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Abstract  
 

The development of Internet of Things (IoT) applications for creating 

behavioural and physiological monitoring methods, such as an IoT-

based student healthcare monitoring system, has been accelerated by 

advances in sensor technology. Today, there are an increasing number 

of students living alone who are dispersed across large geographic 

areas, therefore it is important to monitor their health and function. 

This research propose novel technique in high performance modelling 

for health monitoring system by 5G network based machine learning 

analysis. Here the input is collected as EEG brain waves which are 

monitored and collected through 5G networks. This input EEG waves 

has been processed and obtained as fragments and noise removal is 

carried out. The processed EEG wave fragments has been extracted 

using K-adaptive reinforcement learning. this extracted features has 

been classified using naïve bayes gradient feed forward neural 

network. The performance analysis shows comparative analysis 

between proposed and existing technique in terms of accuracy, 

precision, recall, F-1 score, RMSE and MAP. Proposed technique 

attained accuracy of 95%, precision of 85%, recall of 79%, F-1 

measure of 68%, RMSE of 52% and MAP of 66%. 

Keywords: healthcare monitoring system, high performance 

modelling, 5G network, machine learning, EEG brain waves 

 

1. Introduction 
 

A crucial role performed by nurses and doctors in ICU is patient monitoring. In truth, the intensive 

care unit (ICU) is a particular area in hospitals for patients with life-threatening illnesses and urgent 

conditions. These patients require the highest level of care from medical personnel, and they must be 

constantly monitored by monitoring systems [1]. The monitoring system is therefore regarded as a key 
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instrument. Due to digitisation, data have been rising dramatically in all fields in recent years. Massive 

data is referred to as "big data," and it cannot be processed by standard computers. Big data analytics 

is the process of analysing huge databases to find hidden patterns, new information, and value. 

Applications for big data analytics include healthcare, logistics delivery, fraud and risk detection, and 

weather forecasting [2]. We may investigate algorithms that employ enormous data sets to learn, 

generalise, and forecast with the use of ML algorithms. Making judgments and computational statistics 

are both directly related to ML. Applications for machine learning algorithms include forecasting 

product sales, determining the likelihood that rain will fall in a specific area, and many more. Medical 

professionals can identify illness patterns and determine the severity of the condition by conducting a 

systematic study of the available medical data. We can build prediction models for individualised 

treatment with aid of systematic analysis and ML methods. We can also keep track of patients' 

warning signs while they undergo clinical trials and help doctors choose the right medication for their 

patients [3]. IoT is a significant driver behind ICT technology development, guiding future industries 

toward automation and distributed intelligence. However, human body cannot simply be connected to 

Internet, unlike mechanical or digital technologies. A sensing and networking system can be used to 

connect a digital device to Internet [4]. We won't be able to connect human body to Internet even if it 

had a sensing system built into it. To conduct the measurement and determine the subject's health 

status, large sensing or measurement equipment is often used. Large measurement equipment, has a 

limitation in that it can only be utilised for a brief length of time under controlled settings. Therefore, 

with currently available enormous sensing and measuring technology, it is impossible to connect a 

person's body to Internet anywhere, at any time [5]. IoT applications in the areas of security and 

healthcare are severely constrained by inability to connect human body to Internet. Healthcare 

predictive analytics uses a variety of methodologies, including traditional linear models and cutting-

edge AI and ML. DL, a branch of ML, is sufficiently trustworthy as well as resilient to automatically 

process and learn from a vast quantity of complex healthcare data and provides useful insights and 

answers to challenging issues. The outcomes of conventional models have been surpassed by its 

application to a wide range of medical applications. In particular, recurrent neural network (RNN) has 

gained prominence in study of temporal events with regard to time-sequential applications [6] and is 

proficient at managing long-term relationships of input data. 

The contribution of this research is as follows: 

1. To propose novel technique in high performance modelling for health monitoring system by 5G 

network based machine learning analysis 

2. The processed EEG wave fragments has been extracted using K-adaptive reinforcement 

learning.  

3. this extracted features has been classified using naïve bayes gradient feed forward neural 

network. 

 

2. Related Works 
 

Different techniques for predicting heart disease have been proposed recently. The use of several 

ensemble classifiers for improving heart disease risk prediction accuracy shows an accuracy of 85.4% 

[7]. An interval type-2 fuzzy logic method and rough sets-based attribute reduction using chaotic 

firefly method combine to produce an 86% accurate model for the diagnosis of heart disease [8]. A 

machine learning hybrid model that combines the linear method (LM) and random forest (RM) 

techniques to predict heart disease [9] has a performance accuracy of 88.7%. Using a fuzzy analytic 

hierarchy approach as well as an ANN for the tasks of feature weighting and classification, an 

integrated decision support system for forecasting risk of heart failure achieves 91.0% accuracy [10]. 

