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Abstract: Currently, vehicular communications have become a 

reality used by various applications, especially real time video 

transmission. However, the video quality received is penalized by 

the poor characteristics of the transmission channel (availability, 

non-stationarity, the ration of signal-to-noise, etc.). To improve and 

ensure minimum video quality at reception end, we propose in this 
work a mechanism entitled “Secure and Efficient Transmission of 

Videos in VANET (SETV)”. It's based on the "Quality of 

Experience (QoE)" and using hierarchical packet management. This 

later is based on the importance of the images in video streaming. 

To this end, the use of transmission error correction with uneven 
error protection has proven to be effective in delivering high quality 

videos with low network overhead. This is done based on the 

specific details of video encoding and actual network conditions 

such as signal to noise ratio, network density, vehicle position and 

current packet loss rate (PLR) not to mention the prediction of the 
future DPP. 

Machine learning models were developed on our work to estimate 

perceived audio-visual quality. The protocol previously gathers 

information about its neighboring vehicles to perform distributed 

jump reinforcement learning. The simulation results obtained for 

several types of realistic vehicular scenarios show that our proposed 
mechanism offers significant improvements in terms of video 

quality on reception and end-to-end delay compared to conventional 

schemes. The results prove that the proposed mechanism has 

showed 11% to 18% improvement in video quality and 9% load 

gain compared to ShieldHEVC. 
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1. Introduction 
 

These last years, real-time video applications are developed 

and improved rapidly. In addition, VANET should provide 

support for a large range of distributed applications, such as 

traffic alerts, independent driving capabilities, and the 

sharing of medical information in video format. All these 

improvements allow an important number of services and 

programs to be easily accessed to users. In addition, remote 

hospital care is expected to generate large amounts of da ta 

thanks to its hundreds of built-in sensors, such as multiple 

cameras, sonar, radar, and light detection and distance 

(LIDAR) [1]. In this context, the growth of video-enabled 

vehicles with live coverage supports both opportunities and 

challenges. For example, it gives an accurate picture of an 

accident or the health state of a patient hospitalized remotely. 

The main outcome of this work is the reduction of the 

reaction. 

Consequently, the main objective is to propose a solution 

which resists the criteria of unreliable wireless connections 

such as the conditions of the channels, the traffic rates 

varying over time and the limited access to resources. This 

solution must protect video transmission with a better "QoE" 

[2]. 

After analyzing the problems mentioned above, we put a 

solution called "SETV" which takes into consideration the 

criteria of the VANET network and driven by QoE to 

guarantee high resolution video transmission. It is based on 

our previous work, published in [3]. 

SETV uses the "Ant Colony Optimization (ACO)" [4] to 

solve computational problems in real-time since this 

probabilistic algorithm is simulated according to the 

behavior of the ant. In our work, we considered the "Packet 

Loss Rate", network density, node positions, video codec 

type, and frame type. ACO provides protection against 

Unequal Error Protection (UEP) [5] in which only the most 

important videos are protected with appropriate redundancy 

without forgetting that the videos are encoded with the 

H265-HEVCstandard [6]. Also, machine learning has been 

used to estimate the overall audio-visual quality in a single 

function. 

Our article is structured as follow: section 2 introduces the 

related works; section 3 presents SETV followed byan 

evaluation study in section 4. In the end, section 5 presents a  

conclusion and prospective. 
 

2. Related works 
 

Varied mechanisms are used to ameliorate the multimedia 

packet quality in linked vehicle broadcasts, more specifically  

in VANET scenarios. Video transmission reliability can be 

realized when employing an adaptive multi-use strategy for 

Media Access Control (MAC) throughput [7]. The 

optimization framework uses the Road Unit Packet 

Transmission Rate (RSU) and channel statistics to fine-tune 

the MAC transmission functionality. Although this 

optimization improves video broadcasting, the main concern  

is to minimize the size of the read blocks and reduce start-up 

time.  

