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Abstract 

 

Alzheimer's disease is a degenerative dementia that causes 

progressively worsening memory loss and other cognitive and 

physical impairments over time. Mini-Mental State Examinations 

and other screening tools are helpful for early detection, but 

diagnostic MRI brain analysis is required. When Alzheimer's disease 

(AD) is detected in its earliest stages, patients may begin protective 

treatments before permanent brain damage has occurred. The 

characteristics of the lesion sites in AD affected role, as identified by 

MRI, exhibit great variety and are dispersed across the image space, 

as demonstrated in cross-sectional imaging investigations of the 

disease. Optimised Adaptive Bilateral filtering using a deep learning 

model was suggested as part of this study's approach toward this end. 

Denoising the pictures with the help of the suggested adaptive 

bilateral filter (ABF) is the first stage. The ABF improves denoising 

in edge, detail, and homogenous areas separately. After then, the 

ABF is given a weight, and the Adaptive Equilibrium Optimizer 

(AEO) is used to determine the best possible value for that weight. 

LeNet, a CNN model, is then used to complete the AD organisation. 

The first step in using the LeNet-5 network model to identify AD is 

to study the model's structure and parameters. The ADNI 

experimental dataset was used to verify and compare the suggested 

technique to other models. The experimental findings prove that the 

suggested method can achieve a classification accuracy of 97.43%, 

98.09% specificity, 97.12% sensitivity, and 89.67% Kappa index. 

When compared against competing algorithms, the suggested model 

emerges victorious. 
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1. Introduction 

Healthcare in the twenty-first century faces significant challenges, chief among them Alzheimer's 

disease (AD), the most prevalent type of dementia. AD is the sixth most significant cause of States, 

affecting an estimated 5.5 million individuals aged 65 and over. The total annual cost of caring for 

people with AD in the United States in 2018 was $277 billion [1], [2], putting a significant strain on 

the country's economy and the nation's healthcare system due to the high expense of medical treatment 

and other assistance programmes for patients and their families. There is currently no recognised 

disease-modifying therapy for AD, an irreversible, degenerative brain condition characterised by 

deterioration in cognitive ability [3]. For this reason, a lot of research has gone into pre-symptomatic 

early detection technologies to slow or prevent the course of illness. In particular, state-of-the-art 

neuroimaging methods have been developed and exploited to detect anatomical and molecular 

biomarkers associated with Alzheimer's disease (AD) [4], [5]. Data integration of methods [6], [7] 

resulted in an explosion of enthusiasm for using machine learning on computers to do integrative 

analysis. Popular pattern analysis techniques have shown promise in early AD detection and 

prediction of AD progression [8-10].  

Using these machine learning techniques requires a well-defined architecture or set of pre-

processing processes [11]. Four steps—features are often included in machine learning classification 

research. These methods may be time-consuming, requiring specialised expertise and several 

optimisation iterations. It has been highlighted that these procedures are difficult to replicate [12].  

Deep learning approaches strategies for overcoming these obstacles. There has been an uptick in 

research using convolutional neural networks (CNN) in tandem with MRI imaging to detect AD in its 

earliest stages [14]. The typical CNN network has three layers: input, hidden, and output. When data 

is sent to the network, it is received by the input layer. Multiple convolutional and pooling layers make 

up the hidden layer. It is designed to do one thing: take input photographs and pull out their layered 

elements. Extracting the image's higher-level characteristics is a multi-step process that this 

hierarchical structure facilitates. The following are some drawbacks of these approaches: Because of 

the many layers that make up a conventional CNN, too deep networks may have the opposite effect 

of what was intended [15], [16]. Furthermore, conventional CNN does not preserve picture quality 

when subjected to an affine transformation. The flawed CNN functionality results from its default 

sampling strategy (matrix sampling).  

To cleanse AD pictures of noise, this study employs a pre-processing technique based on optimal 

adaptive bilateral filtering. Applying AEO reduces the filtering burden. The LeNet structure is used 

to categorise AD to solve the conventional CNN's drawback. In Section 2, provide a list of works that 

are relevant to the proposed paradigm. Sections 3 and 4 detail the proposed model's explanation and 

validation. Finally, Section 5 concludes the research work. 