CDSS framework was proposed in study [11]. To forecast the presence and severity of chronic kidney 

disease (CKD), they used a deep neural network (DNN) classifier. A decision support system was 

presented by the author in [12] to examine the elderly's overall wellness at the Hong Kong community 

level. ML has received a lot of attention recently, particularly when it comes to identifying patterns in 

photos or unprocessed data. Work [13] discussed how advances in machine learning have made it 

possible for epidemiologists to sift through a large volume of digital data. The author [14] discussed 

the integration of social media platforms, ML and NLP to assist the study of large datasets for 

population-level mental health research. Some ML architecture stands out among various 

methodological variations. For instance, when classifying tweets into two classes—real instances of 
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allergy or awareness tweets—we found that the kNearest Neighbor (k-NN) classifier's precision was 

higher than that of various other ML classifiers, including NBM Modal, NB, and SVM [15]. In a 

similar vein, [16] shown that when compared to other classifiers like NB, RF and SVM, Multinomial 

NB Modal had the best text classification performance with an F-measure of 0. 811. To forecast the 

weekly status of the ILI-infected US population, the author [17] demonstrated a model using Twitter 

data and multilayer perceptron with backpropagation method. An integrated intelligent fuzzy expert 

system was built by the authors of [18] to forecast the course of renal failure. In this model, the GFR 

threshold value for renal failure prediction was set at 15 cc/kg/min/1.73m2. SVM-based tools for 

forecasting the diabetic condition has been proposed in work [19]. They noted a 94% prediction 

accuracy in that trial [20]. 

 

3. System Model 
 

This section discuss novel technique in high performance modelling for health monitoring system by 

5G network based machine learning analysis. Here the input is collected as EEG brain waves which 

are monitored and collected through 5G networks. This input EEG waves has been processed and 

obtained as fragments and noise removal is carried out. The processed EEG wave fragments has been 

extracted using K-adaptive reinforcement learning. this extracted features has been classified using 

naïve bayes gradient feed forward neural network. Overall proposed architecture is given in figure-1. 

 
Figure 1. Overall proposed architecture 

 

Pre-processing: To lessen the negative effects of signal abnormalities like crosstalk, noise, and power-

line interference, data was pre-processed. The 10 centre sensors in this situation were eliminated from 

64 EEG channels included in EEG test material due to their asymmetrical design. Then, two filters 

were applied to new 27 differential EEG channels: a notch filter eliminated interference from power 

lines that occurred at 50 Hz, and a band-pass filter was used to minimise artefacts like noise that are 

frequently present in this frequency range. The final step involved normalising EEG amplitude using 

min-max normalisation with various subjects to reduce the variation in EEG amplitudes. 
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3.1 K-adaptive reinforcement learning based feature extraction 

Let's write D = (x1, y1), (x2, y2), (x3, y3)..., (xn, yn) to represent training dataset for the desired task, 

where each tuple (xi, yi) represents each input image and its label in dataset. The d-dimensional 

parameter vector ω ∈ R is then denoted as holding all d parameters of target method. Additionally, 

using transfer learning paradigms, one evaluate parameter of target network given a pretrained 

network with parameters based on a very large dataset as source. Goal of deep transfer learning-based 

optimization is to find equation(1) that minimises L(ω)  

min𝑤  ℒ(𝜔) = {
1

𝑛
∑𝑖=1
𝑛  𝐿(𝑧(𝐱𝑖, 𝜔), 𝑦ℎ) + 𝜆 ⋅ Ω(𝜔1, 𝜔𝑛)}  (1) 

where (i) empirical loss of data fitting is described by first term, ∑𝑖=1
𝑛  𝐿(𝑧(𝐱𝑖 , 𝜔), 𝑦𝑖), and (ii) Second 

term Ω(ω, ωs)  describes variations in characteristics of the source and target networks. Trade-off 

between empirical loss as well as regularisation term is balanced by the tuning parameter λ > 0. 

P(yt|xt), we used the maximum mean discrepancy (MMD), which is by equation (2): 

𝐷(𝐷𝑠, 𝐷𝑡) ≈ (1 − 𝜇) ∥
∥
∥1

𝑛
∑𝑖=1
𝑛  𝑥𝑠𝑖 −

1

𝑚
∑𝑗=1
𝑚  𝑥𝑡𝑗∥

∥
∥
2

 

+𝜇∑𝑐=1
𝑐   ∥∥
∥ 1
𝑛𝑐
∑𝑥𝑠𝑗∈𝐷𝑠
𝑛  𝑥𝑠𝑖 −

1

𝑚𝑐
∑𝑥𝑡𝑗∈𝐷𝑡
𝑚  𝑥𝑡𝑗∥∥

∥2                         (2) 

where H stands for RKHS, c ∈ {1,2, . . . ,C}  represents different class labels, n and m represent 

number of samples in source domain and target domain and Ds and Dt stand for samples that belong to 

class c in source domain and target domain. Number of samples in Ds and Dt is given by nc = |Ds| and 

mc = |Dt|. Equation (3) is further applied with matrix techniques and regularisation to provide the 

following results: 

mintr⁡(𝐀T𝐗((1 − 𝜇)𝐌0 + 𝜇∑𝑐=1
C  𝐌𝑐)𝐗

T𝐀) + 𝜆 ∥ 𝐀 ∥𝐹
2  (3) 

s.t. 𝐀TXHXT𝐀 = I, 0 ≤ 𝜇 ≤ 1 

Equation (4) has two terms: first term is regularisation term, and second term is the adaption of 

balance factor of conditional distribution and marginal distribution. In Equation, there are two 

restrictions (4). The inner attributes of the converted data (ATX) must be preserved while remaining 

compatible with original data. Second constraint places a range restriction on the balance factor where 

input data matrix X is made up of the elements xs and xt. A also stands for the transformation matrix 

by eq. (4): 

