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Abstract

Classical techniques used in system identification, like the basic
least mean square method (LMS) and its other forms; suffer from
instability problems and convergence to a locally optimal solution
instead of a global solution. These problems can be reduced by
applying optimization techniques inspired by nature. This paper
applies the Coyote optimization algorithm (COA) to identify
linear or nonlinear systems. In the case of linear systems
identification, the infinite impulse response (IIR) filter is used to
constitute the plants. In this work, COA algorithm is applied to
identify different plants, and its performance is investigated and
compared to that based on particle swarm optimization algorithm
(PSOA), which is considered as one of the simplest and most
popular optimization algorithms. The performance is investigated
for different cases including same order and reduced-order filter
models. The acquired results illustrate the ability of the COA
algorithm to obtain the lowest error between the proposed IIR
filter and the actual system in most cases. Also, a statistical
analysis is performed for the two algorithms. Also, the COA is
used to optimize the identification process of nonlinear systems
based on Hammerstein models. For this purpose, COA is used to
determine the parameters of the Hammerstein models of two
different examples, which were identified in the literature using
other algorithms. For more investigation, the fulfillment of the
COA is compared to that of some other competitive heuristic
algorithms. Most of the results prove the effectiveness of COA in
system identification problems.

Keywords: Least Mean Square Method, Coyote Optimization
Algorithm, Particle Swarm Optimization, Adaptive Filter, FIR
Filter, IIR Filter, System Identification, Hammerstein Models

1. Introduction
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System identification is the process of constructing a model for a physical system, the constructed
model type and its parameters depend on the properties of the actual system. Physical systems can be
classified as linear systems and nonlinear systems [1]. The linear system model is based on adaptive
digital filters, which can be regarded as one of the most important elements in many applications
related to the fields of communication, speech processing, medical applications, image processing,
control systems, etc. These filters can be used for noise cancellation, prediction, identification and
equalization [2]-[6]. Two categories of filters are commonly used: finite impulse response (FIR) and
infinite impulse response (IIR). IIR filters find a lot of attention due to their better performance than
FIR filters. In addition, they can be implemented using a reduced number of digital elements. On the
other hand, they need careful treatment in design to overcome the problems of multimodal error and
instability [7]. In literature, the least mean square method (LMS) and its modified forms have been
used to design adaptive filters for different applications. These classical techniques are not suitable for
IIR design, as they usually converge to a locally optimal solution instead of a global solution, in
addition to having instability problems [5], [7], [8], [9]. Several approaches were developed to
enhance the performance of the LMS technique [10]-[12]. Recently, various optimization techniques
inspired by nature have been used in determining IIR coefficients for different applications. Various
optimization algorithms have been employed in IIR system identification like the particle swarm
optimization algorithm (PSO) and some of its modified versions [13]-[19], the artificial bee colony
algorithm (ABC) [20], the Seeker optimization algorithm [21], the cat swarm optimization algorithm
[22], [23], the firefly algorithm [24] etc. In case of nonlinear system having low nonlinearities, the
identification process can be carried out based on either FIR or IIR filters, whereas high nonlinearity
needs more complex modelling. Due to their simple structure, Hammerstein and Wiener models were
extensively used in literature to identify nonlinear systems; each of these models consists of a cascade
connection of two blocks, one is linear and the other is nonlinear. The estimation of the parameters
related to each block, is the goal of the identification problem. For this goal, both classical
optimization techniques such as Recursive Least Squares (RLS) as well as recently developed
optimization algorithms were used in literature as in the case of linear system identification [25]-[28].

The Coyote optimization algorithm (COA) [29] is one of the simplest and most recently used
algorithms in the field of engineering [30]-[38] but we think that it has not been applied to the
problem of system identification. COA has the advantage of making an adequate compromise
between exploitation and exploration in addition to its competence of keeping higher divergence that
helps obtain optimal solutions [39].

In this work, we investigate the effectiveness of COA in optimizing the parameters of different
models constructed to resemble both linear and nonlinear plants. In the case of linear plants, the
investigation is based on applying COA to the problem of identification of four different plants with
different orders based on IIR filters. The results attained upon applying COA are compared to those
obtained from PSO, which is extensively researched in the literature and considered one of the
simplest algorithms. Whereas, in the nonlinear system case, the investigation is based on using COA
to optimize the parameters of the Hammerstein models representing two different nonlinear systems.
The results obtained in the case of nonlinear systems are compared to that found in the literature.

