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Abstract

Recently, new advances in deep learning algorithms have yielded
some fascinating results in the field of computer vision technology.
As a result, it can now perform activities that formerly required the
use of human vision and the brain. Classification, object
identification, and semantic segmentation have all seen substantial
advancements in deep learning architecture in the last few years.
For still images and movies, there has been a major advancement in
the field of semantic segmentation. In the field of autonomous
driving, effectively segmenting videos semantically remains a
complex task, primarily due to the need for high performance, the
substantial costs associated with convolutional neural networks
(CNNs), and the critical requirement for reduced latency. To
address these issues, a specialized machine-learning framework is
being developed. This framework utilizes advanced deep learning
structures, specifically SegNet and FlowNet 2.0, applied to the
CamVid dataset, enabling precise pixel-by-pixel semantic
segmentation of video content with maintained low latency. This
approach is particularly beneficial for practical applications,
leveraging the strengths of both the SegNet and FlowNet
architectures. A key feature of this system is its decision-making
network, which evaluates each frame to decide if it should be
processed by a segmentation network or an optical flow network,
based on a calculated confidence score. This decision process is
further refined by the introduction of adaptive key frame
scheduling, enhancing the efficiency of the system. Performance
testing with the ResNet50 SegNet model yielded a mean
Intersection over Union (IoU) of 54.27% and an average processing
rate of 19.57 frames per second. Moreover, the integration of
FlowNet2.0, optimized for GPU operations, improved the frame
processing rate to 30.19 fps, with a mean IoU of 47.65%. This
improvement was facilitated by a 47.65% utilization rate of the
GPU, leading to a notable enhancement in the speed of video
semantic segmentation without compromising on quality.
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1. Introduction
Over the previous few years, the area of computer vision has attracted the greatest attention

from researchers. Many new applications have been developed as a result of the effective
implementation of image classification, object recognition, and image segmentation tasks. Face
detection, item identification, scene detection, and scene captioning are a few examples of these uses.
When it comes to computer vision activities like image and video processing, the emergence of
machine learning has a substantial impact on their progress. There are numerous hidden layers in
deep learning, which shows that it is a neural network model with a deep structure. An algorithm
that mimics the structure of the human brain can recognize patterns that are represented as vectors.
To assist the machine in learning features and solve computer vision tasks such as object
classification, object recognition, semantic segmentation, and so on, these representations and the
related weights are necessary. Mimic the human brain, this makes item recognition easier for
machines. Wouldn't it be fantastic if a computer could tell us what we're looking at in the video?

Examples of jobs that focus on the finer elements of an image are image categorization and
object detection. After moving from a coarse to a fine degree of inference, making predictions on a
pixel-by-pixel basis, or semantic segmentation is inevitable. Semantic segmentation is one of the
most popular subjects in computer vision research. It's called semantic segmentation when each
pixel in an image or video is assigned a separate category. Use this method for videos as well.

Historically, the exploration of semantic segmentation relied on 2D attributes like color and
shape [1], while the use of dense depth maps [2] required extensive manual engineering, leading to
high computational demands. However, the emergence of deep learning techniques and
advancements in machine learning have simplified the challenges of semantic segmentation and
classification, eliminating the need for intensive human input. The application of Convolutional
Neural Networks (CNNs) in the semantic segmentation of images has demonstrated superior
outcomes [3, 4], offering enhanced analysis and labelling of image features with improved
efficiency. CNNs have significantly influenced the field of computer vision, both in elevating the
quality of results and in accelerating computational processes.

Sophisticated work in the area of picture semantic segmentation has been carried out in recent
years. Despite video being the most widely used multimedia application, it receives the least
research and management attention due to its complexity and processing time. With CNN's success
in image semantic segmentation and other image processing tasks, fascinating new developments in
video semantic segmentation are emerging. A substantial body of research [5]-[7] has concentrated
on enhancing the performance of video segmentation. However, there has been relatively limited
investigation focused on minimizing latency [8]-[11].

Numerous pivotal projects, such as FCN, PSPNet, U-Net, SegNet, and DeepLab [3], [13]-[16],
have made significant contributions to semantic segmentation research. These networks are
renowned for their high accuracy in prediction, albeit at the cost of longer processing times per
frame. The current research focuses on developing a video semantic segmentation framework
suitable for real-time applications, like autonomous driving and indoor navigation. Key to real-time
application is achieving low latency, a goal addressed in previous studies like dynamic video
segmentation (DVSNet) and deep feature flow (DFF), which involves dual networks [9], [11]. Both
DVSNet and DFF incorporate optical flow and per-frame segmentation networks. Crucial
components of this research include a decision network, adaptive keyframe update mechanisms,
label mapping, and depth inference strategies. This study aims to evaluate the network's
performance using an encoder-decoder architecture like ResNet50 SegNet, replacing the DeepLab in
the segmentation network, while retaining the same flow network as in [9] and [11]. Experiments
were conducted using the CamVid [17] dataset, a driving scenario dataset akin to CityScape [18].

Section 2 provides a literature review of various deep-learning techniques that were used in this
work. Section 3 provides a methodology for each network as well as the working procedure of the
video segmentation network. Section 5 provides the experiments that were conducted and their
outcomes, together with a quantitative and qualitative interpretation of those data, are explained in
detail with the results. The last section discusses the conclusion, where we discussed the benefits
and drawbacks of using this segmentation strategy, as well as future work.