(𝐌0)𝑖𝑗 =

{
 
 

 
 
1

𝑛2
, 𝑥𝑖, 𝑥𝑗 ∈ 𝐷𝑠

1

𝑚2,
𝑥𝑖, 𝑥𝑗 ∈ 𝐷𝑡

−1

𝑚𝑛
,  otherwise 

 

                                  (𝐌𝑐)𝑖𝑗 =

{
 
 
 

 
 
 

1

𝑛𝑐
2 , 𝑥𝑖, 𝑥𝑗 ∈ 𝐷𝑠

(𝑐)

1

𝑚𝑐
2 , 𝑥𝑖, 𝑥𝑗 ∈ 𝐷𝑡

(𝑐)

−1

𝑚𝑐𝑛𝑐
, {
𝑥𝑖 ∈ 𝐷𝑠

(𝑐)
, 𝑥𝑗 ∈ 𝐷𝑡

(𝑐)

𝑥𝑖 ∈ 𝐷𝑡
(𝑐)
, 𝑥𝑗 ∈ 𝐷𝑠

(𝑐)

0,  otherwise 

                (4) 

After defining Lagrange multiplier as Φ = (φ1,φ2, . . . ,φd), Lagrange function for Equation (5) can be 

written as follows: 

L = tr⁡ (𝐀T𝐗((1 − 𝜇)𝐌0 + 𝜇∑  

𝐶

𝑐=1

 𝐌𝑐)𝐗
T𝐀) 

+𝜆 ∥ 𝐀 ∥𝐹
2+ tr⁡ ((𝐈 − 𝐀T𝐗𝐇𝐗T𝐀)Φ)             (5) 

Set derivative ∂L/∂A = 0 in this case. Then, one can transform the optimization of Equation (6) into a 

generalised eigen decomposition problem to arrive at: 

(𝐗((1 − 𝜇)𝐌0 + 𝜇∑𝑐=1
𝐶  𝐌𝑐)𝐗

T) + 𝜆𝐈 = 𝐗𝐇𝐗T𝐀Φ  (6) 

The best transformation matrix A and its d lowest eigenvectors can be obtained simultaneously by 

solving Equation (6). The degree of similarity between tasks is a reliable sign of task consistency. The 



Machine Learning Algorithms for High Performance Modelling in Health Monitoring System Based on 5G 

Networks 

Available online at: https://ijcnis.org  334 

gradients of similarity between an auxiliary task and the target goal as input by equation (9) are the 

weighting model's (sim ;) tasks. 

sim𝑖 = cos⁡(∇𝜃ℒsap(𝜃), ∇𝜃ℒaux,𝑖(𝜃))   (9) 

where ∇𝜃 L𝑠𝑢𝑝 (𝜃) is the gradient vector evaluated 𝜃 by the loss of auxiliary task ∇𝜃 and L𝑎𝑢𝑥,𝑖(𝜃) is 

the gradient vector evaluated at point by the loss of the target task. The joint loss can be expressed by 

the following equation, using (sim ;) to create weight for each task: 

argmin⁡ 𝑔(sim⁡𝑚0;𝑤)ℒsup (𝜃)
𝜃

+ ∑𝑖=1
𝐾  𝑔(sim⁡𝑚𝑖; 𝑤)ℒ𝑎𝑢𝑥,𝑖(𝜃) (10) 

We use the target task loss on the revised BP Adap TransL to optimise the weighting model after 

updating BP Adap TransL once by the aforesaid total loss. After one gradient update using the joint 

loss L (;), the revised parameters of the BP Adap TransL are indicated by the symbol 𝜃𝑤. 

We define the multi-task goal of BP Adap TransL as eq. (11): In the second stage, BP Adap TransL is 

trained by joint losses of both the target and auxiliary tasks. Given that the weights of various tasks are 

set by the weighting model. 

argmin⁡ 𝑔(sim⁡𝑚0;𝑤)ℒsup (𝜃)
𝜃

+ ∑𝑖=1
𝐾  𝑔(sim⁡𝑚𝑖; 𝑤)ℒ𝑎𝑢𝑥,𝑖(𝜃)  (11) 

We repeatedly train both networks until they coincide. Agents that can perform a series of actions in 

an environment, represented by E, across a number of discrete time steps, denoted by t ∈ {1, . . . , T}, 

are taken into account by reinforcement learning. The agent creates a follow-up action at step S after 

receiving a state at step S at each time step t. After that, agent will see a new state, S (t+1), and a scalar 

reward, 𝑟𝑡. The agents' objective is to discover a strategy 𝜋(𝒂𝑡 ∣ 𝒔𝑡) that maximises the objective 

function, which is the expected cumulative return with the form eq. (12) 

