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Abstract

The significance of speech recognition systems is widespread,
encompassing applications like speech translation, robotics, and
security. However, these systems often encounter challenges arising
from noise and source mixing during signal acquisition, leading to
performance degradation. Addressing this, cutting-edge solutions
must effectively incorporate temporal dependencies spanning
longer periods than a single time frame. To tackle this issue, this
study introduces a novel model employing non-negative matrix
factorization (NMF) modelling. This technique harnesses the
scattering transform, involving wavelet filters and pyramid
scattering, to compute sources and mitigate undesired signals. Once
signal estimation is achieved, a source separation algorithm is
devised, employing an optimization process grounded in training
and testing approaches. By quantifying performance metrics, a
comparative analysis is conducted between existing methods and
the proposed model. Results indicate the superior performance of
the suggested approach, underscored by these metrics. This
signifies that the NMF and scattering transform-based model
adeptly addresses the challenge of effectively utilizing temporal
dependencies spanning more than a single time frame, ultimately
enhancing speech recognition system efficacy.

Keywords: Automatic Speech Recognition, Matrix Factorization,
Neural Network, Source Mixing, Wavelet Transform.

1. Introduction
In the past few years, significant focus has been directed towards investigating single-channel

speech separation (SCSS) in a variety of research works. Its potential uses encompass domains related
to speech signal processing, including Automatic Speech Recognition (ASR), speech separation,
speech enhancement, and speech recognition systems. SCSS presents a unique challenge due to its
confinement to a single microphone, aiming to extract specific target signals. The task of speech
separation is categorized into three groups based on the available prior information [1]: fully
supervised, partially supervised, and unsupervised scenarios. In the fully supervised approach, both
speech and noise serve as inputs to generate corresponding dictionaries during training, which are
then utilized for speech data computation. These learned dictionaries are typically fixed during
separation, where activation is devised to reconstruct the original signal, an essential step for more
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accurate signal reconstruction. The semi-supervised method involves instances of missing speech and
noise data, requiring the separation stage to create the missing dictionary. Finally, the unsupervised
model confronts the challenge of separating sources with unidentified speech sounds, making the
separation process considerably intricate.

The process of extracting specific audio signals or sources from a blend of multiple sounds is
known as speech separation. This becomes particularly challenging when the number of sources in the
mixture exceeds the observable number of channels. Numerous potential solutions have emerged from
research on this topic [2]. One approach involves modelling sources based on their spatial distinctions
[3]. Leveraging variations in spatial characteristics, such as location or arrival direction, enables the
separation of sources from the mixture. Another avenue explores the redundancy inherent in sources
[4]. By capitalizing on the likelihood of sources carrying similar or overlapping information,
separation algorithms can distinguish and segregate these redundant components. Sparsity-based
methods have also gained prominence for speech separation [5]. These methods exploit the tendency
for speech signals to exhibit sparsity in certain transform domains, such as the time-frequency domain.
Encouraging sparsity in separated sources proves effective in achieving successful separation.
Non-negative matrix factorization (NMF) [6] has emerged as a recent solution for addressing speech
separation challenges. NMF stands as an unsupervised technique for learning dictionaries, forming the
basis of numerous sound separation methods[7]. It finds utility across diverse applications [8], [9],
being widely adopted in both separation and training phases. NMF's effectiveness extends to solving
research issues in speech enhancement [10], [11], speech separation [12], instrument segmentation
[13], and even image processing [14]. NMF operates by breaking down an input signal matrix into a
combination of non-negative coefficients and elements. The enforced non-negativity constraint
ensures the absence of negative factors in the factorization. In the realm of single-channel source
separation, a dictionary matrix, often sparse, is trained using clean or noisy speech data. This
dictionary matrix usually contains numerous zero elements. Various strategies have been introduced
to enhance NMF's efficacy in speech separation by incorporating additional constraints. For instance,
the sparse constraint could penalize non-sparse vectors, encouraging sparsity within the factorization.
These constraints aim to bolster the quality of separated speech signals and achieve more precise
source separation.

The utilization of NMF in speech separation underscores its potential as a robust tool for
disentangling mixture signals into their elemental sources. Through harnessing the non-negativity
constraint and integrating supplementary constraints, NMF-based approaches exhibit promising
outcomes in enhancing speech separation performance. Approaches such as the mixture of local
dictionary [10], graph regularization, or utilization of NMF with β-divergence [12] have been
employed. The NMF-based speech separation model is depicted in Figure 1 below.