2. Related Works 

The most well-known DL models and the outcomes of implementing them are described by 

Hazarika et al. [17] in the context of AD organisation. All MR images of the brain are collected from 

the database. The DenseNet-121 model produces the most effective outcome, with an average 

performance rate of 88.78% compared to the other models presented. Although it outperforms many 

other models, the DenseNet's heavy reliance on convolutional processes makes it computationally 

sluggish. One common technique for improving the efficiency of a convolutional operation is called 

"depth-wise convolution." To reduce the running time, use depth-wise convolution layers instead of 

the original ones. The new design generally increased the efficiency of the perfect by 90.22 percent. 

Helaly et al. [18] have developed a comprehensive framework for the diagnosis of Alzheimer's 

disease at any stage and the categorisation of medical images according to those diagnoses. In this 

study, use (CNN). The spectrum of AD may be broken down into four distinct phases. Each pair of 

AD stages is also classified using a binary system distinct from the other pairs. AD is detected by 

using two different approaches for classifying medical pictures. The COVID-19 pandemic has made 

it more difficult than ever to avoid the hospital due to crowding and disease. Due to this, we propose 

a web-based programme that employs the final qualifying suggested architectures for Alzheimer's 
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disease testing. Physicians and patients may benefit from remote monitoring of AD symptoms. In 

addition, it utilises the AD spectrum to identify the patient's position on the spectrum and provide 

advice according to that position. Each method is evaluated and compared using nine distinct metrics 

of performance.  

Using deep learning can be used to create precise illness classification models is the goal of a 

unique three-step technique (SWAT-CNN) proposed by Jo et al. [19]. First, a convolutional neural 

network (CNN) was used on each non-overlapping piece of the complete genome to identify 

phenotype-associated regions. A Sliding Window Association Test (SWAT) was then used to run 

CNN on the chosen pieces to determine phenotypic influence scores (PIS) and locate SNPs related to 

the trait. Next, the model built a classification model by running CNN on all the SNPs it found. N = 

981; cognitively normal older people from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

were used to evaluate our method. Our method can narrow the most critical genetic locus for AD to 

the already-famous APOE area. An area under the curve (AUC) of 0.82 was reached by our 

classification model, which was consistent with classical machine learning techniques such as random 

forest and XGBoost. AD-associated AD was discovered using SWAT-CNN, a deep revolutionary 

technique that shows promise for various medicinal applications. 

A unified Fisher score and selection strategy has been developed by Sheng et al. [20]. To address 

the issue of the drastic gap between the feature scales of genetic and brain imaging, first learnt genetic 

features using the Fisher score and then dimensionality reduction to bridge the gap. Next, learn the 

characteristics associated between brain imaging and genetic data and use those weight coefficients 

to multiply the traits. Five imaging characteristics and five genetic features were chosen by the feature 

selection software to produce. The classification accuracy was enhanced somewhat compared to when 

just imaging data were used; moreover, a collection of connected features of brain imaging phenotypes 

and genetic variables was chosen to enhance the classification accuracy further. 

In the research by Savaş [21], brain MRIs were used to categorise the antecedent phases of 

Alzheimer's disease as usual, moderate cognitive impairment, and Alzheimer's disease. Classification 

of 2182 picture objects from the ADNI database was accomplished using several models based on the 

CNN architecture. The results of the comparison of 29 pre-trained models' image-processing abilities 

were reported in this research. Each model's accuracy value was calculated, as were the precision, 

specificity, and sensitivity rates for each class. When put to the test, the EfficientNetB0 model 

performed with a 92.98% success rate, making it the most accurate. EfficientNetB3 (97.28%) models 

obtained the most excellent rates of accuracy (89.78%), sensitivity (94.42%), and specificity (97.28%) 

of the Alzheimer's disease class during the comparative assessment stage using the confusion matrix. 

The research found that compared to other pre-trained models, EfficientNet models performed the 

best in classification accuracy. 

Hippocampal atrophy is the most reliable clinical sign of Alzheimer's disease, and Liang et al. 