⁡𝐽(𝜋): = ∑𝑡=0
𝑇  𝔼(𝒔𝑡,𝒂𝑡)[𝛾

𝑡𝑟(𝒔𝑡 , 𝒂𝑡)]                   (12) 

where 0 ≤ γ ≤ 1 is a discount rate, at is drawn from policy 𝜋(𝒂𝑡 ∣ 𝒔𝑡), and 𝒔𝑡+1 = ℰ(𝒔𝑡 , 𝒂𝑡)is produced 

by running environment dynamics. The policy (a|s;) is parameterized by 𝜽 ∈ ℝ𝑑 in policy-based 

reinforcement learning systems. where the parameters of the policy π, for example, the weights of a 

neural network, are represented by the vector 𝜽:= (𝜃1
′ , … , 𝜃𝑑)

⊤. The following optimization problem 

is then solved by eq(13) by iteratively changing the parameter θ after learning a good strategy, 

max𝜽∈ℝ𝑑  𝐽(𝜽)                           (13) 

where we abuse notation to represent J(θ) := J(π(a|s; θ)). Automatic differentiation cannot be utilised to 

determine the gradient of J(θ) in reinforcement learning since it is typically true that the gradient of the 

environment S is inaccessible. Therefore, a large portion of advancement in reinforcement learning 

algorithms focuses on addressing the availability or absence of gradients in the environment or policy. 

A class of machine learning techniques known as reward shaping (RS) enables an agent to be trained 

on a synthetic reward signal as opposed to external feedback. However, there must be a potential role 

for this fake signal. If not, the new MDP will have a different optimal policy. If a real-valued function 

𝜙: 𝑆 → ℝ exists such that for all 𝑠 ∈ 𝑆 by eq. (14), then F is a potential function.  

𝐹(𝑠, 𝑠′) = 𝛾𝜙(𝑠′) − 𝜙(𝑠) 
𝐹(𝑠, 𝑎, 𝑠′, 𝑎′) = 𝛾𝜙(𝑠′, 𝑎′) − 𝜙(𝑠, 𝑎) 
𝐹(𝑠, 𝑡, 𝑠′, 𝑡′) = 𝛾𝜙(𝑠′, 𝑡′) − 𝜙(𝑠, 𝑡) 

𝐹(𝑠, 𝑎, 𝑡, 𝑠′, 𝑎′, 𝑡′) = 𝛾𝜙(𝑠′, 𝑎′, 𝑡′) − 𝜙(𝑠, 𝑎, 𝑡)        (14) 

Equation 14 will be produced by utilising the Q-learning update rule with reward shaping. Any of the 

equations shown in equation 14 could be F. Equation 14 will give us the chance to improve learning 

by giving the Q-learning agent some additional knowledge about the issue. This additional information 

may originate from any source, such as human problem-solving expertise, a heuristic algorithm, or 

information that the agent has learned through artificial intelligence eq.(15). 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑅𝑡+1 + 𝐹 + 𝛾max𝑎  𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (15) 

γ is unchanged and must have the same value as it had in the previous MDP in equation 3 and all of its 

extended equations. Additionally, numerous literary works exist that expand the function's potential. 

𝜂(𝜋) = 𝔼𝑠0,𝑎,…[∑𝑡=0
∞  𝛾𝑡𝑟(𝑠𝑡)], where 𝑠0 ∼ 𝜌0(𝑠0), 𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡). (16) 

We shall employ the conventional definitions of the advantage function A by equation (17), value 

function Vπ and state action value function Qπ as follows: 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑠𝑡+1,𝑎𝑡+1,…[∑𝑙=0
∞  𝛾𝑙𝑟(𝑠𝑡+𝑙)] 

𝑉𝜋(𝑠𝑡) = 𝔼𝑎𝑡,𝑠𝑡+1,…[∑𝑙=0
∞  𝛾𝑙𝑟(𝑠𝑡+𝑙)] 

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠), where                               (17) 
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𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡) for 𝑡 ≥ 0 

The following important identity describes how the advantage π over another strategy, expressed in 

terms of expected return, is built over timesteps by equation (18): 

𝜂(𝜋̃) = 𝜂(𝜋) + 𝔼𝑠0,𝑎0,⋯∼𝜋̃[∑𝑡=0
∞  𝛾𝑡𝐴𝜋(𝑠𝑡, 𝑎𝑡)]  (18) 

where notation 𝔼𝑠0,𝑎0,…∼𝜋[… ] is actions are sampled at 𝑎𝑡 ∼ 𝜋̃(⋅∣ 𝑠𝑡). Let 𝜌𝜋be discounted visitation 

frequencies by eq. (19) 

𝜌𝜋(𝑠) = 𝑃(𝑠0 = 𝑠) + 𝛾𝑃(𝑠1 = 𝑠) + 𝛾
2𝑃(𝑠2 = 𝑠) +⋯, (19) 

where s0 ∼ ρ0 and the actions are selected using π. Equation (1) can be rewritten as follows using a 

sum over states rather than timesteps: 