Other mechanisms have been proposed in the literature that 

employs erroneous correction techniques. An example is the 

"Optimized Cross-Layer FEC (OCLFEC)" [8]. It uses Luby 

Transform to encode the data according to priority values, 

which are based on calculating the root mean square error of 

each frame. A supplemental error correction code, "Rate 

Compatible Parity Check (RCPC)", is used to add periodic 

redundancy check bits. Both correction codes have been 

optimized for video transmissions on the VANET 

environment. Using crossover techniques, "Group Of 

Pictures (GOP)" [9] sequences are evaluated and different 

weights are assigned to each group of images. Other 

mechanisms to improve video quality during wireless 

network transmissions have been proposed based on XOR 

codes and "Random Linear Coding (RLC)" [10]. Series of 

experiments have been realized and their results shown that 
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adopting either erase code leads to improvements in video 

quality, especially in high error rate networks. However, the 

XOR-based encoding performed better than the RLC 

paradigm. To improve the proposed mechanisms, the optimal 

packet block size is calculated, which allows it, in a precise 

way, to add an amount of redundancy. In doing so, it was 

able to deliver better quality videos while reducing network 

overhead.   

The Hybrid Video Broadcasting Protocol (HIVE) [11] is a 

different proposal that uses the advantage of a multi-la yered  

scheme to meliorate video quality. The "HIVE" mechanism 

is in charge of controlling traffic congestion, it uses an 

optimized node selection strategy, and the last applies an 

application layer erasure code. This combination ensures a 

higher packet delivery rate as well as low packet collisions 

and low latency. The result of the experiments showed an 

improvement in Peak Signal to Noise Ratio (PSNR), 

prompting the authors to claim that a higher "QoE" for end-

users was achieved. The ShieldHEVC is a self-adapting 

mechanism for improving video quality in transmissions 

over VANETs [12]. This mechanism uses both video 

characteristics and network details in the process of finding 

the most appropriate amount of redundancy.  

The video details evaluated are those that have the most 

impact on "QoE", such as frame type and motion intensity, 

as well as codec related. As for network parameters, it uses 

vehicle position, "PLR", and "Signal-to-Noise Ratio" (SNR), 

as well as network density. The evaluation of the mechanism 

was performed using objective "QoE" measurements and 

measuring the network overload caused by the additional 

redundancy. The results obtained after experiments 

demonstrated that "ShieldHEVC" was able to increase the 

resilience of video transmissions by protecting the video 

parts most sensitive to "QoE". 

The previously discussed works present important aspects to 

provide a high perception experience to end-users, but they 

are not enough to guarantee a high quality of service. 

Another inconvenience of the mechanism proposed in [7] is 

that it uses only "RSU" and two-hop communications. One 

of the main advantages of VANETs is that they allow 

vehicles to communicate directly with each other, thus 

eliminating the need for an already deployed infrastructure. 

The imposition of such limitations hinders the applicability 

of the mechanism. The downside of the "Optimised-Cross-

Layer-Forward-Error-Correction" (OCLFEC) strategy is that 

it requires several optimization phases, which takes time. 

This increases delay and therefore degrades "QoE". 

Moreover, the evaluation process only considers the 

characteristics of "QoS", which are known to not accurately 

represent the "QoE" as experienced by end-users. Also, the 

OCLFEC mechanism excludes the state of the network and 

the intensity of video movement from the decision-making 

process. These are important characteristics of any type of 

mechanism aimed at safeguarding the transmission of video 

sequences. Indeed, the proposed RLC mechanism does not 

consider network and video characteristics, which are known 

to be considered relevant in these cases. Features like video 

content, codec type, and actual network packet loss are of 

great importance in the optimization process to calculate an 

accurate amount of redundancy, which in turn offers better 

video quality and reduced network footprint. And for the 

HIVE protocol [11], PSNR scores are known to have a low 

correlation with the human vision system. In addition to this, 

the proposed mechanism does not take into consideration the 

details of the video. This information is of enormous 

importance in determining the resilience of video material 

and the level of protection it needs in the event of a network 

disruption. Nevertheless, one of the main drawbacks of 

ShieldHEVC is that it only considers the current PLR, which 

can lead to poor characterization of the state of the network 

as the past PLR is repeated (or remains the same) in the 

future. 
 

3. SETV: Secure and Efficient Video 

Transmission in VANET 

Because of the challenges, this work unveils and evaluates 

the intelligent improved QoE driven and network sensitive 

video transmission mechanism (SETV). There is a paucity of 

QoE and motion-sensitive mechanisms capable of utilizing a 

large amount of network details in conjunction with specific 

video characteristics. For this reason, the proposed 

mechanism has been designed to ensure the transmission of 

video with the highest quality, as well as to reduce the 

footprint of network overload. The SETV mechanism is an 

improvement in our precedent work [3]. The new 

architecture features, and key enhancements are discussed 

below. 

3.1 SETV overview 

The SETV mechanism is made up of two phases. The first is 

machine learning and the second is done in real-time. Figure 

1 illustrates the 4 steps of our proposal solution. 