Fig 1. Architecture of NMF-based Speech Separation Model
The non-linear analysis operator and the synthesis op of the NMF-based speech separation

technique can be thought of as a chain. Short Time Fourier Transformation (STFT) is used to convert
the signal into a time-frequency representation, which is then used to create a feature space. Then, the
dictionary is applied to obtain non-overlapping in the feature space. Finally, by inverting this non-
linear representation of the separation is obtained, which is considered to be a crucial factor in
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producing an efficient design/technique. As a general rule, the magnitude of STFT is invariant to
changes in the phase; as a result, the NMF is freed from the burden of learning about the unsuitable
variability. This occurs at the expense of inverting the estimates that do not overlap in the feature
space, a process commonly referred to as the phase recovery problem [15] ,[16]. To address this, [17]
[18] presented a technique for speech enhancement and musical source separation [19], and a deep
learning technique has been adopted to compute magnitude source spectrograms [20] or to compute
time-frequency masks [21].

Faced with challenges in solving the source separation problem, one needs to either develop
its own model or choose an existing methodology to solve the problem at stake. This selection process
depends on the kind of source and mixtures that need to be separated, which often leads to
compromise between implementation complexity [22] and source separation quality. Once a
methodology is selected, finding the objective of tuning parameters is challenging, which is driven by
experience.
This model's goal is to demonstrate that employing a stable and resilient multi-resolution
representation of the sample can be of assistance to the source separation methods when applied in
discriminative contexts [23],[24],[25]. In this body of work, a deep representation is considered by the
application of wavelet scattering pyramids, which generate information at various temporal
resolutions [26]. In addition to this, it defines the parameter, which is becoming less expanding. The
Constant Q Transforms (CQT) [27] could be thought of as having been simplified as a result of this.
Scattering transformation, which can be applied to audio signals and has shown great performance in
a variety of classification tasks, can be used to produce discriminative features that comprise longer
temporal data [28]. These features can be created using scattering transformation. For the case of
source separation, we must preserve temporal discriminability and, at the same time, capture long-
range temporal representation [29]. The discriminative training model presented in this work shows
better performance than state of the art model.

The following is an outline of the contribution that the research study has made:
 This work presented a discriminative training approach for solving speech separation

problem.

 The model demonstrates that making use of a stable and resilient multi-resolution
representation of the sample can be of assistance to the source separation methods in
scenarios requiring discrimination.

 The model achieves significant performance over state of art models.

The organization of the remainder of this paper is outlined as follows. In Section II, we
provide a comprehensive description of the novel algorithm devised for the purpose of source
separation. To comprehensively evaluate the efficacy of our proposed model, we conduct an
experimental study in the preceding section, where we compare its performance against that of the
current state-of-the-art technique. Finally, in the concluding section, we thoroughly analyze and
interpret the results obtained while also delineating potential avenues for future research exploration.
2. Related works

Here, we present an efficient audio source separation using a discriminative training approach.

2.1 Problem formulation and System Model
Optimization is said to be the key to solving the speech separation problem. Let the voice

signals of the first and second users be represented by �1 � and �2 � , where n is a discrete-time
index. We also take into account that not all speech signals are created equal.

�
�12� � =

�
�22� � = 1, (1)

and that �1 � , �1 � are zero mean and are statistically independent. Let's consider a set of speech
signals �1 and �2 from two speakers, and temporal signal � � observed from these two speech
signals is obtained as follows

� � = �1 � + �2 � (2)
and our objective is to compute ���. Here, we use an NMF-based source separation technique. Most of
the traditional model adopts a non-negative time-frequency of � � , such as power (or magnitude),
which is denoted as � � ∈ ��×�, where � and � represent temporal frames and frequency, respectively.
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This transformation is considered to be a non-linear analysis function such as the Short-Time Fourier
Transform (STFT). Let � �,� be the STFT of �1 � , where � is the temporal frame index and 0 ≤
� ≤�− 1 is the frequency index. The �

2
+ 1 dimensional vector is denoted by �� , whose

��ℎelement is
��� = log � �,� ; � = 0,1,…,� 2 . (3)

Therefore, �� and ��� are the log-spectrum of �1 � , and �2 � , respectively.