𝜂(𝜋‾) = 𝜂(𝜋) + ∑𝑡=0
∞  ∑𝑠  𝑃(𝑠𝑡 = 𝑠 ∣ 𝜋̃)∑𝑎  𝜋̃(𝑎 ∣ 𝑠)𝛾

𝑡𝐴𝜋(𝑠, 𝑎) 
= 𝜂(𝜋) + ∑𝑠  ∑𝑡=0

∞  𝛾𝑡𝑃(𝑠𝑡 = 𝑠 ∣ 𝜋̃)∑𝑎  𝜋̃(𝑎 ∣ 𝑠)𝐴𝜋(𝑠, 𝑎)  (20) 
= 𝜂(𝜋) + ∑𝑠  𝜌苜 (𝑠)∑𝑎  𝜋̃(𝑎 ∣ 𝑠)𝐴𝜋(𝑠, 𝑎) 

This equation implies that every policy update 𝜋 → 𝜋̃  that has an expected advantage that is 

nonnegative at every state s, i.e., ∑𝑎  𝜋̃( 𝑎 ∣ 𝑠 )𝐴𝜋(𝑠, 𝑎) > 0, is guaranteed to raise the policy 

performance η. The expected advantage will normally be negative for some states s in the approximate 

situation, i.e. ∑𝑎  𝜋̃( 𝑎 ∣ 𝑠 )𝐴𝜋(𝑠, 𝑎) < 0, however this is usually unavoidable due to estimating and 

approximation error. Instead, we present the local approximation to as follows: 

𝐿𝜋(𝜋‾) = 𝜂(𝜋) + ∑𝑠  𝜌𝜋(𝑠)∑𝑎  𝜋̃(𝑎 ∣ 𝑠)𝐴𝜋(𝑠, 𝑎)  (21) 

Lπ ignores variations in state visiting density brought on by changes in policy and instead uses 

visitation frequency ρπ instead of ρπ˜ visitation density. But if we have a parameterized policy πθ, Lπ 

matches to η first order if πθ(a|s) is a differentiable function of the parameter vector. For every 

parameter value that is θ0 by eq, (22), 

𝐿𝜋𝜃0(𝜋𝜃0) = 𝜂(𝜋𝜃0) 

⁡∇𝜃𝐿𝜋𝜃0
(𝜋𝜃)|

𝜃=𝜃0
= ∇𝜃𝜂(𝜋𝜃)|𝜃=𝜃0⁡′          (22) 

 

3.2 Naïve bayes gradient feed forward neural network based classification 

Let A and B represent two instances from sample space Ω, which can either be countably infinite or 

finite with N elements. Event where both A and B happen is indicated by A ∩ B, or the intersection of 

events A and B. Finally, two events, A and B, are said to be mutually exclusive if their occurrence 

eliminates the likelihood that the other will also occur. This indicates that A and B are disjoint in set 

theory notation, i.e., A ∩ B = ∅. 

(𝐴 ∣ 𝐵) =
|𝐴 ∩ 𝐵|

|𝐵|
=

|𝐴 ∩ 𝐵|
|𝑀|
|𝐵|
|𝑀|

=
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

                    𝑃(𝐵 ∣ 𝐴) =
|𝐵∩𝐴|

|𝐴|
=

|𝐵∩𝐴|

|𝐴|
𝐴

𝐴
∣
=
𝑃(𝐴∩𝐵)

𝑃(𝐴)
   (23) 

From Eq. 23, it is immediately obvious that eq. (24) 

𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐵∣𝐴)𝑃(𝐴)

𝑃(𝐵)
⁡                    (24) 

which is the Bayes theorem's most straightforward (and possibly most famous) statement. The 

generalised Bayes' formula is eq. (25) and if B is an event with P(B) > 0, which is a subset of the union 

of all Ai  

    𝑃(𝐴𝑖 ∣ 𝐵) =
𝑃(𝐵∣𝐴𝑖)𝑃(𝐴𝑖)

∑𝑗=1
𝑛  𝑃(𝐵∣𝐴𝑗)𝑃(𝐴𝑗)

                        (25) 

which can be rewritten as eq. (26) 

        𝑃(𝐴 ∣ 𝐵) =
𝑃(𝐵∣𝐴)𝑃(𝐴)

𝑃(𝐵∣𝐴)𝑃(𝐴)+𝑃(𝐵∣𝐴𝑐)𝑃(𝐴𝑐)
                     (26) 

It is frequently believed that the data might emerge from two opposing hypotheses, H1 and H2, with 

P(H1) = 1 P. (H2). It is also common to use the word "model" for the word "hypothesis." Let D stand 

for the measured data. Then, eq(27) provides posterior probability of hypothesis H1  

⁡𝑃(𝐻1 ∣ 𝐷) =
𝑃(𝐷∣𝐻1)𝑃(𝐻1)

𝑃(𝐷∣𝐻1)𝑃(𝐻1)+𝑃(𝐷∣𝐻2)𝑃(𝐻2)
                 (27) 

and posterior probability of H2 is by eq. (28), (29) 
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𝑃(𝐻2 ∣ 𝐷) =
𝑃(𝐷∣𝐻2)𝑃(𝐻2)

𝑃(𝐷∣𝐻1)𝑃(𝐻1)+𝑃(𝐷∣𝐻2)𝑃(𝐻2)
  (28) 

𝑃(𝐻1∣𝐷)

𝑃(𝐻2∣𝐷)⏟  
pusteriot edds 

=
𝑃(𝐷∣𝐻1)