The first (1) is to build a video database that has several 

actual video sequences with different resolutions. Video 

samples also encompass a wide variety of viewing content 

that represents commonly watched videos. Additionally, 

sequences have color and luminance constraints, contain  cu t  

and still scenes, in conjunction with multiple levels of 

distortion and varying intensities of motion. After the video 

database is fully assembled, exploratory data analysis is 

performed in the second step (2). This analysis supports the 

characterization of how distinct video footage is afflicted by 

both the layout of the network and the impairments 

introduced by it. To do this, several video sequences are 

evaluated in a set of network configurations under different 

levels of disturbance. By analyzing the results, we can typify 

the QoE-related data that is needed to design fuzzy sets and 

rules. The third step (3) is responsible for delimiting the 

specifics of the ACO, the construction graph, the list of 

candidates, and the heuristic values. The construction graph 

refers to the association of a set of parameters related to the 

QoE and network (for example, motion intensity nodes, 

frame type, and size nodes, as well as loss rate nodes 

packets) with a set of vertices in the graph. Using the results 

of data analysis, it is possible to create an effective 

construction graph. Additionally, the candidate list is an 

ensemble of top-ranked options for each node, limiting the 

number of available choices to consider at each build stage, 

improving real-time performance. Heuristic information is a 

value assigned to all nodes to direct the Ants to a better 

route, allowing exploring the problem-dependent conditions 

found in the data analysis. The last step (4) is the 

consolidation of all the solutions developed, which includes 

the ACO met heuristic and fuzzy logic components, to work 



153 
International Journal of Communication Networks and Information Security (IJCNIS)                                            Vol. 13, No. 1, April 2021 

 

together in real-time. This machine-learning procedure is 

essential to provide fast and accurate execution. This is only 

possible because the reduced number of variables and 

activities must be managed in real-time. 

Figure 2 provides a complete view of the real-time process of 

the proposed mechanism. The first three steps are 

responsible for the details related to the video. First, the 

video frames (1) are converted into packets to be transmitted  

over the network (2). Then, thanks to cross techniques, 

several parameters related to QoE referring to the video 

characteristics are gathered (3). All information is analyzed 

in the video process of the SETV mechanism. This means 

that the characteristics of an arbitrary set of video footage 

being transmitted, such as frame resolution, frame type and 

size, motion vectors, and Coding Tree Unit (CTU) is mapped 

to the best-correlated characteristics found in the offline 

process, which gives the impact on QoE in the event of 

information loss. This needs an appropriate amount of added  

redundancies. Then, the network conditions are evaluated 

(Step 4). To do this, a  set of parameters are considered 

together, such as SNR, current PLR, PLR prediction, node 

position, and network density. 

 
 

Figure 1.General view of the machine learning process of the SETV mechanism

In principle, none of the parameters mentioned above are in 

themselves sufficiently precise to define the state of the 

network or the quality of the communication channels. 

However, with the combined use of all of them, it is possible 

to get a very accurate estimation of the network condition. 

Following this, the decision-making module of the SETV 

mechanism is fed with all this information, which allows the 

compute of the amount of redundancies to send with the 

original video data, called SETV packets (Step 5). 

Considering that the network-state over time, and therefore 

diverge from one node (or hop) to another, the network state 

parameter must be modified at each hop to adapt to this 

variation (6). Conversely, the video characteristics remain 

the same throughout the transmission. This condition is 

exploited by incorporating all the QoE related details into 

each packet header at the server node level. In doing so, 

there is no need to perform CPU-intensive tasks, i.e. deep 

packet inspection, on all packets at intermediate nodes. To 

store this information, the optional header of IPv6 "Hop-by-

Hop" is proposed in [13], making it available whenever 

needed. For this reason, the effort to adjust the amount of 

redundancy on each hop is reduced. Ultimately, the SETV 

mechanism provides end-users with high video quality 

improving QoE (Step 8). 

