives and backups into the cloud. 

Additionally, some other entities have been given the ability to 

collect more data, like manufacturers connecting all their 

factories machinery and ingesting a big amount of data 

through IoT, or Retail industry actors collecting consumers 

data and interests for the purpose of serving them better using 

the power of machine learning and building product 

recommendation models for example. Customers became 

dependent on this type of storage, since storing Peta bytes of 

data and archives became cheaper, until they are faced with 

the need to move from one cloud provider (CP) to another, 

this struggle is what makes organizations get locked-in to only 

one CP, due to the effort, time, and cost required to make the 

change. 

Many solutions exist to help customers migrate, but they still 

come at a pricy cost. Our motivation in this article is to 

provide a cost-effective approach delivering a storage multi-

Cloud interoperability to help organizations migrate from one 

CP to another in a short amount of time and low investment. 

2. Background 

Cloud computing – which we are going to refer to in our study 

as the cloud is considered an IT platform/environment which 

allows a user to request IT resources per their needs or 

consume resources to answer an organization’s specific 

requirements and use these resources at request, as needed and 

at any time. It is divided into deployment models based on the 

location and the operational standards of the infrastructure, but 

also depending on the way the users are able to access these 

cloud services, which are Public Private and Hybrid 

deployment models: 

Public cloud:  Services which are provided by a “cloud 

vendor” to be used by anyone and is provided to general users 

or large corporations in a form of pay as you go model 

depending on the services usage [2], [5] . The infrastructure of 

the public cloud is owned by the CP that sells the service. 

However, the data/applications hosted on it are owned by user. 

Private cloud: Services which provide a cloud computing 

experience accessed by a specific organization and 

implemented in a closed environment. The private cloud 

infrastructure is hosted and managed by the organization itself 

or a third party. However, the organization has a complete 

ownership over its workload and data [5], [6]. 

Hybrid cloud: Concept that enables an organization to use 

both the private and public cloud benefits, used usually to 

respond to compliance, regulatory as well as latency 

requirements [3], [4], [7], [8]. The public cloud infrastructure 

is owned by the CP. As for the private cloud, the organization 

has control and ownership over their data. 



441 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

In our study, we focused on the public cloud as it’s the most 

common in the industry, the approach can also be applied on a 

hybrid cloud concept if it complies with our requirements – 

and according to Gartner, 90 percent of organizations will 

adopt the hybrid cloud concept by 2020 [6],[9]. 

From a Total Cost of Ownership calculation (TCO) [7], 

[8],[10], [11] the cloud remains the most economical way for 

organizations to operate, either they have their own 

infrastructure and need to expand through additional 

resources, launching a new modern project or service, 

modernizing their current infrastructure to adopting digital 

transformation pillars. Additionally, this technology allows 

each of these organizations to adjust their infrastructure 

depending on their needs and to optimize considerably the 

costs and investments required. From a financial point of 

view, companies are moving from Capital Expenditure 

(CAPEX) to Operation Expenditure (OPEX). 
 

 
Figure 1. Quote from Gartner about the future of cloud [9], 

[12] 
 

However, with the IT evolution and cloud becoming a must – 

growing year after year – it allowed itself to prevail against 

other type of infrastructures and became the basis for 

industrial growth and technological implementation. 
 

 
Figure 2. Gartner Forecasts Worldwide Public Cloud Services 

Revenue to Reach $260 Billion in 2017 published October 12, 

2017 

CPs are constantly improving and bringing innovation to their 

services in order to differentiate themselves, it results in a 

competition between the providers, leading to many benefits 

for the customers (new services and lower prices). As they 

assess the best platform continuously, customers consider 

changing their CP, however, they are quickly discouraged 

when they evaluate the critical and humongous mass of data, 

they stored on it, and the challenges associated with data 

transfer. 

Changing a cloud provider or platform implies deep study on 

what would be the best and optimal options to make the 

change happen, keeping the service disruption, the time to 

move them and the cost of transfer at a minimum. 

Organizations would be looking at Interoperability in four 

main areas [12]: 

Identity and Access Management, IAM: user identification 

and authentication. Ability to use same identity on another CP 

and enterprise applications, one of the most known concepts is 

Identity Federation with Single Sign On, SSO, being the most 

used method, which enables IT Systems to trust and 

authenticate a User electronically identified through a single 

authentication token.  

Workload Migration: Ability to migrate a workload (e.g., 

IaaS or PaaS) and execute it on another CP. An example, 

migrating a Virtual Machine (VM) from AWS to Google 

Cloud Platform (GCP) is not a straightforward process, as the 

VM configuration is different between both CPs, it would 

require that we stop the source VM, detach the storage disk 

attached, create a VM on GCP with similar attributes, then 

migrate the storage disk data to GCP, and then attach it the 

newly created VM [13]. 

Storage and Data Migration: Ability to migrate data from 

one CP to another in a secure way while keeping the data-

integrity, data might be residing in a Database, Data Lake, a 

blob storage etc. when migrated it needs to remain readable 

and accessible as per the destination access configuration. 

Workload management: Ability to use workload 

management tools on different clouds, this scenario is typical 

to multi-cloud concepts where an organization is managing its 

workloads on multiple cloud platforms and needs a centralized 

tool to manage them all. 

