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Abstract: Classical spectrum sensing techniques utilize 
maximum likelihood (ML) detection for identification of spectrum 
holes. The approach is sub-optimal for the case of un-equal priors 
where the probabilities of channel occupation and vacancy are not 
the same. Such situations are bound to occur in most commercial 
bands such as GSM etc and hence are of more interest. The loss in 
performance has been disregarded as negligible in most of the work 
done on spectrum sensing techniques. This paper quantifies the 
effects of changing priors on classical energy detection and infers 
that the loss in spectrum sensing performance is not negligible. The 
deterioration is especially considerable at low SNR values and at 
low probabilities of channel occupation. This paper aims atderiving 
an optimum threshold for achieving minimum probability of error 
for unequal prior case. Detection based on the proposed threshold 
out-performs classical detectors under the assumption that priors are 
known at the receiver. 
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1. Introduction 

Rapid expansion in communications has caused an apparent 
spectrum scarcity whereby, the available spectrum has 
already been allocated to potential users by various 
governing agencies. Analysis has revealed that this apparent 
scarcity is attributable to the inefficient fixed spectrum 
allocation techniques. This implies that although the 
spectrum has been licensed to various users but a major 
portion of this licensed spectrum remains under-utilized. For 
example, Federal communication commission (FCC) places 
the spectrum usage in USA between the ranges 15% to 85% 
at all times [6]. This has opened a new avenue in research to 
explore more efficient but complex dynamic spectrum access 
techniques. Dynamic spectrum access envisions the use of 
licensed spectral bands by smart unlicensed cognitive users 
that can exploit any opportunities that may exist in the form 
of temporal or spatial holes. A spectrum hole is that part of 
the spectrum where the primary users' transmission strength 
falls below a certain regulated level termed as interference 
cap by FCC [6]. The smart nodes that form the secondary 
users are called cognitive radios [7]. A cognitive radio is an 
evolved software defined radio that in addition to 
reconfiguration capability also possesses the ability to 
analyze its surrounding radio environment. This allows the 
cognitive radio to decide how best to reconfigure itself in 
existing radio conditions. The capability of a cognitive radio 
to adapt to its surroundings greatly depends upon the amount 
and accuracy of information it can acquire about its radio 
environment. The process by which the cognitive radio 

becomes aware of its surroundings is termed as spectrum 
sensing and is a key challenge for cognitive radios. The 
prime objective of spectrum sensing is to identify the 
presence or absence of a licensed (primary) user in a 
channel. Various spectrum sensing algorithms have been 
suggested each with its own strengths and weaknesses [1]-
[3]. Most of these algorithms utilize some sort of 
probabilistic modeling to detect the primary user in the 
observed spectrum [1]. These decision models are generally 
based on Maximum Likelihood (ML) detection whereby the 
likelihood probabilities of the signal and noise form the basis 
of detection [4]. The section II of this paper describes 
classical ML detection. The section III indicates various 
performance metrics used in literature to judge the accuracy 
of the spectrum sensing algorithms [5], [8]. Section IV 
analyzes classical approaches to decide the threshold level 
used to discriminate the noise from the signal and their 
related performance metrics. We have re-derived these 
metrics in terms of SNR and buffer size to make the 
comparison more meaningful. An optimal minimum 
probability of error detector has been suggested in section V. 
Section VI gives the simulation based results. 

2. ML Detection 

The ML detection is a binary hypothesis test to confirm 
the presence or absence of the signal ���� in a buffer size 
of �� samples. Assuming that the received signal ���� is 
being tested for the presence or absence of ���� in white 
Gaussian noise 	���, the hypotheses would be 

 
� �  ����   	��� 

� �  ����    ���� � 	���.          (1) 
 

If ���|
�� is the likelihood of receiving test statistic � for 
the hypothesis 
�, then it's probability density function ���� would be the weighted sum of two conditional 
likelihood probabilities ���|
��. 