3.2 SETV design 

This section discusses the strategies and components of the 

SETV. As mentioned earlier, the proposed mechanism has a 

machine learning procedure which is the basis of  real-time 

capabilities. A further improvement of SETV is the 

combined use of current and PLR prediction in the real-time 

process. In doing so, the proposed mechanism better 

manages the details of the network as the state of the 

wireless channel changes rapidly over time. 
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Figure 2.SETV mechanism

Table 1. Notation descriptions 

Notation Meaning 

𝐼ℎ(𝑖) “Heuristic Information of the 𝑖𝑡ℎ node” 

𝐼ℎ(𝑖𝑗) “Heuristic Information of the  𝑖𝑡ℎ and 𝑗𝑡ℎ nodes” 

𝑑(𝑖𝑗) “Length of the arc (i,j)” 

q “One tour (complete walk)” 

Q “Set of tours” 

C “ACO components (nodes)” 

L “Set of partially connected components” 

3.2.1 Details of "video characteristics" 

Video characteristics are a crucial aspect of defining an 

explicit amount of redundancies. First, the SETV mechanism 

identifies three important video characteristics, namely 

Coding Tree Unit (CTU) [14] details, frame type, and image 

resolution. The CTU is a new H.265 component to replace 

the old macro-block structure. It allows a more flexible 

understanding of the information, which adjust larger block 

structures yet as more subsection options, being mainly 

useful to high-resolution videos. Several CTU deta ils are 

taken into consideration, like the dimensions, type, and the 

number of subdivisions, to search out how the video was 

encoded. This is often helpful to compute the number of 

redundancies needed by a selected scene to boost the QoE 

for end-users. 

Another important parameter is the type of frame. It is well 

known that some images are more important than others, as 

presented in [15] in terms of video quality. For this reason, it 

is important to identify the type of frame that is being 

transmitted to add an amount of redundancy compatible with  

it. The last parameter identified is frame resolution. This is 

necessary to characterize the video size. This information is 

also used in conjunction with the details of the CTU. Videos 

with low frame resolution tend to have a small number of 

large CTU blocks, while videos with higher resolution tend 

to have larger blocks. 

The SETV mechanism evaluates the motion activity of the 

video. This characteristic is composed of three parameters, 

namely the spatial complexity, the size of the image and the 

temporal intensity. Spatial complexity describes the 

difference in static information from one given frame to 

another. In other words, how different one static scene is 

from the next. Using the frame size quantifies this amount. 

Temporal activity is calculated from the details of the 

Motion Vector (MV) [16] and represents the range of motion 

in each video clip. With the combined use of these 

parameters, it is possible to accurately classify the action rate 

of a video sequence. 

Analysis of all the parameters mentioned above and human 

expertise provides enough information to construct fuzzy 

sets, rules, and membership functions. The advantages of 

fuzzy logic output are in two folds. First, it defines the most 

appropriate nodes in each candidate list (Lc) that the Ants is 

heading. Second, since the output is not a precise value but a 

degree of belonging, this information is considered and only 

a proportional measure of the distance d(ij) is used to adjust 

the amount of redundancies. For example, the frame size is 

classified as {large; way; small}, so the fuzzy logic output 

would be {0.8; 0.2; 0} for a given image. This means that 

this weft belongs 80% to the large group and 20% to the 

medium. As mentioned earlier, the total number of the 

redundancy and the distance covered by the Ants are equal. 

And since this frame only belongs to 80% of the large group, 

it is only considered 80% of the distance d(ij). 

Equation 1 gives the total amount of redundancy Rq  for a 
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specific tour (full run) q. Let α be the highest degree of 

membership of node n. The d(ij) is the distance necessary to 

cover the nodes (n-1) and n. 

𝑅𝑞 = ∑ 𝛼𝑛 × 𝑑(𝑖𝑗)𝑛

𝑞

𝑛=0

 

 

(1) 

3.2.2 "Network status" details 

The SETV uses five separate parameters to estimate the 

quality status of the network: 

• SNR is a physical medium indicator generally used for 

spectrum detection and shows the signal level in relation 

to noise. By itself, this indicator is not a reliable measure 

of network quality because a strong signal is always lead 

to an error-free network connection [17]. However, a  

weak channel signal is most likely lead to a very poor-

quality connection. To realize a more holistic indicator, 

the other metrics are also evaluated. 

• The actual PLR present an inverse relation with the SNR, 

meaning that when one is high the other is low and vice 

versa. Besides, this indicator provides an assessment of 

the network closer to the application layer because the 

SNR is oriented towards the physical spectrum. Thus, 

they are complementary to each other. However, the 

actual (or past) PLR is not enough to approve the future 

behavior of the network. For this reason, the SETV 

mechanism also predicts PLR. There are several attempts 

to predict PLR using sparse basic models, time series, 

and hidden Markov models. However, as the proposed 

mechanism must run in real-time, this prediction must be 

easy and quick to calculate. In addition to this, the main 

goal is not to create a very accurate PLR prediction as 

this indicator is used along with the other parameters. 