𝑃(𝐷∣𝐻2)⏟  
Baye factor B Bi2 

⋅
𝑃(𝐻1)

𝑃(𝐻2)⏟
preior oulds 

   (29) 

Ratio of H1's posterior odds to its prior odds is known as Bayes factor. When compared to the 

competing hypothesis H2, Bayes factor is seen as a summary indicator of evidence data give us 

supporting hypothesis H1. Bayes factor and posterior odds are the same if the prior probability for H1 

and H2 are the same. Let's define their conditional probability density functions as fX|Y (x|y) and fY 

|X(y|x). Next, by eq (30) 

𝑓𝑋∣𝑌(𝑥 ∣ 𝑦) =
𝑓𝑋𝑌(𝑥, 𝑦)

𝑓𝑌(𝑦)
 

𝑓𝑌∣𝑋(𝑦 ∣ 𝑥) =
𝑓𝑋𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)
                          (30) 

so that eq. (31) can be used to express Bayes' theorem for continuous variables 

𝑓𝑋∣𝑌(𝑥 ∣ 𝑦) =
𝑓𝑌∣𝑋(𝑦∣𝑥)𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
                                (31) 

where 𝑓𝑌(𝑦) = ∫𝑋  𝑓𝑌∣𝑋(𝑦 ∣ 𝑥)𝑓𝑋(𝑥)𝑑𝑥 = ∫−∞
+∞
 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑥 because of total probability theorem. These 

probabilities are used by the straightforward naive Bayes classifier to categorise an instance. By using 

Bayes' theorem and slightly condensing notation, we arrive at by eq (32) 

𝑃(𝑦𝑗 ∣ 𝐱𝑖) =
𝑃(𝐱𝑖∣𝑦𝑗)𝑃(𝑦𝑗)

𝑃(𝐱𝑖)
                          (32) 

Therefore, numerator is recast as follows; here, we'll just use x and leave off index I for convenience 

by eq. (33): 

𝑃(𝐱 ∣ 𝑦𝑗)𝑃(𝑦𝑗) ⁡= 𝑃(𝐱, 𝑦𝑗)

⁡= 𝑃(𝑥1, 𝑥2, … , 𝑥𝑝, 𝑦𝑗)

⁡= 𝑃(𝑥1 ∣ 𝑥2, 𝑥3, … , 𝑥𝑝, 𝑦𝑗)𝑃(𝑥2, 𝑥3, … , 𝑥𝑝, 𝑦𝑗) because 𝑃(𝑎, 𝑏) = 𝑃(𝑎 ∣ 𝑏)𝑃(𝑏)

⁡= 𝑃(𝑥1 ∣ 𝑥2, 𝑥3, … , 𝑥𝑝, 𝑦𝑗)𝑃(𝑥2 ∣ 𝑥3, 𝑥4, … , 𝑥𝑝, 𝑦𝑗)𝑃(𝑥3, 𝑥4, … , 𝑥𝑝, 𝑦𝑗)

⁡= 𝑃(𝑥1 ∣ 𝑥2, 𝑥3, … , 𝑥𝑝, 𝑦𝑗)𝑃(𝑥2 ∣ 𝑥3, 𝑥4, … , 𝑥𝑝, 𝑦𝑗)⋯𝑃(𝑥𝑝 ∣ 𝑦𝑗)𝑃(𝑦𝑗)
 (33) 

Assume for the moment that each xi is distinct from the others. Strong and obviously broken in the 

majority of practical applications, this assumption is naïve, hence the term. According to this 

presumption, by eq (34) 

𝑃(𝑥1 ∣ 𝑦𝑗) ⋅ 𝑃(𝑥2 ∣ 𝑦𝑗)⋯𝑃(𝑥𝑝 ∣ 𝑦𝑗)𝑃(𝑦𝑗) 

𝑃(𝑥1 ∣ 𝑦𝑗) ⋅ 𝑃(𝑥2 ∣ 𝑦𝑗)⋯𝑃(𝑥𝑝 ∣ 𝑦𝑗)𝑃(𝑦𝑗) = ∏𝑘=1
𝑝
 𝑃(𝑥𝑘 ∣ 𝑦𝑗)𝑃(𝑦𝑗) (34) 

 which we can plug into Eq. 34 and we obtain by eq. (35) 

𝑃(𝑦𝑗 ∣ 𝐱) =
∏  
𝑝
𝑘=1  𝑃(𝑥𝑘∣𝑦𝑗)𝑃(𝑦𝑗)

𝑃(𝐱)
                               (35) 

The denominator, P(x), is independent of the class; it is the same for classes yj and yl, for instance. 

The scaling factor P(x) makes sure that posterior probability P(yj |x) is appropriately scaled. The 

maximal posterior rule is the name given to this rule. The maximal a posteriori (MAP) class, which is 

the resulting "winning" class, is determined as y for instance x as eq. (36): 

𝑦̂ = argmax
𝑦𝑗

∏𝑘=1
𝑝
 𝑃(𝑥𝑘 ∣ 𝑦𝑗)𝑃(𝑦𝑗)                       (36) 

A basic naive Bayes classifier is a model that applies Eq. 21. However, a clear categorisation is not 

always preferred. These natural ranking scores represent the estimated class posterior probabilities. Eq. 