[22] have proposed a new technique for identifying AD patients based on this symptom. A total of 

207 patients with (AD), 209 patients with moderate cognitive impairment (MCI), and 109 cognitively 

normal (CN) individuals were analysed using T1-weighted MRIs from the ADNI dataset. First, MRI 

images are segmented to isolate the left and right hippocampus; then, feature extraction using PACNet 

is performed; lastly, the Broad Learning System (BLS) categorises patients into distinct groups. The 

PCANet approach can efficiently extract the most relevant features from images. At the same time, 

the BLS method can achieve over 95% accuracy and in a shorter amount of time than traditional 

machine learning techniques. Experimental results have revealed that our method improves the 

precision and throughput of the classification task in AI-assisted Alzheimer's disease diagnosis. In 

[26], a modified EfficientNet for three-dimensional space predicts AD. The multiscale characteristics 

of brain MRI are explored by mobile inverted bottleneck convolution with modified EfficientNet. The 

model is tested with four classification stages of AD. 

3. Proposed System 

3.1 Data Selection 

ADNI data was utilised for this analysis (http://adni.loni.usc.edu, accessed on 16 February 2020). 

Normal controls (NC), moderate cognitive impairment (MCI), and (AD) are the three broad 

classifications used to analyse the dataset (AD). The onset of MCI marks a significant point from 

average to AD functioning. The study tested 515 samples, 55 of which were diagnosed with 
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Alzheimer's disease (AD), 255 with normal cognitive function (NC), and 205 with mild cognitive 

impairment (MCI). Nearly as many men as women belonged to each group. To get a score on the 

MMSE scale, clinicians need to ask patients a series of questions. The score on the scale may be any 

positive or negative integer between 0 and 30. A higher score indicates better health, whereas a lower 

number indicates more severe dementia. Scoring between 24 and 30 on the MMSE and less than 12 

on the ADAS-Cog indicates NC. The MMSE range for MCI is 23-30, whereas the ADAS-Cog range 

is 7-17. Those with an MMSE score between 20 and 26 and an ADAS-Cog score between 12 and 29 

have AD [24]. Table 1 displays the information that was gathered. 
 

Table 1. Info of ADNI Dataset Used in this Study 

Diagnosis MCI NC AD 

Age 73.8 ± 7.5 70.6 ± 5.1 78.9 ± 8.6 

ADAS-Cog 7-17 <12 12-29 

Number of male samples 102 128 28 

Sum of samples 205 255 55 

The sum of female samples 103 127 27 

MMSE 23-30 24-30 20-26 

3.2 Pre-processing 

3.2.1 Data Normalisation 

There is also a normalisation of picture values, and two methods of improving image quality 

have been investigated. 3D volume pictures are normalised to the [0,1] range in their basic form. When 

in a different arrangement, it strains against contrast. To normalise the volume to the [0, 1] range, the 

2nd and 98th percentile values are determined and assigned as the minimum and maximum, 

respectively. 

3.2.2 Denoising Filters Using Traditional Bilateral Filtering (TBF) 

Detail loss is a significant issue with denoising filters. And the techniques can't tell the difference 

between an edge and a consistent pixel. For this reason, a technique that can modify the level of 

smoothing depending on picture areas is required. This work proposes a novel CV-based approach to 

noise picture classification, dividing it into homogeneous, detailed, and edge areas. As a result, the 

bilateral filter may be used in various contexts and settings. The following model is most applicable 

for photos containing multiplicative noise, as shown in Equation (1). 

f(x, y) = g(x, y).ηm(x, y) +ηa(x, y)           (1) 

Where f(x,y),g(x,y),η_m (x,y)  and η_a (x,y)  multiplicative and additive noise functions, and 

the actual noisy picture and unknown noise-free image. In order to account for the speckle noise in an 

ultrasonic picture, the study uses Equation (2), which takes into account the fact that additive noise is 

often thought to be less than noise. 

f(x, y) = g(x, y).ηm(x, y)            (2) 

Ultrasound pictures include speckle noise, which is multiplicative noise. So, a logarithmic 

transformation of the noisy picture is recommended. So, as the following Equation (3) demonstrates, 

multiplicative noise has a high potential for addiction.   

log f(x, y) = log(g(x, y)). log⁡(ηm(x, y))⁡       ⁡⁡⁡(3) 

Coefficient of Variation 

The CV is unit less. Therefore, the value is the same for significant and slight variations in high 

and low-intensity areas. This results in the same function being used for areas of varying brightness. 