The PLR forecast was calculated using a weighted 

arithmetic mean. In our case, a  set of the last five PLRs 

were used as input data, represented by {x, xn+1, … , x5}. 

However, since our weighing input is normalized, the 

weighted arithmetic means formula is simplified as 

shown in Eq. 2. 

𝑎𝑣𝑔 = ∑ 𝑤𝑖𝑥𝑖

5

𝑖=1

 

 

(2) 

• The adopted set of weights was found through several 

experiments and defined as {0.4; 0.3; 0.15; 0.1; 0.05}.  

• Another parameter analyzed is the network density, 

which is calculated by dividing the number of vehicles by 

the whole area of the network. Finding this domain is a 

challenge because VANETs are highly dynamic networks 

without a centralized structure. The SETV mechanism 

solves this problem using the “Bentley-Faust-Preparator” 

(BFP) convex approximation shell algorithm [18]. This 

algorithm finds the littlest boundary polygon of all the 

nodes inside. The BFP algorithm is an approximation 

because it rejects a non-extreme point in an exceedingly 

given band whether it belongs to the convex shell 

boundary. However, the eventual sidelined point is not 

removed from the limit, making it an honest 

approximation of the fully convex hull. 

• Finally, the last parameter evaluated is the position of the 

node. The distance between nodes is important due to 

radio interference and signal attenuation. For this reason, 

nodes distant from each other tend to require more 

redundancy to maintain a high-quality video image. 

4. Evaluation and results 

The objective of SETV is to improve QoE for end-users and 

to avoid any non-essential network costs. The result is a  

meticulous use of resources while improving video quality. 

We first generated an audio-visual quality data set, designed 

to include resolution, bit rate, bandwidth, packet loss rate, 

and factors influencing jitter. Table 2 shows the values 

selected for these influencing factors. 

For the evaluation, we use a test rig to come up with 

benchmark videos with ideal encoders additionally as media 

and channel settingsto make better models. We have 

recreated our end-to-end media pipeline using the GStreamer 

framework for audio and video streaming [19]. A pipeline 

supported GStreamer has proven to be significantly more 

robust to network degradation. It allows us to stream video 

with a packet loss rate of up to 5%. It also gathers relevant 

Real-time Transport Control Protocol (RTCP) statistics, 

which is more accurate than inferred network information. 

Using this test bench, we generated the audio-visual quality 

data sets for National Institute for Scientific Research 

(NISR). The precision in statistics ultimately helps us to 

generate models for estimating perceived quality. The audio-

visual quality dataset is designed to hide the most factors 

influencing network compression and distortion. These 

factors are quantization, video frame rate, network packet 

loss rate and filters. 
 

Table 2. Audio-visual quality dataset influence factors 

Resolution HD1080 (1920x1080 pixels) 

HD720 (1280x720 pixels) 

Bit Rate “High Quality” (HQ) 

“Medium Quality” (MQ) 

“Low-quality” (LQ) 

Bandwidth “High Bandwidth” (2x Max Bit Rate) 

“Low Bandwidth” (Max Bitrate) 

Packet Loss 
rate (%) 

0, 0.1, 0.5 

Jitter (ms) 0, 10, 50, 100 

4.1 Video sequences and test configuration 

The original audio-video sequence is a home care sequence, 

where we increase the range of encoding configurations and 

network alterations rather than variations in video content. 

This unique type of content is potentially quickly annoying 

observers during the subjective assessment. To avoid this, we 

divided the whole experience into several sessions and 

sequences. We have also introduced rejection criteria during 

post-processing to be able to detect moments and periods of 

inattention. 

Another important parameter that influences the overall 

perceived quality is the frequent use of I -frames [20]. In the 

previously mentioned datasets, there is an I -frame every 1-2 

seconds due to the high complexity of the movement as well 
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as evenly distributed alterations. In this research, we kept the 

default value of video I-frame periods, which is10 s, for low 

motion videos set by the video encoder. This duration of the 

I-frame video period is then required to use a video sequence 

that is longer than traditional videos of 10-15 s. The test 

video has duration of 42 seconds. We produced 32 reference 

audio-visual files. These reference files have different 

qualities in terms of the Quantization Parameter (QP), Noise 

Reduction values (NR) and displayed Frame Rate per Second 

(FRS). These values are listed in the table 3. The audio 

coding parameters are retained (mono channel, 16 kHz 

sample rate, and 24 Kbps bit rate) for all audio-visual 

sequences. The GStreamer multimedia framework only uses 

the jitter buffer mechanism to regulate the flow of packets. 