37 can be rewritten as, using total probability theorem (Eq. 3), where 

𝑃(𝑦𝑗 ∣ 𝐱) =
∏𝑘=1
𝑝
 𝑃(𝑥𝑘∣𝑦𝑗)𝑃(𝑦𝑗)

∏𝑘=1
𝑝
 𝑃(𝑥𝑘∣𝑦𝑗)𝑃(𝑦𝑗)+∏𝑘=1

𝑝
 𝑃(𝑥𝑘∣𝑦𝑗

𝑐)𝑃(𝑦𝑗
𝑐)

  (37) 

We will give an example of how to determine the general form using eq'(38) approximate answer 

using our method  

𝑥𝑚𝑦′′(𝑥) = 𝐹(𝑥, 𝑦(𝑥), 𝑦′(𝑥))                      (38) 

where the domain is denoted by m, 𝑚∈𝑍, 𝑥∈𝑅, 𝐷⊂𝑅 represents the answer that needs to be computed. 

Eq. (39) converts the issue to a discretize form if (x, p) signifies a trial solution with movable 

parameters p: 
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Min𝑃⁡ ∑  𝑥̇𝑖∈𝐷‾  𝐹(𝑥𝑖, 𝑦𝑡(𝑥𝑖, 𝑝), 𝑦𝑡
′(𝑥𝑖, 𝑝))⁡          (39) 

confined by the BCs' restrictions, of course. For the trial function (x), we select a form that fulfils the 

BCs. This is done by expressing it as the product of two terms in equation (40): 

𝑦𝑡(𝑥𝑖, 𝑝) = 𝐴(𝑥) + 𝐺(𝑥, 𝑁(𝑥, 𝑝))               (40) 

When the single-output FFNN N(x, p) is given the input vector x along with the parameters p and n. 

The term (x) fulfils the BCs and has no changeable parameters. Since (x) satisfies BCs, second term G 

is designed to not add to them. This term can be created by employing an FFNN whose biases and 

weights have been modified to address the minimization issue. The FFNN can be trained using an 

effective minimization of (3), where error associated with each input xi is value that must be forced 

close to zero. This error value is calculated using both the FFNN output and its derivatives with regard 

to any of its inputs.  

For a given input 𝑥, output of FFNN is given by eq. (41) 

𝑁 = ∑  𝐼
𝑖=1  𝑦𝑖𝜎(𝑧𝑖), ⁡ where 𝑧𝑖 = ∑  𝑛

𝑗=1  𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖  (41) 

It is simple to obtain the gradient of the FFNN with regard to its parameters as an equation (42) 
∂𝑁

∂𝑣𝑖
= 𝜎(𝑧𝑖) 

∂𝑁

∂𝑏𝑖
= 𝑣𝑖𝜎

′(𝑧𝑖) 

                  
∂𝑁

⁡∂𝑤𝑖𝑗
= 𝑣𝑖𝜎

′(𝑧𝑖)       (42) 

Additionally, it should be noted that weight adjustments may be performed in batch mode. We will use 

by eq(43) as an example to show how the method works  
𝑥𝑚′𝑑2𝑦(𝑥)

𝑑𝑥2
= 𝑓(𝑥, 𝑦, 𝑦′)                             (43) 

where 𝑥 ∈ [𝑎, 𝑏] and the BC: 𝑦(𝑎) = 𝐴, 𝑦(𝑏) = 𝐵; a trial solution is written as eq. (44) 

𝑦𝑡(𝑥, 𝑝) =
(𝑏𝐴−𝑎𝐵)

(𝑏−𝑎)
+
(𝐵−𝐴)𝑥

(𝑏−𝑎)
⁡+ (𝑥 − 𝑎)(𝑥 − 𝑏)𝑁(𝑥, 𝑝)  (44) 

where N(x, p) represents result of an FFNN with P weights and one unit of input for x. You should be 

aware that y(x) meets BC by construction. eq(45) provides error quantity that needs to be minimised  

𝐸[𝑝] = ∑  𝑛
𝑖=1   {

𝑑2𝑦𝑡(𝑥𝑖,𝑝)

𝑑𝑥2
− 𝑓 (𝑥𝑖, 𝑦𝑡(𝑥𝑖, 𝑝),

𝑑𝑦𝑡(𝑥𝑖,𝑃)

𝑑𝑥
)}
2

  (45) 

where the 𝑥𝑖 ∈ [𝑎, 𝑏]. Since by eq. (46) 
𝑑𝑦𝑡(𝑥,𝑝)

𝑑𝑥
=

(𝐵−𝐴)

(𝑏−𝑎)
+ {(𝑥 − 𝑎) + (𝑥 − 𝑏)}𝑁(𝑥, 𝑝)

⁡+(𝑥 − 𝑎)(𝑥 − 𝑏)
𝑑𝑁(𝑥,𝑝⃗)

𝑑𝑥

𝑑2𝑦𝑡(𝑥,𝑝)

𝑑𝑥2
= 2𝑁(𝑥, 𝑝) + 2{(𝑥 − 𝑎) + (𝑥 − 𝑏)}

𝑑𝑁(𝑥,𝑝⃗)

𝑑𝑥

⁡+(𝑥 − 𝑎)(𝑥 − 𝑏)
𝑑2𝑁(𝑥,𝑝)

𝑑𝑥2

 (46) 

Gradient of error with regard to specification p is easily calculated using (46). 