2.2 Non-Negative Matrix Factorization
NMF-based source separation techniques have attained wide interest in recent times. The NMF-

based approach finds the non-negative functions �� ∈ ��×� , � representing the best matching
component in dictionaries [15] �� ∈ ��×�. This is solved using the following solution as

min
���,��≥0

�=1,2

� � ��� ���� + �� ��� ���ℎ �ℎ�� � = ��1 + ��2. (4)

The term in Eq. (4) computes the variation among the input data, and the estimated channel and
choices of � are the squared Euclidean distance, the Itakura-Saito divergence, and the Kullback-
Leibler divergence. The second term in Eq. (4) improves the preferred structure of functions. This
process is processed using the regularization function � , whose relative parameter is controlled by
parameter � . Here, we consider � reweighted squared Euclidean distance and �1 standard as
regularization function�.
The problem in Eq. (4), can be further minimized by alternating gradient descent among ��� and �� .
However, the phase recovery problem can be solved by fixing �� and minimizing it with respect to ���,
which requires locally inverting the transform �. Therefore, the first separation from feature space is
obtained by applying classic NMF as follows

min
��≥0

� � � �=1,2����� + �
�=1,2

� ��� (5)

Once solving activation functions are completed, the spectral envelope is computed as � ��� = ����,
and the phase recovery problem can be solved by applying soft masks to filter the m0ixture signal.
That is, � � = � � ∈ ℚ�×� is a complex matrix with respect to STFT. The computed pure signals
are acquired by filtering the mixture,

��� =
1
�
�� ∙ � � , with � ��� ℎ

�=1,2� ��� ℎ�
, (6)

where ℎ represents the smoothness of the mask. The objective is to build a dictionary such that Eq. (5)
minimizes the reconstruction considering the ground truth separation,

min
�1≥0,�1≥0

� � �1 �1�1� + �� � �2 �2��� (7)

where � is a controlling relative factor of source recovery and ��� are the solution of Eq. (5).

2.3 Wavelet filter transformation
In our work, we adopt a complex wavelet with a quadratic phase whose Fourier transform fulfils

�� � ≈ 0 for � < 0. We consider that bandwidth is of the order of ℚ−1 and the center of frequency
of �� is one, which is computed by increasing

�: �� � = �� �� (8)

such that when � = 2
�
ℚ and therefore, ��� � = �� �−1� . The set of indices denoted by � = 2

�
ℚ

over the frequency support of the signal, where � ≤ �1 , is elegantly represented as by � . This
ultimately leads to the establishment of a filter bank that exhibits a consistent parameter �1 � for the
bands within each octave (�1 ). For the purpose of analysis, let's define �1 � as the bandwidth of a
low-pass filter with a value of 2−�1.

�� = � × �� � , � × �� � �∈�. (9)
Given that the bandwidth of each filter is constrained to a maximum of ℚ1 , it becomes feasible to
implement a down-sampling process on its resulting output, employing a stride of ℚ . This approach
enables us to efficiently reduce the computational load while retaining essential information in the
analysis. Consequently, by strategically down-sampling the outcomes, we strike a balance between
computational efficiency and preserving key features within the signal processing procedure.

To retain temporal locality within the analysis of wavelet coefficients, a crucial sampling rate is
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embraced instead of a uniform bandwidth smoothing kernel applied across all layers. This pivotal
sampling rate ensures adequate temporal information capture during signal sampling. To achieve this,
the complex phase of �� wavelet coefficients is initially removed through a complex modulus
nonlinearity. This step simplifies coefficient representation while safeguarding magnitude data.
Subsequently, the initial layer coefficients are organized as nodes within the first-tier tree level. This
organization streamlines subsequent down-sampling. Each tree node signifies a coefficient at a
distinct scale and temporal-frequency position. Down-sampling occurs at the critical sampling rate of
this layer, designated as layer δ₁. This rate corresponds to the reciprocal of the highest bandwidth
within the filter bank employed for wavelet transformation. This approach retains vital temporal
details while mitigating data size by employing the critical down-sampling rate.

�1 � = ��1 �=1…1+ � = � × �1 �1� , � × �� �1� �∈�. (10)
The coefficients within the initial layer play a crucial role in offering localized feedback both in

terms of frequency and temporal aspects. However, this advantage comes at a certain cost, manifested
as a trade-off concerning the parameter ℚ. Following the down-sampling step, each of the resultant
signals undergoes a transformation into a novel wavelet filter bank. These transformed signals are
then subjected to the operation of taking the complex modulus of their oscillatory components. This
adjustment aims to enhance the accuracy of the representation by mitigating potential noise or
fluctuations. The primary objective of this operation is to bolster the robustness of the overall
representation. As such, we undertake the process of simplifying the complex filter bank by
condensing it into a pair of conjugate mirror filters, namely �2, �2 . These filters are strategically
designed to respectively capture the low and high-frequency components of the discrete signal
emanating from above the hierarchical structure. This simplification is introduced with the intention
of enhancing computational convenience while still retaining vital signal characteristics that are
essential for further analysis,