In this sense, CV outperforms the standard deviation. The CV formula is mentioned in Equation (4): 

CV =
Sa

ma
× 100              (4) 

Where S_a and m_a Mean and standard deviation are and, respectively. Therefore, "Edges", 

"Homogenous", and "Detail" correlate to high, low, and intermediate CV values. 
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3.2.3 Adaptive Bilateral Filter 

Using the suggested ABF, the study modified the TBF such that its characteristics vary depending 

on the area being analysed. Adjustments to the bilateral filter's window size, intensity dispersion, and 

spatial dispersion are as follows in Equations (5-7). 

σ(d)ij = σd × (1 − CVij)         

    (5) 

σ(r)ij = σr × (1 − CVij)         

    (6) 

wij = (2 × (σd × (1 − CVij))) + 1           (7) 

Where (d)ij and (r)ij are the variances in space and intensity for the applied i, j pixels. The W*W 

size is denoted by w ij. The performance of the bilateral filter may be enhanced by localising the 

variances and the window size. The bilateral filter is most sensitive to changes when the CV ij value 

is close to one. As a result, w ij, r ij, and d ij are all reduced by the suggested ABF. Reduced values 

of (d)(r)(w) ij are effective in restoring sharp borders. Further, the bilateral filter is close to the 

homogeneous regions when CV ij is close to zero. As a result, ABF boosts (d), (r), and (w) ij. 

Homogeneous regions become less distinct as (d) ij, (r) ij, and w ij get larger. 

Weighted Adaptive Bilateral Filter 

The study will assign big weights to surround coefficients quite different in size from one another 

and small weights to those very close in magnitude. While detail pixels cluster together and remain 

stable, noisy ones are scattered or intermittent. Because values at neighbouring places tend to be more 

consistent, the study uses a measure of value similarity called W(x,y), where x and y are coordinates. 

It is shown in Equations (8-9): 

Gσ(d)ij
= Gσ(d)ij

(‖p − Q‖) × W(x, y)           (8) 

W(x, y) = EXP(−(
I(x,y)−I(x+r,y+s)

Cσ
)
2
)           (9) 

Where G_(σ_(〖(d)〗_ij ) ) is the spatial weight of bilateral filter, I(x,y) and I(x+r,y+s) are 

central coefficients and neighbor coefficients. The window size of the denoising filter W(x,y) is w', 

where we = w. Since less-noisy regions tend to be more distinct. As a result, it modifies the 

effectiveness of this filter by dampening it in quiet environments and amplifying it in noisier ones. 

The Eq. (10-12) specified it. 

N = 10 × noise − est × K          (10) 

M = (Sigmf (N, [1,
K

2
]))

4

          (11) 

{
Wxy = Wxy − (1 − M) × (Wxy − 1),⁡⁡⁡Wxy > 1,

Wxy = Wxy + (1 − M) × (1 − Wxy),⁡⁡⁡Wxy ≤ 1
        (12) 

Where "noise-est" is the image noise variance estimate, N is the image noise normalisation in the 

interval [0, K], and Sigmf is the sigmoid function. Filter effects at their maximum intensity for noise-

est0:1 result in the value 10. It is discussed how AEO chooses the best window size for the adaptive 

filter. 

3.2.3.1 Adaptive Equilibrium Optimiser 

It is suggested that this algorithm carries out the best solution for the window size of bilateral 

filtering. One step beyond the equilibrium optimiser is the adaptive equilibrium optimiser [25]. The 

search agents in this method are randomly dispersed in a search space determined by the fitness metric. 

The equilibrium and the dynamic condition that relies on the mass preservation law by exiting, 

creating, and entering the control volume encourage the equilibrium optimiser. 