The rest of the paper begins with a description of the identification problem, then an overview of
both the POS and COA algorithms is presented, followed by the results and discussion, and finally,
the conclusions are drawn.
2. Methodology
2.1 System Identification Description
2.1.1. Linear System Identification

The essential problem in identifying linear systems is to find the tape weights of an adaptive filter,
which results in a filter transfer function that is similar to that of the unknown system to be resembled.
Hence, the role of any algorithm is to adjust these weights so as to minimize the error between the
filter response y(n) and that of the unknown system d(n). the error can be written as e(n) = d(n) - y(n).
A schematic diagram shown in Figure 1 represents this process.

A difference equation describing the response of the filter can be written as in (1):
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Where x(n) is the filter input, y(n) is the filter response, N and M define the number of filter taps
in both directions, am and bm are filter weights, which are required to be estimated.

Figure 1. The graphical representation of the Identification Process

The mean-square error (MSE) in (2) can be regarded as the objective function for the optimization
algorithm to find the optimum filter coefficients W= [ am , bm ]:

2
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Where Ns represents the sample number.

2.1.2. Non-Linear System Identification
The schematic shown in Figure 1 is also used to represent the nonlinear identification process,

except that the Hammerstein model replaces the IIR filter. The graphical representation of
Hammerstein model is shown in Figure 2. It consists of a memoryless polynomial nonlinear (MPN)
block, representing the nonlinear part, followed by an FIR filter, representing the linear part.

Figure 2. Schematic of Hammerstein Model with MPN-FIR

Where x(n) and y(n) represent the model input and output respectively and z(n) represents the
internal signal described by (3):
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Where p is the polynomial order and the final output of the model is expressed as (4):
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Where and mb represent the weighting coefficients of the MPN model and FIR model,
respectively, and M is FIR order.

2.2 Overview of Basic PSO Algorithm
PSO [40] is an optimization algorithm, which uses the basis of swarm ingenuity. It is one of the

most recognized and most popular algorithms due to its simplicity, and hence, it is widely used in

lc
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many industrial and scientific fields. It depends on communication between particles in the swarm,
where each particle is considered a possible solution and hence, learning takes place based on some
simple rules. In this algorithm, each particle is characterized by two parameters ,i kve and ,i kpo ,
which are the ith particle velocity and position at instant k. The vector of particle position represents
the solution of the problem. Each particle has a personal best, bestpo and the whole swarm has a global

best, bestG . The updating values of position and velocity are given in Equation 5 and 6 respectively:

, 1 , ,i k i k i kpo po ve   (5)

, 1 , 1 1 , ,

2 2 ,

. . .( )
. .( )
i k w i k best i k i k

bestk i k

ve i ve c rand po po
c rand G po

    


(6)

Where wi is a parameter known as inertia weight, which adjusts the rate of velocity change

between iterations 1c and 2c are the rates of achievement of local and global optima, respectively.
 j,lj,2j,1j rand.........rand,randrand  , j=1,2, l is the length of the solution vector. randl,j represents a

random number in [0; 1].

2.3 Coyote Optimization Algorithm (COA)
The COA can be regarded as one of the most recent population-based optimization algorithms. It

was developed in 2018 [29] by Pierezan. The algorithm can be seen as an evolutionary heuristic
algorithm as well as swarm intelligence. The COA focuses on both hunting prey and social
composition. The total population in this algorithm consists of Np packs, each having Nc coyotes, and
all have the same number of coyotes. In this algorithm, each coyote represents a possible solution
based on its social conditions. The social conditions (SOCl) in (7) represent the D variables related to
the optimization problem:

,
1 2( , ,....... )p t

c DSOCl x x x (7)

The optimization based on COA can be carried out through the following steps:
Initializing both the coyotes' population and their corresponding social properties, which are

assigned randomly for each coyote. The jth social condition variable for the Cth coyote belonging to
the Pth pack is set randomly, as shown in Equation 6, and is listed below in (8):

,
, .( )p t
c j j j j jSOCl Lb r ub Lb   (8)