 ����    ���|
� ���
��  �  ���| 
� ���
��   (2) 
 

As we are assuming different variances for the two 
likelihood distributions, �   ∑ |����|������  would be a 
sufficient test statistics for confirming the hypothesis [14]. 
Assuming that the samples of ����and 	���are 
independent and identically distributed Gaussian in 
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amplitude  ����~���� , !��, 	���~���" , !"�then �would 
be the sum of �� squared Gaussian samples and would 
therefore be Chi - Square distributed with �� degrees of 
freedom#��� . The Chi-Square distribution can be 
approximated as asymptotically Gaussian ���|
�� $���%& , !%&�in accordance with central limit theorem [12] 
for a large buffer size��. The mean �%& and variances !%&�  
of the two likelihood distributions ���|
�� can easily be 
deduced using the definition of variance and the central 
limiting theorem, however the proof is not given here 
because of lack of space. �%'     ����"�  � !"��            (3) 

�%(    ��)��"  � ���� � !"�  � !��*     (4) 

!%'�    2���2�"�!"�  � !",�         (5) 

!%(�   2��)2��"  � �����!"� � !���  � �!"� � !����* (6) 
3. Performance Metrics 

The various performance metrics used in literature [5] for 
comparing performance of the spectrum sensing 
algorithms are summarized below. 

3.1 Probability of False Alarm �-./� 

The probability false alarm is a measure of missed 
opportunities. This is important from a secondary user 
perspective as it indicates the failure to identify presence 
of a spectrum hole, while actually it did exist.  

 �01   ��
�|
��         ��� 2 3 |
��          4 ���|
��5�6
7  

         8 97 :;<'=<' >              (7)  

where Q-Function is the tail probability of the standard 
normal distribution and is 3 is the sensing threshold. 

3.2 Probability of Missed Detection �-?@� 

The probability of missed detection is a measure of failure 
to identify an existing primary user in a channel. 

 �01   ��
�|
��         ��� A 3 |
��  
        4 ���|
��5�7

:6  

         8 9B 7 :;<(=<( >            (8)  

3.3 Receiver Operating Curve (ROC) 

Receiver operating curve is another conventional method 
of summarizing the performance of a detector. It is simply 
a plot of �% versus �01 where �%    1 B  �DE  is the 
probability of detection. �%    8 97 :;<(=<( >              (9) 

3.4 Probability of Error �-F� 

The probability of error is the overall error measure 
obtained by weighted sum of �DE  and �01 . The weights 

are given according to the prior probabilities of presence 
of a hole or primary user in the channel. 

 �G  ��
�|
����
��  � ��
�|
����
��        ��
��8 97 :;<'=<' > � ��
��8 9B 7 :;<(=<( >  (10) 

3.5 Sensing Error Floor �HIJ� 

The minimum detection error obtained by choosing a 
sensing threshold 3KLM  that may result in equal error 
probabilities of false detection and missed detection is 
known as sensing error floor�NOP�. 
 NOP Q  ��
�|
��   ��
�|
�� NOP Q 8 97 :;<'=<' >  8 9B 7 :;<(=<( >      (11) 

4. Literature Review 

The aim of hypothesis testing is to devise a sensing 
threshold 3 that suitably divides the two generally 
overlapping distributions in ���� while optimizing a 
certain selected performance metrics. For a sensing 
threshold 3 the ML detection model is 

RS���   T�%|U(�T�%|U'�

�V
�

 W�3�           (12) 
whereRS is termed as the likelihood ratio of 
� versus 
� for different values of �. W�3�is the ratio of likelihood 

distributions at sensing threshold �  3;  W�3�  ��3|
��/ ��3|
��. 

4.1 Neyman - Pearson Theorem 

An application of Neyman - Pearson theorem [9], [14] – 
[16], aims at optimizing probability of detection �%under 
the assumption that a certain fixed level of �01   Z has 
been assumed as acceptable. The advantage of this 
approach is that the sensing threshold [-./ can be derived 
simply from the noise parameters without any knowledge 
of primary user transmission. This implies a non-
parametric, blind spectrum sensing. The sensing 
threshold3�\,�DE and �% in this case can be deduced as 
 3�\   !%'8:��Z�  � �%'            (13) �DE  8 9B 7]^:;<(=<( >              