On the Storage and Data Migration, cost of transfer is often a 

huge concern when it comes to public cloud as the CP charges 

for bandwidth usage for the egress data leaving the Data 

Center (DC). This means that a company can upload data as 

much as they want/need to the public cloud DC and be 

charged $0 but downloading it would be charged egress fees 

depending on the size downloaded. 

2.1 Cloud Storage 

Storage in the cloud world is managed differently than on 

premise. The most used storage services are based on object 

storage services, also known as object-based storage. It is a 

storage architecture that manages unstructured data as objects, 

to be stored beside each other in a pool. Unlike file systems, 

which manage data as a file hierarchy, and block storage 

which manages data as blocks within sectors and tracks. 

A Generic cloud storage would translate to a cluster of storage 

devices and distributed file systems underneath a storage 

middleware, Microsoft Azure Blob Storage for example is 

built on top of HDFS. 

Throughout the major CPs, we will find multiple supported 

traditional protocols, like file-based APIs, NFS, CIFS, HDFS 

or SOAP, and recently some customers would use cloud 

storage gateways like StorSimple and access cloud storage 

through on-premises appliances with REST-based access. 

For years, the cloud has been known as a perfect place to store 

big data, even though enterprises were reluctant to put their 

data on the cloud since security and privacy concerns 

  

 



442 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

outweighed the benefits they would get from it. Today cloud 

storage evolved and become much secure, enterprises 

overcame these issues by aiming to transform while they 

perform and strive to operationalize. Additionally, cloud 

storage is helping them comply with regulations, through 

many services e.g., Disaster recovery, data redundancy, 

Availability etc. 

2.2 Accessing data from cloud providers 

With all data flowing in cloud storage, customers need a way 

to access them in a simple way. Cloud services based on 

object storage, such as Azure with Azure Storage, Amazon 

with Amazon S3 or OpenStack’s Swift, offer their users web-

services APIs (REST or SOAP) to access their data as if it 

were residing on a disk, depending on the size of it the 

requester would get quick access to it. There are other cloud 

storage services specific to each vendor for e.g., for archiving 

purpose like Azure Cold Storage or Amazon Glacier where 

the access process would take time as it is designed to be an 

archival solution with an infrequent access. 

The method of data access varies from CP to another. It’s 

based on the type of APIs they support and type of data a user 

is storing (e.g., SOAP, WebDAV etc.). 

2.3 Data Transfer 

Transferring a file or  data in general to the cloud is different 

than the on-premise process, where the transfer can be done 

with known standardized protocols [14] whether it is within 

the same machine, LAN, or inter-LAN networks connected 

via VPN, by hard drive etc. 

In the on-premises world, an IT person generally when 

transferring data would consider the size of the data and the 

bandwidth speed which impacts the time required to complete 

this task. In the cloud world, a lot of parameters would come 

in the play, especially if dealing with a public CP, as an 

important cost parameter would be added in the equation. 

Bandwidth usage in a cloud environment is charged by 

amount of data transferred, and it only applies on the 

outbound data for most of the providers. Uploading Terabytes 

of data won’t incur any fees, but the moment one will start 

downloading or retrieving any of it from the cloud storage, the 

billing begins. Moving data within the same datacenter (DC) 

would not incur anything, but from a DC to another one, 

bandwidth fees will apply as the data goes out of a DC and is 

considered outbound/egress. 

2.4 Storage Challenges 

Moving data to the cloud is not a straight forward process for 

its users [15], customers, especially established ones, face 

many challenges to consume the service. Most of these 

challenges are security related, “how to ensure Data security 

in the cloud?”. Tackling this issue becomes a priority for the 

users, as all kinds of data are being stored, from public to 

confidential and classified, and it needs to be available when 

needed. While availability is an important factor, other 

elements are as important as well, the list includes but is not 

limited to: Trust, Data sovereignty, Data History, and the 

agreement between the provider and consumers: 

 

2.4.1 Trust 

Trust in Data stored in the cloud, is not only about data 

confidentiality but data integrity, accuracy and availability, 

where, due to internal errors or changes in the provider’s 

systems, data might get compromised and still be delivered to 

the customers, leading to a severe business loss before being 

uncovered, not to mention from a security perspective, the CP 

needs to ensure an enterprise grade security against hackers 

[16], there are also cases where the DCs due to natural disaster 

become inaccessible, while data and cloud services need to 

remain available at all time for companies to operate. To 

mitigate these issues, CPs would come up with various 

techniques and solutions. For e.g., Microsoft Azure 

approached this issue, by using data replication as a solution 

[17]. Thus, any data hosted on their cloud storage service will 

be replicated within multiple datacenters and regions. 

Failure to comply with these elements would come with 

consequences, hence the need to have an agreement between 

the service providers and the users to protect both parties. 

2.4.2 Cloud Vendor Agreement 

As security gained priority [18] in CPs selection, it started 

being positioned as a differentiator between the competition, 

thus, pushing CPs to race for market needed certifications and 

compliance (e.g. Cloud Security Alliance Security, Trust & 

Assurance Registry, CSA STAR or PCI DSS certification 

used widely in the banking and fintech industry). Several 

organizations need to comply with these local regulations or 

industry certifications to operate, they rely on their agreement 

with the CP to ensure the services they are using, and data 

location are compliant. 