Where jr is a random number and jj Lbub , are the upper and lower bounds of the variables.
Acclimation of coyotes to the environment with their current social status is determined by

evaluating the objective function according to (9):
, ,( )p t p t

c cfit f SOCl (9)
Then, these results are ranked to determine the best-adapted coyote, which is called alpha and

expressed as (10):

  
,

, ,arg 1,2,...., min ( )

p t

p t p t
c c c c
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SOCl N f SOCl 
(10)

The COA takes into account the shared information between coyotes and computes the pack
culture inclination for every social status, expressed as (11):

,
1 c,

2
, , ,

1, ,
2 2

 ,      N  is odd

,   otherwise
2

c

c c

p t
N j

p t p t p t
j N Nj j

Or

cult Or Or







  



(11)

190

https://ijcnis.org/


Available online at: https://ijcnis.org

Identification of Linear / Nonlinear Systems via the Coyote Optimization Algorithm (COA)

Where ,p tOr is the ranked conditions in the pack.
Also, this algorithm takes into account birth and death in updating the population.To evaluate the

culture interaction, first determine the culture difference between the alpha coyote and a random
coyote denoted by cr1, and the difference between another random coyote, cr2, and the culture
inclination of the pack.

1

, ,
1

p t p t
cralpha SOCl   and

2

, ,
2

p t p t
crcult SOCl   (12)

The social condition vector is updated as (13):
, ,

1 1 2 2_ .p t p t
c cnew SOCl SOClp r r    (13)

and the objective function is determined by (14) and (15):
p,t p,t
c cnew_fit f(new_Socl ) (14)

, , ,
, 1

,

_ ,     _

                    otherwise

p t p t p t
c c cp t

c p t
c

new SOCl new fit fit
SOCl

SOCl


  


(15)

The coyote with social conditions that leads to the best performance in terms of the objective
function is considered as the optimal solution of the problem.

3. Results and Discussion
In this section, the efficiency of the COA is studied by making a comparison between the results

attained up on using PSO to those obtained using the COA. Some standard transfer functions from
the literature are used in this comparison. The steps of the experiments include defining the transfer
function of the plant to be resembled, selecting the model to be used, estimating the parameters
(unknown coefficients of the model) based on the optimization algorithm, and then estimating the
mean square error (MSE) and convergence time. Figure 3. represents the architecture diagram for the
proposed method.

Figure 3. Architecture Diagram of System Identification

3.1 Linear System Identification
The identification process is carried out using the filter with the same order as well as in the case

of reduced order.
Example 1:
The transfer function of the fourth-order system presented in [14], [15], [21], [41] is used here.

Table 1 lists the weighting coefficients of the actual plant obtained from different algorithms in the
case of a fourth-order system that represents the same order filter. In addition it contains convergence
times and MSE. Also, convergence curves for both algorithms are shown in Figure 4. The
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convergence curves in Figure 4 can be compared to those in [15], which includes a comparison
between variant swarm algorithms, showing that the maximum reduction in MSE obtained in [12] is
about 50 dB, whereas that obtained by the COA in our work is about 90 dB in case of identification
using a filter with the same order. Also, the results in the case of reduced order identification are
shown in Figure 5. It is obvious from these results that using the COA results in a higher reduction in
MSE as well as a rapid convergence.

Table 1. Coefficients of 4th-order Filter Representing 4th-order System

Coefficients Actual
Values PSO COA

a1 -0.9 -0.8784 -0.8999
a2 0.81 0.7687 0.8101
a3 -0.729 -0.7020 -0.7292
b1 -0.04 -0.0201 -0.0399

b2 -
0.2775 -0.2958 -0.2773

b3 0.2101 0.2030 0.2100
b4 -0.14 -0.1185 -0.1401

MSE 2.2425e-05 1.3e-09
Convergence
Time in Sec 43.1 14.43

Figure 4. Convergence Curves for 4th-order Filter Representing 4th-order System
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Figure 5. Convergence Curves for 3rd-order Filter Representing 4th-order System

Example 2:
The transfer function of the considered plant is used in [20], [42], is :

1 2

1 2 3

0.3 0.4 0.5( )
1 1.2 0.5 0.1

z zA z
z z z

 

  

  


  
(16)

The MSE and convergence time values obtained from the two algorithms for filters with the same
order and with reduced order are listed in Table 2. Also, the convergence curves for the two cases are
shown in Figure 6.