First, the search agents are connected to the density of the search space, with the iteration starting 

at it = 1. 

Zj(itr = 1) = lb + randj(1, e) ∗ (ub − lb), j = 1,2,… ,M       (13) 
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Lower and upper limits for the search space are denoted by l b and u b in Eq. (13), M denotes 

search agents, the problem dimension is denoted by e, and the random integer between 0 and 1 is 

denoted by rand j in the 1-D vector. In the equilibrium optimiser, the position of the jth search agent 

is modified according to the value of the control volume C v as in Equation (14): 

Z⃗ j(new) = Z⃗ eq(itr) + (Z⃗ j(itr) − Z⃗ eq(itr)) ∗ E⃗⃗ j(itr) +
gj(itr)

η⃗⃗⃗⃗ j(itr)∗CV
× (1 − E⃗⃗ j(itr))   (14) 

Z  _eq determines the equilibrium! Z eq⋅pool of the four best search agents Z  _(eq(1)), Z  
_(eq(2)), Z  _(eq(3)), and Z  _(eq(4)), and the average is described as Z  _(eq(avg)). The values of! Z 

 _(eq(1)) , Z  _(eq(2)), Z  _(eq(3)), and Z  _(eq(4)) are chosen by the fitness values such as Z  
_(eq(1)) , Z  _(eq(2)), Z  _(eq(3)), and Z  _(eq(4)). The ranked list is used to ascertain fitness values 

and equilibrium candidates for the minimisation problem. Each of the M search agents' fitness values 

is characterised by Equations (15-16): 

F = (F1, F2, … , F3)           (15) 

[sortedF, sortindex] = sort⁡(F)          (16) 

These fitness values, together with the equilibrium candidates, are now represented by Equation 

(17): 

F(Z⃗ eq(1)) = sortedF(1)and⁡Z⃗ eq(1) =⁡ Z⃗ (sortedF(1)) 

F(Z⃗ eq(2)) = sortedF(2)and⁡Z⃗ eq(2) =⁡ Z⃗ (sortedF(2)) 

F(Z⃗ eq(3)) = sortedF(3)and⁡Z⃗ eq(3) =⁡ Z⃗ (sortedF(3)) 

F(Z⃗ eq(4)) = sortedF(4)and⁡Z⃗ eq(4) =⁡ Z⃗ (sortedF(4)) 

Z⃗ eq(avg) =
1

4
(Z⃗ eq(1) + Z⃗ eq(2) + Z⃗ eq(3) + Z⃗ eq(4))         (17) 

Ultimately, as: 

Z⃗ eq,pool = {Z⃗ eq(1), Z⃗ eq(2), Z⃗ eq(3), Z⃗ eq(4), Z⃗ eq(avg)}        (18) 

The exponential factor E  _j is to help the equilibrium optimiser exploration is computed for the 

jth search agents as  

E⃗⃗ j(itr) = x1⁡sign⁡(s1 − 0.5) [e
−η⃗⃗⃗⃗ j⁡(1−

itr

max⁡ _itr
)
(x2

itr
max⁡ _itr

)

]      (19) 

Based on Eq. (19), the exploration function is controlled by the factor x 1, the exploitation 

function is controlled by the factor x 2, the factor sign controls the search direction, and the arbitrary 

vector of dimension in the range 0 to 1 for the jth search agent in its iterations is represented by the 

symbol _j (it). The current iteration number is represented by the symbol it and the maximum iteration 

sum. 

The generation rate g  _j (itr)=g  _(j,0) (itr)*E  _j (itr) assists the exploration stage using 

participation probability Z  _eq. 

The g  _jis described as in Equation (20): 

g⃗ j(itr) = g⃗ j,0(itr) ∗ E⃗⃗ j(itr)          (20) 

The g  _(j,0) (itr) and (grc) _̅j (itr) are computed as in Equations (21-22): 

g⃗ j,0(itr) = grc̅̅ ̅̅ j(itr)(Z⃗ eq(itr) − η⃗⃗⃗⃗ j(itr))         (21) 

grc̅̅ ̅̅ j(itr) = {
0.5⁡⁡s1⁡⁡⁡s2 ≥ gp

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡s2 ≥ gp
          (22) 

grc stands for the generation rate control factor, g p for the probability, s 1 and s 2 for random 

values between 0 and 1, and so on. All search agents' current and average fitness is used to make the 

adaptive choice, and the minimisation problem is stated in Equation (23). 