           8 9B =<'=<( 8:��Z�  B  ;<': ;<(=<( >     (14) 
�%    8 9=<'=<( 8:��Z�  �  ;<': ;<(=<( >       (15) NOP in this case cannot be defined in this case as �01is 

fixed while the consolidated probability of error is �G  Z ��
��  �  ��
��8 9B =<'=<( 8:��Z�  B ;<(:;<'=<( >. (16) 
4.2 Sensing Threshold for Achieving HIJ 

A more accurate ML classification approach [4] suggests 
selection of a sensing threshold 3KLM  that results in 
achieving sensing error floor under the assumption 
that�01   �DE. Sensing threshold 3KLM  can be deduced in 
this case by equating Eqn. (7) and Eqn. (8). 
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3KLM   ;<( =<' _;<' =<(=<' _=<(            (17) �01,�DE , �G and NOP are all equal in this case and are 
according to Eqn. (11). �%may be found from either noise 
or signal parameters. �%   8 9B 7`ab: ;<'=<' >    8 97`ab: ;<(=<( >    (18) 
4.3 Minimum -FDetector 

The minimum Pddetector is a special case of a more 
general Bayesian detector which aims at optimizing the Pdassuming that the prior probabilities of hypotheses are 
known [14]. The likelihood ratio for minimum Pddetector 
is given as We3\fg   \�U'�\�U(�              (19) 

and the detection model becomes 

��
�����|
��
�V
�
��
�����|
��.        (20) 

The sensing threshold 3\fcan also be deduced in terms of 
parameters of likelihood distributions ���|
��by 
considering that ��
�� �e3\fh
�g   ��
�� �e3\fh
�g. This 
results into a quadratic equation that can be simplified to 
get the sensing threshold as 3\f  �%' � �%(!%(� B !%'� � 

i9 ;<'_;<(=<(j:=<' j>� �
;<'j =<(j _;<(j =<'j _=<(j =<'j klem√�K�S_�g=<( j:=<'j o(j

(21) 
wherep  ��
��/��
�� is the ratio of priors. The 

performance metrics in this case are given by Eqns. (7)–
(11)with3  3\f, further simplification not being possible. 

4.4 Comparison of the Sensing Thresholds �G is considered here as the most suitable performance 
metric for comparison. In order to make the comparison 
more meaningful the �Gcan be reflected in terms of buffer 
size �� and  N�q. Under some reasonable assumptions, �G for the three sensing thresholds can be deduced using 
Eqns. (3) –(6) as 

�G�7]^�  Z��
�� � ��
�� 

                      8 r :�√�K�S_� i8:��Z� B s��� N�qtu (22) 
�G�3KLM�  8 v s]�j K�S

�_swx(j K�Sj _ �K�S _�y     (23) 

wherez   O)|����|,*/{O)|����|�*�is a measure of 
randomness of the signal [4] and varies between 1 to 2. 
For deducing �Ge3\fg in terms of N�qand �� we first 
convert Eqn. (21) in terms of N�qand��. 

3\f  1!"� 91 � 2N�q> � i 1!", 91 � 2N�q>� �| 
|��!", }K�S� � ~2 � �K�S� lnep√2N�q � 1g���/�

(24) 
�Ge3\fg  ��
��8 v 3\f!"��2�� B ���2 y �  ��
_1� 

      8 r :�√�K�S_� i 7^f=�j���� B s��� �N�q � 1�tu   (25) 

The comparison of the analytical results for �G for the 
three classical sensing thresholds at ��
��  0.7 has been 
displayed in Figure 1. The figure elaborates that for higher N�q and ��the�Greduces to zero for all three cases. For 
low N�qand ��the�Gis maximum for 3�\and3KLM . 