�2 � = ��1 × �2 2� , ��1 × �2 2� �=1… �1 . (11)

As a consequence, each successive layer within this framework contributes novel feature vectors,
albeit at a reduced temporal resolution. This is achieved by meticulously considering only the
coefficients that have been subjected to the nonlinearity operation for layers � ≤ �↑ . Given that the
energy of the signal experiences rapid decay, it becomes plausible to iteratively apply the
transformation� times, as needed, until a specific temporal condition is met—namely, � = 2��1. In
the event that the wavelet filters are thoughtfully selected to embody a non-expansive vector, a notable
consequence ensues: each layer inherently encapsulates a metric that progressively diminishes. This
intriguing property is a result of the inherent structure of the chosen wavelet filters, which imparts a
cumulative reduction in the spatial metric as we traverse through the layers of the analysis,

�� � − �� �� ≤ ���−1 � − ��−1 �� ≤ � − �� . (12)
Therefore, each layer gives new feature vectors at a lower temporal resolution. Then, lastly, we

acquire a tree of different representations, �� � = �� � with � = 1, …,�.

2.4 Source Separation Model
Here, we show how the pyramid scattering feature can solve the source separation problem of

Eq. (2). We use a discriminative training approach. First, we obtain models of each user using wavelet
scattering pyramid features. Transformation of each layer produces feedback with different
discriminating trade-offs.

Let us consider two distinct sources labelled �1 and �2. To simplify the discussion, we will focus
on a feature denoted as �� �� ,, where � = 1,2, � = 1,2 with �� ∈ ��, belonging to the set ��. These
features are obtained by extracting the localized scattering characteristics from two separate resolutions
at their respective sampling rates. This process ensures that the features are tailored to capture the
unique qualities of the signals originating from A1 and A2 while considering their distinct temporal
resolutions. In light of this, it becomes evident that the feature �1 provides a more pronounced level of
discriminative and localized feedback compared to �2 . In our methodology, we proceed by training
independent models for each individual audio sample. When working with a training Set ��� extracted
from each audio sample, we delve into a process involving Non-Negative Matrix Factorization (NMF)
applied to the features �� ��� ,.
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This approach enables us to uncover the inherent patterns and components present within each
set of features, effectively capturing the underlying structure of the audio samples in a manner
conducive to subsequent analysis and interpretation. By training these distinct models and applying
NMF to the localized scattering features, we attain a comprehensive understanding of the
characteristics intrinsic to each audio sample. This forms a foundational step for further exploration,
manipulation, and insight generation,

min
��
�,��

�≥0
��∈��

1
2� �� �� − ��

���
� 2 + ��

� ��
�

1
(13)

where ��
� represents the sparsity reconstruction trade-off controlling factor in space coding. For a

given time � = �1 + �2. We compute ��1, ��2 as the solution of

min
��1+��2=�, ��

�≥0
�=1,2

1
2

�1 ��� − ��1��1 2
2 + ��1 �� 1 +

1
2

�2 ��� − ��2��2 2
2 + ��2 ��2 1� . (14)

The Eq. (14) under linear constraint may suffer due to coupled phase recovery problems. To address
we use the greedy approach, which approximates the unidentified complex phase using the phase of
�1� and �2 �2� respectively. We solve by using a stronger version of linear constraint � = �1 + �2 ,
namely

�1� 2 = �1�1
2 + �1�2

2, (15)
Therefore, destructive interference is trivial. In next section, the experiment analysis of the proposed
speech separation method is evaluated.
3. Methodology and Results

The experiments were conducted on a system running the Windows 10 operating system,
equipped with an Intel I-5 class processor, 16GB RAM, and a dedicated NVIDIA CUDA GPU with
4GB RAM. The proposed NMF-based Speech Separation model was implemented using MATLAB.
The experimental study employs the TIMIT dataset [23] [24], which follows a test-train division. In
the case of multi-speaker scenarios, the model was trained using mixed speech samples of both male
and female speakers. Testing was then performed using samples not included in the training dataset.
Signal mixing and resampling were conducted according to the parameters specified in Table 1. The
dataset comprised samples from three male and three female users. For training, 500 clips were
employed, while testing was executed on 12 distinct users, with an equal split of 6 male and 6 female
users, encompassing various combinations of samples.