Table 2. MSE Values and Convergence Time for Example 2
The Same Order

Case
Reduced Order

Case

PSO COA PSO COA

MSE 6.0e-4 1.97e-8 0.014 0.009577

Convergence
Time in (s) 32.02 11.02 21 7.8

(a)

(b)
Figure 6. Convergence Curves for a 3rd-order System Identified by

(a) 3rd-order Filter and (b) 2nd-order Filter
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Example 3:
In this example, the considered system is characterized by:

1 2 3

1 2 3

1 0.4 0.65 0.26( )
1 0.77 0.8498 0.6486

z z zA z
z z z

  

  

  


  
(17)

This plant is modeled using a 3rd-order filter and a 2nd-order filter. The obtained results in both
cases appear in Table 3. The corresponding convergence curves are illustrated in Figure 7.

Table 3. MSE Values and Convergence Time for Example 3

The Same Order
Case (3rd Order)

Reduced Order
Case (2nd Order)

PSO COA PSO COA

MSE 0.0041 0.000216 0.0049 0.00242

Convergence
Time in (s) 37 12.45 25 9.13

(a)

(b)
Figure 7. Convergence Curves for 3rd-order System Identified

by (a) 3rd-order Filter (b) 2nd-order Filter
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Example 4:
To investigate the performance of the COA in the case of high-order systems, the function is

used as the plant to be identified.
2 4 6

2 4 6

1 0.4 0.65 0.26( )
1 0.77 0.8498 0.6486

z z zA z
z z z

  

  

  


  
(18)

The results obtained using the COA and that of PSO are listed in Table 4. Moreover, the
corresponding convergence curves are illustrated in Figure 8.

Table 4. MSE Values and Convergence Time for Example 4

The Same Order
Case (6th-order)

Reduced Order
Case(5th-order)

PSO COA PSO COA

MSE 0.0035 0.0015 0.0028 0.00223

Convergence
Time in (s) 80 23.6 75.27 19

(a)

(b)
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Figure 8. Convergence Curves for 6th-order System Identified by (a) 6th-
order Filter and (b) 5th-order Filter

3.1.1. Statistical Analysis of MSE in the Case of Linear Systems
In this part, a statistical analysis is carried out for the results obtained by considering the results

of a number of independent runs for each algorithm in various cases. The statistical analysis of the
independent runs of Examples 1-4 are listed in Tables 5-8, respectively.

Regarding the obtained values of variance and standard deviation, it is obvious that the values in
the case of COA are much smaller than PSO, which ensures the superiority of COA.

Table 5. MSE (dB) Statistics for Example 1

MSE
Statistics

Same Order Case Reduced Order
Case

PSO COA PSO COA

Best -55.5 -92.842 -18.73 -20.1

Worst -13.84 -66.668 -8.76 -18.9

Mean -36.332 -83.934 -16.2 -19.4

Variance 230.3 87.9 12.64 0.12

Standard
Deviation 15.17 9.4 3.56 0.3456

Table 6. MSE (dB) Statistics for Example 2

MES
Statistics

Same Order Case Reduced Order
Case

PSO COA PSO COA

Best -39.1 -77 -18.8 -20.2

Worst -20.86 -46.8 -17.8 -18.34

Mean -30.3 -61.1 -18.125 -19.27

Variance 35.77 70.57 0.1046 0.34

S.D. 5.98 8.4 0.323 0.58

Table 7. MSE (dB) Statistics for Example 3

MES
Statistics

Same Order Case Reduced Order
Case

PSO COA PSO COA

Best -28.86 -37.913 -24.32 -26.3

Worst -21.8 -31.1 -11 -25.3

Mean -24.127 -33.438 -21.24 -25.78

Variance 6.188 5.8363 27.45 0.09548

S.D. 2.488 2.416 5.24 0.31
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Table 8. MSE (dB) Statistics for Example 4