5. Derivation of Optimal Threshold for 
Unequal Priors Case 

As implied by Eqn. (2) the received test statistic is the 
sum of two joint distributions ����   ���, 
�� � ���, 
��. The minimum �Gdetector described in Eqn. (20) 
attempts to bifurcate the two distributions by taking their 
point of intersection as the sensing threshold3\f. However 
as the two distributions acquire distinct parameters; the 
point of intersection is not an optimal threshold anymore. 
We propose an optimal sensing threshold for the Bayesian 
case (with known priors) which aims at minimizing the 
joint detection error. Assuming a sensing threshold3�T�, 
the suggested Maximum Aposterior Probability (MAP) 
detection model is: 

Figure 1. Pe for changing SNR and NB at P(h0)=0.7 and P(h1) = 0.3 
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�S���  \�U(�T�%|U(�\�U'�T�%|U'�

�V
�

�e3�T�g       (26) 
where the posterior ratio threshold would be �e3�T�g �e
�h3�T�g/�e
�h3�T�g. It may be noted that Eqn. (26) 

reduces to Eqn. (20) for �e3\fg  1in which case �e
�h3\fg  �e
�h3\fg as used in deduction of Eqn. (21). 
In order to achieve simultaneous reduction in the error in 
detecting joint distributions ���, 
��, we devise the 
sensing threshold 3�T�by equating the error induced in 
both cases. 

4 ��
�����|
��5�6
7���  4 ��
�����|
��5�7���

:6  

p8 97��� :;<'=<' >     8 9B 7��� :;<(=<( >       (27) 

As �%( 2 3�T� 2 �%' we can achieve an approximation of 3�T� by utilizing the Chernoff bound for Q-function and 
finding the roots of resulting quadratic equation. The 
arguments of the Q-function in this case are the 
Mahlanobi's distances of the distributions from the 
threshold. The Q-function and its Chernoff approximation 

are plotted in Figure 2. The approximation is highly 
accurate at very low and very high SNRs and quite 
reasonable otherwise. 

3�T� � �%'!%(� B �%(!%'�
!%(� B !%'�  �  

=<(=<'=<(j :=<'j se�%( B �%'g� � ln�p�� e�%'!%(� B �%(!%'� g 

(28) 
The same equation can be represented in terms of N�qand 
buffer size. For simplicity we represent the repeating term 2 N�q �  0.5 N�q��z B 1� as���́ . �Gfor this case is 
given as Eqn. (30) and has been plotted in Figure 3. 
Clearly the selected threshold results in extensive 
improvement in�G reducing the error ceiling considerably. 3�T� � !�� ��� 91 B N�q���́ >  �| 

|s 1 � ����́ ~2 �� ln�p�� � ���K�S�j
���́ �t   (29) 

The threshold can be prevented from becoming complex 
by keeping a reasonably large buffer size. For example, a 
buffer size of 400 samples is sufficient to keep the under 
root terms as positive for SNR ranging from -25 dB to 25 
dB and ��
��between 0.1 to 0.9. 

�Ge3�T�g  ��
��8 v 3�T�!"��2�� B ���2 � ��
��y 
8 r :�√�K�S_� i 7���=�j���� B s��� �N�q � 1�tu  (30) 

6. Simulation Results 

The simulations have been carried out for simple BPSK 
case considering zero mean AWGN and varying 
conditions ofN�q  �%(� /!%'� . In order to elaborate the 
effect of priors three different prior ratios p ��
��/��
��have been simulated assuming ��
�� 0.3, 0.5 and 0.7. In classical ML case the priors would be 
equal and p would be unity. However as the prior 
probability of channel occupation ��
�� changes in 
comparison to the probability of channel vacancy ��
��, 
effects of changing priors become prominent. The sum of ��
�� and ��
�� remains one in all cases. In Figure4–7 
we plot the effects of changing N�q on �Gfor three 
different values of pwhile using the four different sensing 
thresholds 3�\ , 3KLM , 3\G  and 3�T� for signal detection. 

Figure 3. Accuracy of Chernoff Approximation 

Figure 2. Pe for changing SNR and NB at P(h0)=0.7 and P(h1) = 0.3 using 3�T�  
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The p is simulated as 1 (classical ML case with equal 
priors), 2.33 e��
�� 2 ��
��g and 0.43e��
�� 2 ��
��g. The 
buffer size is fixed at 400. As evident from the results, the 
changing p has significant bearing on the accuracy of the 
spectrum sensing algorithm. 