Table 1. Simulation Parameter
Parameter Value

Sampling-Frequency 16 Khz
Signal Mixing 0 ��

Resolution Adjustment 32

Sampling Time 2048

Normalization Constant 1e-3

Number of Iteration 70

The performance of the proposed model is evaluated by comparing it to state-of-the-art
models referenced as [22], [23], [24]. This evaluation involves the use of metrics such as Source to
Distortion Ratio (SDR), Source to Interference Ratio (SIR), and Source to Artifact Ratio (SAR).
These metrics provide quantitative measures of the quality of the separated speech signals. The
computation of these metrics is typically performed as follows:

1. Source to Distortion Ratio (SDR): SDR measures the ratio of the power of the source signal
to the power of the distortion or interference introduced during the separation process. It can be
computed by comparing the estimated source signal to the reference or ground truth source signal.
The SDR is calculated as the average of the logarithm of the ratio of the estimated source signal's
energy to the energy of the interference or distortion:
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SIR = 10 log t yis
2 t�

i≠j t t yis
2 t���

(16)

2. Source to Interference Ratio (SIR): SIR quantifies the ratio of the power of the source signal
to the power of the interference, including residual noise and artifacts. It provides an indication of
how well the separation model can suppress unwanted components. Similar to SDR, SIR is computed
as the average logarithmic ratio of the estimated source signal's energy to the energy of the
interference:

SDR = 10 log t sis
2 t�

t (sk t − ℂyis� t − β )2
(17)

yis2 is the estimated signal of s t , ℂ is constant to compensate for the difference in amplitudes, and the
phase difference between input and output is given by β.

3. Source to Artifact Ratio (SAR): SAR measures the ratio of the power of the source signal to
the power of any artifacts introduced during the separation process. It represents the ability of the
model to remove artifacts or distortions. SAR is computed in a similar way to SDR and SIR by
comparing the energy of the estimated source signal to the energy of the artifacts:

��� = 10 log10
������ + ������������ + ����� 2

�������� 2

(18)

In the approach that has been described, a conventional NMF model is utilized. This model
has 1024 samples, and 50% of them overlap. Four hundred atoms are utilized in the multi-speaker
model for the purpose of dictionary selection. These parameters were determined through the process
of cross-validation on a selection of clips that were kept apart from the training set to serve as the
validation set. The performance of our model over a state of the art model is evaluated in terms
of ���, ���, and ��� which is cumulated in Table 2.

Table 2. Multi-Speaker Model Performance Comparison
SDR (dB) SAR SIR

��� [24] 6.008 7.624 8.722

��� [25] 7.7 8.07 11.53

������� [24] 7.4 7.5 12

�������− ��� [24] 7.67 7.89 12.83

�� + �� +������ [26] N/A N/A 7.1152

��� [27] 8.25 9.67 11.45

��� −��� [27] 8.17 9.61 11.33

Proposed NMF 9.491 10.396 13.594

The result obtained in Table 2 shows that the proposed ��� -based speech separation model
outperforms a state of the art technique [22],[23],[24],[25]. The Proposed ��� achieves around 1.82
dB, 2.506 dB and 0.744 dB gain compared to �������− ��� [23] in terms of ���, ��� and ���,
respectively. For further case studies, the performance of the proposed ���-based speech separation
model is compared with �� + �� +������ [25], and outcomes show a ��� gain of 6.478 dB is
achieved. The Proposed ��� achieves around 1.321 dB, 0.786 dB and 2.264 dB gain compared to
��� −��� [22] in terms of ���, ��� and ���, respectively. The overall result obtained in TABLE
II shows that the proposed ��� -based speech separation model outperforms all state of art
techniques [22], [23], [24], [25] in terms of ���, ��� and ���.
4. Conclusion
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In this research, the authors introduce a novel approach to source separation through the
utilization of non-negative matrix factorization (NMF). Practical implementation of this method
involves signal processing techniques, such as resampling input data and merging two audio samples.
Subsequently, a wavelet filter bank and pyramid scattering come into play to disentangle the
components of the mixed signal. Finally, a source separation algorithm is employed to effectively
untangle the sources, eliminating their overlap. The performance of the proposed NMF model was
empirically assessed and juxtaposed with prevailing best practices. Evaluation metrics like Source to
Artifact Ratio, Source to Distortion Ratio, and Source to Interference Ratio were employed. The
results affirm that the suggested NMF model outperforms state-of-the-art methods, exhibiting superior
Signal-to-Noise Ratio (SNR), Source to Artifact Ratio (SAR), and Source to Interference Ratio (SIR)
by average margins of 1.958 dB, 2.002 dB, and 2.884 dB, respectively. These improvements
underscore the elevated effectiveness of the proposed model compared to prior methodologies.
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