 

4. Performance Analysis 
 

4.1 Dataset Description 

This study made use of the GAMEEMO dataset, which is openly accessible. Signals gathered from 

participants playing emotional video games are included in the EEG dataset. To compare neurological 

signals and meaningful responses across different people and EEG sessions, participants were asked to 

complete trials for 4 sessions apiece. These EEG signals were obtained while playing video games. 

They were collected utilising a 14-channel wearable and portable electroencephalography (EEG) 

instrument on an Emotive Epoc+ from 28 different individuals. There was a total of 20 minutes of 

EEG data available for each subject. Subjects engaged in four different emotional computer games for 

five minutes each. This dataset aims to evaluate the efficacy of wearable EEG devices to traditional 

EEG devices and to provide an alternate source of data for the emotion identification process. 

DEAP is a multimodal dataset for the study of emotional states in people. 32 volunteers viewed 40 

one-minute highlight music videos while their EEG and peripheral physiological data were monitored. 

Suggested ensemble model's findings were assessed in our experiments using eight-fold cross-
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validation, and outcomes are shown as an average standard deviation. All of the studies had a total of 

30 iterations. Table 1 displays the many steps in the EEG signal processing. 

 

Table 1. Proposed technique-based EEG signal processing for various dataset 

Dataset 
Input EEG 

signal 

Processed 

input signal 

Extracted 

features of 

EEG signal 

Classified 

EEG signal 

Detected emotion 

from classified 

signal 

EEG 

Database 

dataset 

 
 

 
  

SSVEP 

 
   

 
 

Table 2. Comparative analysis between proposed and existing technique for various dataset 

Datasets Techniques Accuracy Precision Recall F1_Score RMSE MAP 

GAMEEMO 

DNN 82 71 65 55 41 52 

SVM 84 75 69 59 43 55 

MLA_HMS_5GN 86 79 71 62 45 59 

DEAP 

DNN 85 81 68 59 45 61 

SVM 90 83 75 65 49 63 

MLA_HMS_5GN 95 85 79 68 52 66 

 

 
(a) Accuracy 

 
(b) Precision 

 
(c) Recall 

 
(d) F-1 score 
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(e) RMSE 

 
(f) MAP 

Figure 2. Comparative analysis between proposed and existing technique for GAMEEMO dataset in 

terms of (a) Accuracy, (b) precision, (c) recall, (d) F-1 score, (e) RMSE, (f) MAP 

 

The above figure-2 shows comparative analysis between proposed and existing approach for 

GAMEEMO dataset. Here proposed technique attained accuracy of 86%, precision of 79%, recall of 

71%, F-1 measure of 62%, RMSE of 45% and MAP of 59%, existing technique DNN attained 

accuracy of 82%, precision of 71%, recall of 65%, F-1 measure of 55%, RMSE of 41% and MAP of 

52%, SVM attained accuracy of 84%, precision of 75%, recall of 69%, F-1 measure of 59%, RMSE of 

43% and MAP of 55%. 

 
(a) Accuracy 

 
(b) Precision 

 
(c) Recall 

 
(d) F-1 score 
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(e) RMSE 

 
(f) MAP 

Figure 3. Comparative analysis between proposed and existing technique for DEAP dataset in terms 

of (a) Accuracy, (b) precision, (c) recall, (d) F-1 score, (e) RMSE, (f) MAP 

 

From above figure-3 the comparative analysis between proposed and existing technique for DEAP 

dataset. Proposed approach attained accuracy of 95%, precision of 85%, recall of 79%, F-1 measure of 

68%, RMSE of 52% and MAP of 66%, existing technique DNN attained accuracy of 85%, precision 

of 81%, recall of 68%, F-1 measure of 59%, RMSE of 45% and MAP of 61%, SVM attained accuracy 

of 90%, precision of 83%, recall of 75%, F-1 measure of 65%, RMSE of 49% and MAP of 63%.  

 

5. Conclusion 

 

The proposed framework has been designed novel technique in health monitoring system by 5G 

network using machine learning analysis. The processed EEG wave fragments has been extracted 

using K-adaptive reinforcement learning. this extracted features has been classified using naïve bayes 

gradient feed forward neural network.  Performance of propose network was calculated by evaluating 

classification accuracy, varying different parameters such as number of strides, learning rate 

parameter, number of epochs, and sample size. An extensive data learning approach is proposed to 

classify depression EEG signals from that of healthy controls. The key advantage of using deep 

learning is that they return state-of-the-art accuracy and do not require manual pre-processing or 

feature extraction from the signal. Proposed approach attained accuracy of 95%, precision of 85%, 

recall of 79%, F-1 measure of 68%, RMSE of 52% and MAP of 66%. Instead of categorization using 

deep neural networks, future research will concentrate on methods capable of early detection or 

prediction of hand movements. Moreover, the utilisation of hand-crafted features could be a drawback 

of our research. 
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