 

Figure 4. Effect of Changing SNR on �G for different p 
using 3�\ 

The effects of changing p for 3�\are indicated in Figure4. 
For the typical ML case where the priors are equal, 
the�DEand�01follow the calculated theoretical results. 
However as the ratio of priors becomes un-symmetric the 
results greatly vary from theoretical values because the 
effects of changing priors have not been considered while 
selecting the threshold. There is deterioration in�Gfor high ��
�� because the high prior value for signal distribution 
and low prior value for noise distribution pushes the 
distributions closer thus increasing the overlap. This 
increased overlap results in increased�G. As the two 
likelihood distributions have been scaled by different 
factors, the3�\ is not accurate anymore and cannot ensure 
a fixed �01 as desired. The situation is especially poor 
where N�q and ��
�� are both very low. This is because 
the noise distribution which already has a large variance 
(low SNR) is further shifted to the right overlapping the 
signal distribution due to multiplication with a large prior 
value. This results in �DE and �01 both approaching to 
unity. This amply elaborates that 3�\ would perform 
extremely poor in case of low channel occupancy 
conditions. For high ��
�� the distributions are pushed 
further apart than the perceived ML case while calculating 
the threshold. This results in reduced overlap of the two 
distributions and improvement in �G. 
For3KLM , the theoretical and simulated results match 
exactly for equal priors case as reflected in Figure5. 
However, the change in priors results in variations in �G as 
the priors were not incorporated while selecting the 
threshold. �Gdeteriorates for high ��
�� and improves for 
low ��
��for similar reasons as discussed in the last 
paragraph. However the �G in this case drops to zero while 
for the3�\, it could level off to Z ��
��at best. Thus 3KLMoutperforms 3�\but does not cater for changing 
priors. 
Simulation results reveal that the 3\G is the most robust 
classical detection technique against changing prior values 
(Figure6). The simulated results are quite similar to the 
theoretical values for maximum SNR range.  
 
 

There is improvement for high channel occupancy in 
comparison to the previous two thresholds. For the 
low ��
�� the �G increases. 

 

Figure 5. Effect of Changing SNR on �Gfor different p 
using 3KLM  

As the point of intersection of the two posterior 
distributions has been considered as the threshold, the 
asymmetric distributions imply a drop in �01 while on the 
other hand a sharp increase in�DE. High�DEscaled by a 
high ��
��results in overall increase in�G. This justifies 
our assumption that the point of intersection of the two 
posterior distributions is not an optimum threshold for the 
unequal prior case. 

 

Figure 6. Effect of Changing SNR on �Gfor different p 
using 3\G 

The results for our proposed approach of selecting 3�T�as 
the sensing threshold have been displayed in Figure7. The 
theoretical values of �Gdo not tally with the simulated 
results except for equal prior case, as these are based on 
Chernoff approximation. At high ��
��, 3�T�behaves 
similar to the3KLMbut as the p approaches to unity, the 
benefit of using this threshold become obvious. At p 1 the 3�T�gives exactly the same results as3KLM . This 
validates our analysis that instead of considering the point 
of intersection as threshold, we are aiming to reduce the 
overall error by simultaneously reducing the �01 and �DE in the overlapping posterior distributions (as used in 
Eqn. 27) by equating them. As the probability of 
occupation further reduces, the proposed threshold greatly 
reduces the overall �G and outperforms the classical 
approaches with significant margin (13.56 dB, 9.22 dB 
and 15.44 dB improvement over3_��, 3KLM  and 3\f 
respectively at ��
��  0.3 and SNR=-15dB). 
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Figure 7. Effect of Changing SNR on �Gfor different p 
using 3�T�  

7. Conclusion 

The paper aims at quantifying the inadequacies of using 
classical ML detection for spectrum sensing. The effects 
of changing prior probabilities of channel occupation or 
vacancy are simulated and it is concluded that these 
effects are considerable. The performance degradation is 
especially aggravated at low SNR values and high 
variations in prior probabilities. We have also suggested 
an optimum sensing threshold for minimum �Gwhich is 
more robust to variations in priors and gives much 
reduced �G in comparison to classical sensing thresholds. 
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