Z⃗ j(itr + 1) = {
Z⃗ j(new)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Fj(itr) < Favg(itr)

Z⃗ j(new)⨂(0.5 + rand⁡(1, e))⁡⁡Fj(itr) < Favg(itr)
        (23) 

Fitness values for each search agent are denoted by F j (it) and F avg (it), respectively; Eq. (23) 

denotes component-wise multiplication. 
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Favg(itr)
1

M
∑ Fj(itr)

M
j=1            (24) 

The notions of memory storage are transferred from the equilibrium optimiser to the adaptive 

equilibrium optimiser. Therefore, after the optimum fitness value has been found, the current iteration 

is compared to the previous one and the formula changes. Equations (25-26) state that: 

Z⃗ j(itr) = {

Z⃗ j(itr)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr > 1⁡and⁡Fj(itr) < Fj(itr − 1)

Z⃗ j(itr − 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr > 1⁡and⁡Fj(itr) ≥ Fj(itr − 1)

Z⃗ j(itr)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr = 1

          (25) 

And⁡F_j⁡(itr) 

Fj(itr) = {

Fj(itr)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr > 1⁡and⁡Fj(itr) < Fj(itr − 1)

Fj(itr − 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr > 1⁡and⁡Fj(itr) ≥ Fj(itr − 1)

Fj(itr)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡itr = 1

         (26) 

By identifying the optimal solution using the algorithm, the control parameters are selected 

effectively, which leads to filtering the noises for final classification.  

3.3 Classification for AD 

Many deep learning methods have been developed for use in real-time systems. Among these 

methods, Convolutional Neural Network (CNN) has quickly become the go-to for everything from 

vision system design and implementation to medical image construction. Alzheimer's disease (AD) in 

medical imaging was initially classified using the LeNet- 5 CNN architecture. 

A. First Layer: 

A 32x32 grayscale AD picture was fed into the LeNet-5 CNN model through the first 

convolutional layer, with a filter size of 5x5 and a stride value of 1. 

B. Second Layer: 

A median pooling layer was added to the LeNet-5 CNN model, and a 22 filter with a 2 strides 

value was used. 

C. Third Layer: 

A convolutional layer with 16 filters of 5x5 dimensions and a stride of one was added into the 

third layer of the LeNet-5 architecture. 

D. Fourth Layer: 

Again, a layer of average pooling with a 22 kernel and a stride value of 2 made up the fourth 

layer. 

E. Fifth Layer: 

Each kernel in the fifth, fully linked layer of the LeNet-5 architecture was 55 units in size. There 

was a direct connection between each node in the fourth layer and each of the 120 units in this layer.F. 

Sixth Layer. 

With 84 units, the LeNet-5 model's sixth layer was wholly linked. 

G. Output Layer 

Finally, a fully-connected sigmoid output layer was used to classify people as either AD or non-

AD. 

The study found that applying the activation function ReLu helped us the most. The study trained 

the model 157 times with a batch size of 32. A summary of LeNet's architecture is provided in Table 

2. 
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Table 2. Summary of Model 

Layer Activation 
Sum of 

Filter 
Stride Filter Size Output Shape 

Image - 1 - - 32x32 

Convolution relu 6 1 5x5 32x32 

Fully-Connected relu - - - 120 

Fully-Connected relu - - - 84 

Convolution relu 16 1 5x5 12x12 

Average Pooling relu 16 2 2x2 6x6 

Average Pooling relu 6 2 2x2 16x16 

Fully-Connected Sigmoid - - - 2 

 

4. Results and Discussion 

Quantitative and qualitative evaluations of performance are included here. With 8GB of RAM, a 

1TB hard drive, and a 3.0GHz Intel i5 CPU, the suggested system is built using Python and Pytorch. 