Retrieving data from the cloud would always raise questions 

around its integrity, and how to trust the data stored on the 

service provider. Though it is possible to perform an integrity 

check, it won’t give any insight about how the data was stored 

or where was it stored in the datacenter. This is a trade/internal 

secret that is well kept by the CPs to ensure security of their 

operation and agreed upon with the customers. 

These agreements exist to protect both providers and 

consumers, since that we are never safe from a disaster. Major 

Public Cloud outages happened for renown providers causing 

huge losses for compagnies data and businesses. 

2.5 Cloud Vendor Lock-in 

The main challenge of vendor lock-in remains on the 

dependency of one’s application or software to use specific 

services in a CP, when the move to another cloud is needed, it 

won’t be a straightforward process and would incur, a 

migration cost, legal constraint and technical incompatibility 

that will probably lead to code refactoring and/or 

rearchitecting. 

This is due to the lack of normalization and standardization 

between CPs [12], hence majority of the solutions are tackling 

these issues from a technology aspect, a famous example 

would be from an infrastructure perspective, the 

containerization of applications, and more importantly the use 

of Kubernetes as a cloud agnostic orchestrator [19].  



443 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

Another type of vendor lock-in is related to PaaS types. PaaS 

services are easy to deploy and help organizations be more 

agile in releasing products, features or getting insights out of 

their data. However, adding a PaaS service makes the solution 

dependent to a certain CP (Amazon AWS, Microsoft Azure, 

etc.), thus, moving the workload to another provider will 

depend on the existence of similar PaaS services required to 

complete the task. If not, a refactoring is necessary in these 

cases due the heterogeneity of the application program 

interfaces (APIs), which creates a technical conflict, leading to 

inter cloud interoperability issues. 

3. Related Work 

Most of the papers around cloud interoperability are looking 

into IaaS services and intercloud architecture, while literature 

on cloud storage interoperability is scarce. 

The Authors in [20] presented a model driven approach for 

Cloud-to-Cloud Interoperability, C2CI by defining a model of 

5 levels to assess the interoperability maturity, L0 Domain-

based, L1 Enterprise-based, L2 Portability interoperability, L3 

Security interoperability, L4 – Mobile interoperability in a 

public, private, or hybrid cloud environment. It’s an 

adaptation of the Levels of Information System 

Interoperability, LISI maturity model, additionally in their 

paper they described some of the challenges in achieving 

interoperability intercloud. 

In [21], the authors provided some basis on the 

interoperability in cloud, by identifying in the existing 

literature how multiple research done in the field of 

interoperability addressed the matter, they have surveyed 

several literature for up to 2016 highlighting the solutions. 

One solution is the standardization of cloud services with CPs 

adhering to the initiatives, another one is building Abstraction 

Layers, which consists of abstracting common feature of CPs, 

an interesting approach is the Cloud Storage Abstraction 

Layer, CSAL proposed by Hill and Humphrey [22] to provide 

common storage abstraction layer between clouds. 

Alternatively the authors in [23], tackled the PaaS 

interoperability with a Model Driven Engineering (MDE) 

approach, proposing a middle platform that decouples a PaaS 

hosted Application and its databased into two layers and ports 

it to another PaaS platform. MDE approach proved to be a 

better alternative to standardization a per literature, they 

leveraged it to make the middleware flexible, further making 

application layer and DB layer portable, productive and 

reusable. 

Although these papers are relevant, we thought it would be 

important to go beyond the simple service interoperability and 

cover the aspects of the storage that matters to most cloud 

users, the complexity, the cost, and the time needed for data 

transfer. 

4. Our Approach 

For the purpose of this research, we designed an architecture 

based on ontologies to solve the storage interoperability 

between two cloud platforms, we choose to focus first on 

public cloud platforms for their transparency, API 

documentation, availability, ease of access and setup. 

Each public cloud platform has its own way of storing data 

and own APIs. 

Therefore, an ontology-based architecture could be used in 

this case to create an abstraction layer that can unite Cloud 

APIs [24]. The use of ontologies solved many issues in 

interoperability in the IT world. The Hybrid Ontologies (Fig. 

1) approach seems fitting well in our scenarios and design, 

where, a global ontology regroups local ontologies, and each 

of these local ontologies has its own knowledge base which 

helps it communicate with a specific entity [25], [26]. The 

global ontology would act as a broker for all data requests and 

redirect to the right local ontology depending on the targeted 

cloud. We named our approach, the Storage Broker Service, 

SBS. 
 

 

Figure 3. Generic architecture for Hybrid Ontologies. 

The following conceptual design, Fig. 4, showcases the 

proposed approach for SBS, which is based upon the previous 

hybrid ontologies shown on Fig. 3. This architecture can be 

mapped on multiple public clouds of choice. 
 

 
Figure 4. Hybrid Ontology architecture with SBS approach. 

From Fig. 4, we can infer that a major requirement for this 

concept to work is the existence of a Storage Service API for 

the selected CP, which most of the public clouds offer. 