There is no packet concealment strategy and therefore in our 

dataset, we suppose that the reported packet loss figures 

correspond to residual packet loss. 
 

Table 3. Media compression parameters and network 

impairments 

 Video Audio 

Frame Rate 10, 15, 20, 25 Mono, 16kHz, 24 kbps 

Quantization 
Parameter 

23, 27, 31, 35 Mono, 16kHz, 24 kbps 

Noise 

Reduction 
0, 999 Mono, 16kHz, 24 kbps 

Packet Loss 

Rate (%) 

0, 0.1, 0.5, 1, 5 0, 0.1, 0.5, 1, 5 

 

An emulated network is accustomed to transmitting and 

record the audio-visual sequences. The audio and video 

streams are captured with our custom software supported 

GStreamer, which allowed us to collect detailed transport 

protocol statistics and separately report the precise network 

packet loss values for video and audio streams. The Item 

network emulator has been deployed to provide network 

packet loss conditions. Network Packet Loss is activated 

until after the primary second of audio and video 

transmission. This allows us to get more realistic results.  

4.2 Analysis and results 

With the new data set, we extended our search and first 

conducted an extensive screening process to find better 

performing models using the Workshop at the University of 

Waikato (Weka) [21]. We have chosen the 10-sample cross-

validation using the default settings for each algorithm listed . 

To compare the performance of our model with popular 

methods, we have developed our SETV model, OCLFEC 

model [8], HIVE model [11], and RLC model [10]. We train 

all the methods and measure their accuracy using 10-sample 

cross-validation. We are also interested in the case of 4-

sample cross-validation for deep learning. Also, we extracted 

other parameters such as audio and video bitrates, number o f  

frames, and stream sizes from sample files via the Media 

Info Metadata Extraction tool [22]. 

To quantify the results, two distinct objective measures of 

QoE are used, namely the Video Quality Metric (VQM), 

given by equation 3and the Structural Similarity Metric 

(SSIM), given by equation 4 [23]. Zero scores in the VQM 

metric means the best possible quality, everything else has 

some degree of degradation. On the other hand, the SSIM 

metric has a scale from zero to one, where values closer to 

one are better. It's important to note that VQM tends to be 

more stringent with video artifacts. This results in poorer 

scores, even for video footage with a reduced number of 

defects. This trait is more evident when comparing the 

mechanisms with the baseline, which produces larger 

differences. 

𝑉𝑄𝑀 =
1

1 + 𝑒0.17×(𝑃𝑆𝑁𝑅−25.66)    10 ≤ 𝑃𝑆𝑁𝑅 ≤ 55      
(3) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾 (4) 

All evaluations are carried out with the MSU video quality 

measurement tool [24]. Table 4 summarizes the common 

SSIM and VQM scores, additionally because of the network 

footprint of all experiments. The results validate the 

proposed mechanism, which outperformed all its 

competitors. In the end, the SETV mechanism enables 

increasing the perceived video quality while downsizing the 

network overhead in urban and highway scenarios. This is 

attributed knowing that the proposed mechanism only adds 

the required amount of redundancies to the foremost 

important video parts. 

Table 4. Average SSIM, VQM and network overhead 

 SETV ShieldHEVC 

Urban environment 

SSIM 0,924 0,839 

VQM 1,680 2,790 

Overhead 24,555% 32,778% 

Highway environment 

SSIM 0,902 0,822 

VQM 1,184 2,032 

Overhead 21,777% 30,555% 

5. Conclusion and perspectives 

Due to the ever-increasing video transmission, especially 

with the exponential availability of connected cars and 

therefore the emergence of recent technologies like self -

driving cars, the necessity for a QoE-based and network-

sensitive mechanism to shield video transmissions is more 

and more noticeable. During this context, the proposed 

SETV mechanism can protect the foremost QoE sensitive 

data against network disturbances. This adduces adaptable 

video transmission over networks with error-prone 

characteristics and ensures in higher QoE for end-

users. Through a comprehensive set of experiments, the 

SETV identifies the video and network characteristics that 

have a serious impact on quality. Further, by using these 

details within the "decision-making" process, it provides 

both superior qualities of service and efficient management 

of wireless channel resources. In future work, a special set of 

mechanisms, mobility scenarios, and environments will be 

implemented and evaluated. Additionally, other parameters 

associated to the network will be used to test using a bench 

implementation with real equipment and vehicles.  
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