4.1 Performance Metrics 

This research provides the mathematical expressions for the following metrics: SPE, SEN, and 

ACC, which are provided in Equations (27-29). 

ACC =
TP+TN

TP+TN+FP+FN
           (27) 

SEN =
TP

TP+FN
                                 (28) 

SPE =
TN

TP+FP
                                             (29) 

In this case, the experiment analysis is conducted in two ways, with and without pre-processing, 

as indicated in Tables 3 and 4. Since segmentation models are employed by currently available 

methods and pre-processing models have received little attention, generic pre-trained models are 

considered for experimental analysis. But the suggested approach aimed to de-noise the AD pictures 

using optimum weighted adaptive bilateral filtering. 

Table 3. Analysis of the Proposed Model without Pre-processing 

Methodologies Accuracy Sensitivity Specificity Kappa Index 

VGGNet 85.43 67.15 75.16 76.38 

AlexNet 89.03 85.40 83.50 77.92 

MobileNet 93.60 81.60 87.04 80.75 

Proposed 94.70 89.80 96.44 85.17 

 

In the accuracy analysis, the proposed model achieved 94.70%, VGGNet has 85.43%, and 

AlexNet has 93.60%. The specificity of the proposed model is 96.44%, the existing models, such as 

AlexNet and MobileNet, achieved nearly 85% of specificity, and VGGNet has 75.16% of specificity. 

Compared with all techniques, VGGNet achieved less performance, i.e., 67.15% of sensitivity and 

76.38% of the Kappa index. AlexNet and MobileNet achieved 83% sensitivity and nearly 79% Kappa 

index. But the proposed model achieved 89.90% sensitivity and 85.17% Kappa index. 
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Table 4. Analysis of the Proposed Model with Pre-processing 

Methodologies Sensitivity (%) Accuracy (%) Specificity (%) Kappa index 

(%) 

VGGNet 90.14 91.22 97.24 79 

AlexNet 94.03 90.89  96.69 79.08 

MobileNet 94.76 93.98 95.30 83.44 

Proposed 97.12 97.43 98.09 89.67 

 

Comparing Table 3, the proposed model achieved 97.12% of sensitivity, 98% of specificity, 

97.43% of accuracy and 89.67% of kappa index. The reason for better performance is the introduction 

of weighted adaptive bilateral filtering, and AEO selects the optimal weight of bilateral filtering. The 

proposed model and the existing models also increased their performance by introducing pre-

processing models. For example, the existing models such as VGGNet, AlexNet and MobileNet 

achieved nearly 92% to 94% of sensitivity, 92% of accuracy, 95% to 97% of specificity and 79% to 

83% of the Kappa index. Figure 1 to 4 provides a graphical comparison of the proposed model. 

 
Figure 1. Accuracy Comparison 

 

 
Figure 2. Sensitivity Comparison 
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Figure 3. Specificity Comparison 

 

 
Figure 4. Kappa Index Comparison 

 

5. Conclusion 

The study suggests a deep learning perfect built on LeNet for early AD detection in this study. 

This paper introduces an AEO-based optimum adaptive bilateral filtering technique for noise 

reduction in AD images. With AEO, the adaptive bilateral filter's regulating parameter may converge 

more quickly. Adding Gaussian noise to the source picture at varying levels of noise variance results 

in a noisy AD image in the suggested technique. The optimal value of the adaptive bilateral filter's 

control parameters is then obtained by using an optimisation method. To ensure the efficacy of the 

suggested strategy, it was tested on the ADNI experimental dataset and associated with the existing 

models. The trial findings validate the superior performance and improved robustness of the proposed 

model in a clinical setting. That's proof of its effective pattern recognition. Model robustness may be 

improved with the addition of a pre-processing model. The classification accuracy of the method 

suggested in this research was found to attain 97.43% accuracy using the ADNI dataset, demonstrating 

the benefits of the proposed model. There is great potential for the suggested strategy in actual AD 

settings. Our subsequent studies will combine gene identification for AD susceptibility with pattern 

recognition. 
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