4.1 Storage Service (Global Ontology) 

The Storage Service, acting as the Global Ontology, is a 

brokering service that will be managing the storage requests, 

whether we need a file to be sent from a public Cloud 1 

 

 



444 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

Storage to a public Cloud N Storage and vice-versa, 

depending on the nature of the request (CREATE, READ, 

UPDATE, DELETE) as well as the platform targeted, the 

broker will call out for the right agent (local ontology) to 

execute the request. 

4.2 Cloud Storage Agent (Local Ontology) 

The Cloud Storage Agent is the entity responsible of 

executing the requests coming from the Storage Service on its 

respective platform using the linked Storage API (Knowledge 

base). 

4.3 Storage API (Knoweldge Base) 

Storage API would hint to the Storage Service API for the 

targeted public Cloud, the Storage Agent will refer to it to 

fetch the right API for a defined action (CREATE, READ, 

UPDATE, DELETE). 

4.4 Excecution Process: 

When it comes to applying this architecture between two or 

multiple public clouds, we would investigate, (1) the process 

and method for transferring the data from one point to another, 

and (2) Can we reduce the cost of transfer. 

4.4.1 Transferring Data process:  

When a file or a data needs to be moved from one platform to 

another, in many cases there is no direct way to do it, data 

needs to be first downloaded in a temporary disk storage 

attached to the agent, as a buffer, then erased from the source, 

and written to the destination, then finally removed from the 

temporary storage, while preserving the integrity and 

authenticity of the data throughout the process. 

4.4.2 Cost Optimization : locating the nearest DC 

Optimization in a migration is about reducing the time needed 

for migration as well as reducing the operational fees related 

to it (data transfer, read write operations etc.). During a data 

transfer, a customer is charged for two main components, the 

data read operations requests and the data egress with the 

latter being the most expensive, then comes the non-billable 

cost of time. 

To reduce the cost of migration, we had to think about (1) 

reducing the Time To Destination, TTD, (2) reducing the cost 

of outbounds charges to destination to proceed with the 

migration task, downloading data on premises would clearly 

help reducing the outbound charges but impact the TTD as the 

bandwidth on premises wouldn’t be limited by the internet 

provider only, but the organizations hardware and upload 

policies, etc. from a time perspective, the best outcome would 

be keeping the migration Cloud to Cloud, with the broker 

being the destination cloud and knowing that data transfers 

within the same DC are not charged. 

The solution would be to create a migration agent right where 

the data needs to be migrated to, in order to avoid being 

charged twice on the data-out (egress) but also reduce the time 

needed for data to travel, as Cloud to Cloud transfer would 

offer a better networking bandwidth. 

5. Experiment: Proposed system 

Based on the previous high-level architecture design, we 

proposed a solution (SBS) which implements techniques that 

helps migrate data securely from one cloud to another in a 

way to preserve its integrity.  

We started by selecting the CPs we were going to work with 

and knowing that many public cloud platforms exist we 

decided to focus on only two for the purpose of this 

experiment, Microsoft Azure and Amazon Web Services 

(AWS) as they are both widely spread worldwide, and they 

both have well documented public APIs to manage and access 

their services. 

Implementing the SBS approach based two public cloud 

platforms, Azure and AWS, we infer the below architecture, 

Fig. 5. 
 

Figure 5. SBS approach applied for two public cloud 
interoperability (Azure, AWS) 

5.1 Storage Service 

Storage Service in the SBS architecture, is defined as a web-

based application, with a UI to give users a control over files 

to move or copy, by sending requests to either one of the 

storage agents. 

5.2 Storage Agent 

The CP’s Storage Agent can either be a script or a console 

application that will execute a specific command using one of 

the providers’ API. 

5.3 Storage API 

In our case, would refer to the providers’ storage API 

respectively (Azure Storage and Amazon S3). The storage 

service will be calling the CP’s agent to fetch the right API for 

a defined/requested action. 

5.3.1 Azure Storage API 

Azure storage, (formerly Windows Azure Storage, WAS) is a 

highly available cloud storage system widely used by 

Microsoft to provide its service to the public, like Xbox Live, 

OneDrive, Skype etc. Many customers use it to host their own 

services too, since it has several forms of cloud storage, like 

Blobs, Tables, message queues and Disks, and Queues 

 



445 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

(message delivery)[10], [18], It has also an extension based on 

HDFS, making it possible to use it as a Data Lake service. 
The .NET SDK for Azure Storage Service is easy to use, and 
documented, the below code shows that few lines are required 
to begin writing a blob after calling the library, Fig. 6. 

Figure 6. Sample code for writing and editing a blob. 

An access through REST APIs exist to get/put/delete a 

file/blob on Azure. The requests must be executed to the 

following HTTPS link (Fig. 7) which has 3 parameters, 

myaccountName: the name of the storage account, 

mycontainerName: the container inside of the storage account, 

and myBlobName: the name of the blob we are trying to 

access. 
 

 
Figure 7. Request URL for Azure Storage API 

To execute the request URL (Fig. 7) based on the request 

types, simply use the adequate http method. 

Table 1.  HTTP Methods used by our agent for Azure calls 

Request type Http method 

Read GET 

Update PUT 

Remove DELETE 

5.3.2 AWS S3 API: 

Amazon Web Service (AWS) also has REST API for its 

storage service S3. In contrast with Azure storage, it is about 

the target API, where ObjectName refers to the file we are 

accessing and BucketName the storage account.  