MES
Statistics

Same Order Case Reduced Order
Case

PSO COA PSO COA

Best -24.56 -28.2 -25.53 -26.52

Worst -9.65 -21.221 -14.32 -20.8

Mean -15.688 -24.71 -19.53 -23.86

Variance 37.536 4.9 16.006 5.46

S.D. 6.126 2.215 4.001 2.34

3.2. Nonlinear System Identification
Example 5:
In this example, a Bilinear system [23], [24] described by Equation 19 is modelled by the

structure introduced in Figure 2.
( ) 0.25 ( 1) 0.5 ( 1). ( )
0.05 ( 1) ( 1) 0.5 ( ) 0.5 ( 1)
y n y n y n x n

y n x n x n x n
   

     
(19)

COA is used to obtain optimal parameters parameters of the MPN Hammerstein model to
minimize the difference between its output and that of the bilinear plant described above. In this
example, a Hammerstein MPN-FIR model with p = 3 and M =1 is used.

The obtained results in terms of convergence time and MSE are compared to those obtained in
literature [26], [27] using different optimization algorithms, as illustrated in Table 9.

The results listed in Table 9 indicate that COA is the most effective. The convergence curve of
Example 5 is given in Figure 9.

Table 9. MSE and Convergence Time for Example 5

Algorithm MSE Convergence
Time(s)

RLS 0.15384 0.1

CS 0.12724 150.5

ABC 0.12710 54.03

PSO 0.0431 18.18

COA 0.038761 37.6
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Figure 9. Convergence Curves of a Bilinear System Identification
Given in Example 5

Example 6:
This example Identifies the Volterra system [28] given by Equation 20 using the structure

introduced in Figure 2. Also, this example uses a Hammerstein MPN-FIR model with p = 3 and M
=1.

2

2

( ) 0.8 ( 1) 0.5 ( 2) 0.7 ( 1)
0.1 ( 2) 0.4 ( 1). ( 2)
y n x n x n x n

x n x n x n
     

    
(20)

Also, in this example, the comparison between our obtained results, upon applying the COA,
and those obtained in [28] proves the effectiveness of COA because the identification based on COA
resulted in smaller MSE, as shown in Table 10 and Figure 10.

Table 10. MSE Values for Example 6

Algorithm MSE Convergence
Time (s)

RLS 0.3288

PSO 0.1064 17.96

COA 0.092935 36
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Figure 10. Convergence Curves of a Volterra System Identification
Given in Example 6

Moreover, some other competitive heuristic algorithms, MFO [43], SSA [19], [44], SCA [45]
and GWO [46], [47], have been executed to investigate the effectiveness of COA. The convergence
curves of the implemented algorithms are compared with those of COA in Figures 10 and 11. Figure
11 represents the results related to linear case presented in Example 2, whereas Figure 12 presents
the results related to the nonlinear case presented in Example 5.

Figure 11. Convergence Curves of several Competitive Algorithms in
Case of Linear System

Figure 12. Convergence Curves of several Competitive Algorithms
in Case of Nonlinear System
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The results shown in Figures 11 and 12 indicate that COA competes well with other heuristic
methods in terms of convergence speed and precision in addition to using a limited number of
controlling parameters.
4. Conclusion

In this work, the COA, which is one of the recently used optimization algorithms in the field of
engineering, is applied to the problem of system identification. The study included a number of
plants that were used in the literature, considering both linear and nonlinear systems. The
identification process in the case of linear systems was done for the case of same-order filters and
reduced-order filters. To investigate the effectiveness of the COA, the results acquired by COA, in
terms of mean square error and convergence time, were compared to those obtained from PSO,
which is the most popular and most widely used algorithm. The obtained results show that the COA
outperforms PSO in both MSE and convergence time, especially for lower-order filters. In the case
of lower-order filters, the performance of COA in terms of MSE is approximately identical to that
obtained by PSO, whereas in all cases, the convergence time of COA ranges between 25% and 30%
of PSO convergence time. Also, a statistical analysis for the results of different independent runs
from the two algorithms was done.

In the case of nonlinear system identification, two examples are considered; one of them
identifies a Bilinear system, and the other identifies a Volterra system. The results of each of them
have been compared to those obtained in the literature; the comparison in both two cases shows that
COA gives smaller MSE than others. For more investigations, some other heuristic algorithms have
been executed and compared to COA. In general, the results of both linear and nonlinear systems
show that the COA is a promising algorithm in system identification processes.
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