Table 2.  HTTP Method and Targeted host address used for 
AWS S3 service calls 

 Request 

type 

Http 

method  
[GET/PUT/DELETE] /ObjectName 

HTTP/1.1 

Host: BucketName.s3.amazonaws.com 

Read GET 

Update PUT 

Remove DELETE 

5.4 Solution’s Application Architecture 

For this system to be functional, we needed a user interface for 

the controls which would implement the Storage Service 

capabilities. For this matter, we used a MVC model.  

As seen previously, the solution should have the knowledge 

base of both public clouds to be able to communicate between 

them, Additionally, we should keep in mind that the migration 

service/application should be hosted on the web. For the 

purpose of our testbed, the best location for hosting the service 

would be on either one of the clouds we chose and, in our 

case, for familiarity with the service we hosted the solution on 

Azure, with the agent being deployed dynamically as needed 

on a VM, it can also be deployed on a container, or as a 

serverless function (e.g., AWS Lambda, Azure Function App). 

Given that the cloud gives us the ubiquity to host data 

anywhere in the world, – i.e., create a storage container in any 

DC available – we implemented a feature that selects the best 

and cheapest cloud DC to which we want to migrate data to. 

Below is the architecture used for the UI of our testbed based 

on an MVC design pattern, Fig. 8. 
 

 
Figure 8. Proposed MVC architecture for UI/Control 

application architecture 

1. UI MVC: Front end web application for solution 

control. 

2. WEB API: Web services to query data from other 

tools. 

3. Business Logic Layer: Layer that contains all 

business logic and rules to as per the MVC 

pattern to control the app. 

4. Storage Service: Abstraction composed mainly 

of interfaces and Object for Data transfer and 

files management. 

5. Azure Provider: Implementation of the Azure 

Storage Service 

6. AWS Provider: Implementation of the AWS 

Storage Service 

5.5 A secure cloud service 

Data flowing over the internet can be intercepted, read, and 

altered, therefore, we are securing our transfer by using a SSL 

secured channel and making sure the data is encrypted at rest, 

as well as verifying its integrity. An efficient way to verify file 

 

 

 



446 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

integrity is to check the data’s Hash Code –if compromised 

even the slightest– the hash would change; it will set the file 

integrity to null and the process to be redone. 

By using either Azure or AWS for hosting the migration 

agent, we benefit from their secure platform, data replication, 

and integrity check, we can then add another manual check on 

the application side to verify the Hash Code. 

5.6 Cost Optimization : locating the nearest 

datacenter 

To enable and implement this feature, we need to identify the 

destination DC’s location, each CP has a public list of region 

locations for each of their DC, with AWS having more than 24 

regions covered [27], and Azure, more than 60 regions 

covered [28] at the time of writing this article. 

Destination’s location can be inferred from a CP’s service, in 

our case storage service, through the property Location with a 

simple GET request using one of the below APIs depending 

on the destination CP. 

Table 3.  Azure and AWS HTTP Requests to identify 
services locations 

Http 

method 

HTTP Request 

Azure https://management.azure.com/subscriptions/Subscripti

onId/resourceGroups/ResourceGroupName/providers/
Microsoft.Storage/storageAccounts/AccountName?api-

version=2019-06-01 

AWS Http://BucketName.s3.amazonaws.com/?location 
 

Where SubscriptionId refers to the Azure Subscription ID, 

ResourceGroupName refers to the Resource Group containing 

the Account Storage and AccountName is the Azure Account 

Storage name, and BucketName the AWS Storage Bucket 

Name. A successful response from both services would result 

in the following (Fig. 9, Fig. 10) 
 

 
Figure 9. Azure API response for service location 

 
Figure 10. AWS API response for service location 

5.7 Migration Process 

Once DC destination region is identified, we then proceed to 

create the agent VM within that same region with an automated 

process, as all processes are digitalized, we needed to create 

this agent VM dynamically and using code only. 
 

 

Figure 11. Application interaction with the agent and the 

cloud platforms 

The SBS Control Application initiates the Agent deployment 

and migration job run in sequence and automatically as seen in 

Fig. 11, we opted for Infrastructure as Code, IaC tools, as a 

way to manage the infrastructure (VMs, networking, Storage, 

etc.) in a descriptive model, enable the versioning of 

configuration files the same way developers use for source 

code, with one difference, instead of releasing the same 

binary, we generate the same infrastructure environment when 

the job is executed. 

We assessed the open-source world for solutions to automate 

the infrastructure and the agent deployment, and short listed 

two solutions that would aid us in the end-to-end process: 

• Ansible: an open-source software enabling 

infrastructure as code, it’s used as a provisioning, 

configuration management and application deployment 

tool. It was acquired by RedHat in 2015 [29], [30]. 

• Terraform: an open-source software tool enabling 

infrastructure as code operations by HashiCorp. It helps 

users to define and provision infrastructure using a 

declarative configuration language [31], [32]. 

The SBS architecture would be represented as follow (Fig. 

12), with the VM for the agent being hosted either on Azure or 

AWS depending on the destination cloud. 
 

 

Figure 12. Diagram representing the solution architecture 

after adding Terraform and Ansible 

Once a user selected the storage source and destination, a 

request is sent to (1) Terraform to deploy a Linux VM on 

either Azure or AWS on the destination DC, then (2) at the 

end of the deployment Terraform will receive the VM’s 

metadata (e.g. Name, type, IP address etc.), (3) the IP address 

is then retrieved by the solution and passed through to Ansible 

instance which will launch the agent deployment on the VM, 

(4) once the solution is notified of the deployment’s end, it 

sends a request to start the migration job by the agent. 

 

  

 

 



447 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

5.7.1 Migration from Azure Storage to AWS S3 

 

Figure 13. A pictorial representation of a Azure Blob Storage 

to AWS S3 migration architecture [32] 

In Fig. 13, AWS described a way of moving the data from 

Azure Blob Storage to S3, using Elastic Beanstalk worker 

environment [33] as broker or migration agent. This version 

works but requires a lot of manual input from the end user. 

Following the same logic, we mounted the S3 storage onto the 

VM (EC2) as a remote storage to directly copy the data onto it 

without going through a temporary storage, thus considerably 

reducing the TTD. We used also the implementation in [34], 

which matched partially our needs and by installing the related 

Node Package Manager (NPM) one can make use the function 

toS3 as seen on Fig. 14. 
 

 
Figure 14. Code for function to move data from container to 

bucket on AWS 

 

5.7.2 Migration from AWS S3 to Azure Storage 

Microsoft has done a lot of improvement on its Azure Storage 

API too, bringing a capability to directly copy data onto Azure 

Storage from a remote URL, called the “Put Block From 

URL” operation, that can copy data from AWS S3 and which 

can reach a data transfer of 50 Gbps and more [35], using the 

following PowerShell command, Fig. 15. 
 

 
Figure 15. AzCopy script code to move data from AWS S3 to 

Azure Storage. 

This gives us 2 important advantages, since there is no need 

for a VM to host the agent, as it’s a script to run, it can easily 

be done through Azure Functions. (1) huge cost reduction as 

we won’t need the additional compute for this action, and (2) 

TTD will considerably be reduced as it’s a direct copy. 

For AWS to Azure transfers we made use of AzCopy a 

command-line tool developed by Microsoft that is used to 

copy data to or from a storage account to another using 

PowerShell scripts. 

Instead of using an Agent VM for this process, we optimized 

it and instead used an Azure Function which is a serverless 

Azure compute service that will help us run the migration 

script without provisioning or managing the VMs, it’s also 

cost effective as it will run just enough to execute the script. 

The architecture at this point runs smoothly, but it lacks a 

security component more related to the infrastructure 

description maintenance, thus we decided to operationalize the 

end-to-end deployment and solution maintenance process by 

adding DevOps components to maintain the solution and 

deployment configuration up to date. 

For any change happening to either the VM configuration or 

Agent, the new version is committed to Git which then 

triggers the pipeline on Azure DevOps and releases the 

configurations files to either Terraform or Ansible, Fig. 16. 

 
 

Figure 16. Diagram representing the solution architecture 

 

 

 

 



448 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

5.8 Results : 

Using our SBS approach, our testbed based on Azure and 

AWS as CPs, consisted of experimenting on transferring 

multiple files (medias/mp4) for a total of 29Gb with 2 main 

scenarios, the first one was from Azure Storage to AWS S3, 

and second one was from AWS S3 to Azure Storage. We 

selected two regions, Europe, and US for the DCs to 

experiment with a notable distance and compared the results 

with a manual migration which consists of (1) downloading 

the file to a remote temporary storage through a machine (2) 

Erase data from the source (3) write the data to destination 

(4) clean temporary storage. 
Experiment 1: Transfer from Azure Storage in North Europe 
to AWS S3 (US East 2), the Agent VM was created on the 
Us-East-2 region on a VM of type a1.xlarge with an average 
download speed of ~274Mb/s, Fig. 17. 

 
Figure 17. Diagram representing the Experiment 1 flow. 

We assume the manual migration way, would have a same 
machine but created manually on a different location (North 
Europe for e.g.), which will impact the latency for data 
writing requests on to AWS S3, but also incur two egress 
charge. 

 
Figure 18. Diagram representing the Experiment 2 flow. 

Experiment 2: Transfer from AWS S3 in East US to Azure 

Storage in North Europe, the Agent Script was created on 

the North Europe region, executed through an Azure 

Function (serverless) with an avg speed ~25365Mb/s, Fig. 

18. As for the manual migration approach, a manual creation 

of the machine was done on a different location (West 

Europe). 

Table 4.  Results from Experiment 1: Transfer from Azure 
Storage in North Europe to AWS S3 (US East 2) 

 Manual migration SBS 

TTD 5mn23s 1mn11s 

Cost incurred ~$4.37 ~$2.66 

Table 5.  Results from Experiment 2: Transfer from AWS 
S3 in US East 2 to Azure Storage in North Europe 

 
Manual migration SBS 

TTD 20s 3s 

Cost incurred ~$2.58 ~$2.53 
 

On the first experiment, there is a huge time and cost 

difference, we notice at least ~272% optimization and ~39% 

cost reduction which is due to the egress being charged twice 

in the manual way, incurred on transferring from Azure 

North Europe to AWS North Europe then AWS in North 

Europe to AWS East US 2. 

On the second experiment, the cost is almost the same for 

both approaches. This can be explained by the fact that 

Azure Storage offers a capability to write directly on the 

Storage Account, which means that the data doesn’t go 

through the VM but travels from S3 directly to Azure 

Storage. The slight difference in the transfer time is 

impacted by the latency for the write/read requests done by 

the Agent VM. It should be noted that the closer the VM is 

to the Storage account the better is the writing requests 

latency. Additionally, and since it’s a direct transfer we are 

benefiting from the AWS egress bandwidth and Azure 

Storage ingress bandwidth (which can reach and exceed 50 

Gb/s). 

6. Conlusion and future work 

By using our approach, we are able to cost effectively move 

data from one cloud to another while considerably 

minimizing the time required for migration but also 

optimizing the cost related to the move for customers where 

seconds of processing would cost millions of dollars.  

Our approach is modular, the number of local ontologies is 

not fix, as long as we have a minimum of two, we can 

extend it to more local ontologies & knowledge bases, which 

would open new possibilities, for the purpose of this article 

the experiment used both AWS and Azure and it can also 

implement others CPs like Google Cloud platform by setting 

up an agent targeted on its API enabling a public cloud 

platforms interoperability, moreover, the private and hybrid 

cloud platforms would also be a candidate for this system, as 

OpenStack, and Microsoft Azure Stack both have APIs 

enabled allowing communication with their services, this 

would enable not only enable our approach to the public 

cloud interoperability but extend it to a multi-cloud 

interoperability. 

While we proposed a technical based solution, we believe, 

an ideal one would be protocol based by setting standards for 

basic known services. 

References 

[1] A. F. B. Alam, A. Soltanian, S. Yangui, M. A. Salahuddin, R. 
Glitho, et H. Elbiaze, « A Cloud Platform-as-a-Service for 
multimedia conferencing service provisioning », in IEEE 
Symposium on Computers and Communication (ISCC), 
Messina, Italy, p. 289‑294, 2016. 

[2] S. Alqahtany, N. Clarke, S. Furnell, et C. Reich, « A forensic 
acquisition and analysis system for IaaS », Clust. Comput., 
vol. 19, no 1, p. 439‑453, 2016. 

[3] W. Stefan, T. Eddy, et J. Wouter, « Comparing PaaS offerings 
in light of SaaS development | SpringerLink », Computing, 
vol. 96, no 8, p. 669–724, 2014. 

[4] F. Liu, W. Guo, Z. Q. Zhao and W. Chou, "SaaS Integration 
for Software Cloud," IEEE 3rd International Conference on 
Cloud Computing, Miami, FL, pp. 402-409, 2010. 

[5] A. Jivanyan, R. Yeghiazaryan, A. Darbinyan, et A. Manukyan, 
« Secure Collaboration in Public Cloud Storages », Yerevan, 
Armenia, vol. 9334, p. 190‑197, 2015. 

[6] C. Chilipirea, G. Laurentiu, M. Popescu, S. Radoveneanu, V. 
Cernov, et C. Dobre, « A Comparison of Private Cloud 
Systems », in 30th International Conference on Advanced 
Information Networking and Applications Workshops 
(WAINA), Crans Montana, Switzerland, p. 139‑143, 2016. 

[7] X. Xu, « From Cloud Computing to Cloud Manufacturing », 
Robot Comput-Integr Manuf, vol. 28, no 1, p. 75–86, 2012. 

[8] Y.-H. Chang et J.-Y. Chen, « A Hybrid Cloud for Effective 
Retrieval from Public Cloud Services », in Intelligent 
Information and Database Systems, Kuala Lumpur, Malaysia, 
p. 61‑69, 2013. 

[9] Gartner, « Gartner Says a Massive Shift to Hybrid 
Infrastructure Services Is Underway ». [online]. available on: 
https://www.gartner.com/newsroom/id/3666917, Retrieved on 
Nov-2020. 

[10] R. Hill, L. Hirsch, P. Lake, et S. Moshiri, « Cloud 
Economics », in Guide to Cloud Computing, Springer, 
London, p. 187‑207, 2013. 

[11] KPMG International Cooperative, « Cloud Economics : 
Making the Business Case for Cloud », NDPPS 286069, 2015. 
[online]. available on: 

 

 



449 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 12, No. 3, December 2020 

 

https://assets.kpmg.com/content/dam/kpmg/pdf/2015/11/cloud
-economics.pdf, Retrieved on Nov 2020 

[12] G. A. Lewis, « Role of Standards in Cloud-Computing 
Interoperability », in 46th Hawaii International Conference on 
System Sciences, Wailea, HI, USA, p. 1652‑1661, 2013. 

[13] « Migrating AWS instances to Google Cloud ». 
https://cloud.google.com/migrate/compute-
engine/docs/4.9/how-to/migrate-aws-to-gcp/migrating-aws-
vms, Retrieved on Nov 2020 

[14] C.-T. Yang, W.-C. Shih, C.-L. Huang, F.-C. Jiang, et W. C.-C. 
Chu, « On construction of a distributed data storage system in 
cloud », Computing, vol. 98, no 1, p. 93‑118, 2016. 

[15] J. P. Martin-Flatin, « Challenges in Cloud Management », 
IEEE Cloud Comput., vol. 1, no 1, p. 66‑70, 2014. 

[16] K. Benzidane, S. Khoudali, L. Fetjah, S. Jai Andaloussi, A. 
Sekkaki, « Application-based authentication on an inter-VM 
traffic in a cloud environment», International Journal of 
Communication Networks and Information Security. vol. 11, 
no 1, p. 148-166, 2019. 

[17] B. Calder et al., « Windows Azure Storage: a highly available 
cloud storage service with strong consistency », in 
Proceedings of the Twenty-Third ACM Symposium on 
Operating Systems Principles - SOSP ’11, Cascais, Portugal, 
p. 143-157, 2011. 

[18] A. Singh et K. Chatterjee, « A secure multi-tier authentication 
scheme in cloud computing environment », in International 
Conference on Circuits, Power and Computing Technologies 
[ICCPCT-2015], Cebu, Philippines, p. 1‑7, 2015. 

[19] D. Elliott, C. Otero, M. Ridley, et X. Merino, « A Cloud-
Agnostic Container Orchestrator for Improving 
Interoperability », in IEEE 11th International Conference on 
Cloud Computing (CLOUD), San Francisco, CA, USA, p. 
958‑961, 2018. 

[20] S. Dowell, A. Barreto, J. B. Michael, et M.-T. Shing, « Cloud 
to cloud interoperability », in 6th International Conference on 
System of Systems Engineering, Albuquerque, NM, USA, p. 
258‑263, 2011. 

[21] E. Nogueira, A. Moreira, D. Lucrédio, V. Garcia, et R. Fortes, 
« Issues on developing interoperable cloud applications: 
definitions, concepts, approaches, requirements, characteristics 
and evaluation models », J. Softw. Eng. Res. Dev., vol. 4, no 
1, p. 7, 2016. 

[22] Z. Hill et M. Humphrey, « CSAL: A Cloud Storage 
Abstraction Layer to Enable Portable Cloud Applications », in 
IEEE Second International Conference on Cloud Computing 
Technology and Science, Indianapolis, IN, USA, p. 504‑511, 
2010. 

[23] K. Kaur, S. Sharma, et K. S. Kahlon, « Towards a Model-
Driven Framework for Data and Application Portability in 
PaaS Clouds », in First International Conference on 
Sustainable Technologies for Computational Intelligence, vol. 
1045, A. K. Luhach, J. A. Kosa, R. C. Poonia, X.-Z. Gao, et D. 
Singh, Éd. Singapore: Springer Singapore, p. 91‑105, 2020. 

[24] M. Abid, B. Nsiri, et Y. Serhane, « An approach based on 
ontologies and multi- agent systems to hide heterogeneity: 
Application to port information system », vol. 9, p. 82-87, 
2015. 

[25] S. Singh et Y.-N. Cheah, « A Hybrid Approach for Ontology 
Mapping via Genetic Algorithm », in 2011 Third International 
Conference on Computational Intelligence, Modelling & 
Simulation, Langkawi, Malaysia, p. 80‑83, 2011. 

[26] R. Meersman et C. Debruyne, « Hybrid ontologies and social 
semantics », in 4th IEEE International Conference on Digital 
Ecosystems and Technologies, Dubai, United Arab Emirates, 
p. 92‑97, 2010. 

[27] « AWS Global Infrastructure ». 
https://aws.amazon.com/about-aws/global-infrastructure/, 
Retrieved on Nov 2020. 

[28] « Data residency in Microsoft Azure ». 
https://azure.microsoft.com/en-us/global-infrastructure/data-
residency/, Retrieved on Nov 2020. 

[29] « Ansible for Amazon Web Services ». 
https://www.ansible.com/integrations/cloud/amazon-web-
services, Retrieved on Nov 2020. 

[30] « Ansible and Microsoft Azure ». 
https://www.ansible.com/integrations/cloud/microsoft-azure, 
Retrieved on Nov 2020. 

[31] « Terraform: Beyond the Basics with AWS ». 
https://aws.amazon.com/blogs/apn/terraform-beyond-the-
basics-with-aws/, Retrieved on Nov 2020. 

[32] « Using Terraform with Azure ». 
https://docs.microsoft.com/en-
us/azure/developer/terraform/overview, Retrieved on Nov 
2020. 

[33] « One way to migrate data from Azure Blob Storage to 
Amazon S3 ». https://aws.amazon.com/blogs/storage/one-
way-to-migrate-data-from-azure-blob-storage-to-amazon-s3/, 
Retrieved on Nov 2020. 

[34] « azure-blob-to-s3 (2020) [Source Code] ». 
https://github.com/bendrucker/azure-blob-to-s3, Retrieved on 
Nov 2020. 

[35] « Move your data from AWS S3 to Azure Storage using 
AzCopy ». https://azure.microsoft.com/en-us/blog/move-your-
data-from-aws-s3-to-azure-storage-using-azopy, Retrieved on 
Nov 2020. 