210

https://ijcnis.org/


Available online at: https://ijcnis.org

Video Semantic Segmentation Network with Low Latency Based on Deep Learning

2. Related Work
Semantic segmentation represents a cutting-edge development in the field of computer vision.

Historically, achieving pixel-level classification and masking in images was highly challenging,
largely due to the extensive manual computations required. Techniques like dense depth mapping,
3D geometry analysis, and superpixel segmentation were commonly employed in these complex
processes. Towards the later part of the 20th century, many image segmentation and classification
datasets were painstakingly created using a variety of software tools. However, the advent of deep
learning and the implementation of convolutional neural networks have radically transformed this
landscape. These advancements have not only streamlined semantic segmentation research but have
also greatly simplified the process of data creation for such tasks.

Image segmentation is one of the areas in which deep learning in computer vision has shown to
be one of the most successful applications. The work that was done on the building of a fully
convolutional network (FCN) [3] is noteworthy and ground-breaking in the field of picture semantic
segmentation. In this study, a fully convolutional network was utilized instead of a classification
network's fully linked layers to achieve the best results. This work represented a considerable
advance. Before the emergence of Fully Convolutional Networks (FCN), semantic segmentation
architectures predominantly relied on convolutional networks capped with a fully connected layer at
the output [21]-[23]. FCN introduced a significant shift by transforming this final fully connected
layer of the classification segment into a convolutional layer. This modification not only reduced the
overall number of parameters but also eliminated the restrictions related to the size of the input
image. Most importantly, it enabled the preservation of spatial information by discarding the fully
connected layer.

O. Ronneberger et al.'s U-Net architecture for medical imaging [14] draws inspiration from the
Fully Convolutional Networks (FCN), particularly in its design of expanding and contracting
segments. Similar to DeConvNet [24], U-Net utilizes a combination of downsampling and
upsampling techniques to retain information that could be lost in the downsampling process. The
contracting part of the network is chiefly tasked with generating feature maps, using 3x3
convolutions to effectively extract features during the downsampling phase.On the other hand,
deconvolution is utilised during the expanding stage, which results in fewer feature maps but
increased spatial dimensions (height, width). U-Net can keep track of pattern information because it
copies the feature maps that have been cropped from the contracting party to the expanding part.
The final step involves applying a 1x1 convolutional layer's processing to these feature maps to
produce segmentation maps and pixel-by-pixel classification of the input image.

SegNet [15], a specialized fully convolutional network, was devised with a focus on
segmenting road scenes. It is characterized by an encoder-decoder structure and incorporates various
elements such as convolutional layers, batch normalization, max pooling, the ReLU activation
function, and a Softmax classifier. In SegNet, the VGG-16 network, particularly the initial 13
convolutional layers of VGG-16, is employed as the encoder [25]. This network is well renowned
for its ability to solve classification challenges. To maintain the high-resolution feature maps at the
encoder output, SegNet, which is also a fully convolutional network, removes the completely
connected layer that is the topmost layer in the network. The output of the final decoder is passed to
the Softmax classifier, which then generates class probabilities.

The DeepLab architecture presents a novel solution to address the issue of spatial resolution
loss, a common problem in deep convolutional neural networks (DCNNs) due to repeated max
pooling and downsampling in deep convolution layers. This design also tackles challenges
associated with varying object scales and imprecise localization. To counteract these issues,
DeepLab introduces an innovative approach called "atrous convolution," which involves upsampling
the filters prior to convolution. This method substitutes the downsampling stages with filter
upsampling in the convolutional layers following the max pooling stages, thereby addressing errors
typically introduced during max pooling. This adjustment enables the computation of feature maps
at larger sample rates. The architecture then restores the original image dimensions by applying
atrous convolution and subsequently performing bilinear interpolation on the feature maps [16], [26].

Within the realm of video analysis, one of the most fundamental aspects of work is known as
optical flow. It is essentially a two-layered matrix with the same dimensions as the input frame; the
difference between the layers is the offset of each pixel along two distinct axes (i.e., x-axis and y-
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axis). One of the earliest methods for calculating optical flow is the variational approach, which long
stood as a benchmark in the field. Initially, this method was primarily focused on smaller motions,
often favoring initial conditions with a zero motion field due to the presence of local minima [29].
Over time, strategies like the Lucas-Kanade method, known as a patch-based approach, gained
prominence. This technique involves dividing two frames into patches and then aligning them by
minimizing the gradient. Additionally, Brox and Malik [30] introduced a unified approach that
combines patch-based methods with variational refinement.

Several algorithms have been developed based on the Brox and Malik method, including
PatchMatch [31], FlowField [32], DiscreteFlow [33], and FullFlow [34]. In both DiscreteFlow and
FullFlow, Conditional Random Fields (CRF) [27, 28] play a crucial role in processing vector
similarities. Another significant development is DeepFlow by Weinzaepfel and colleagues [35],
which is influenced by the work of Brox and Malik. DeepFlow merges a variational optical model
with a loss function and is based on a deep matching algorithm. This allows for the integration of
feature descriptors and matching techniques. Other notable approaches in this domain include
EpicFlow and RichFlow [36, 37], which represent unified or combined matching methodologies.
Nevertheless, each of these methods is a handcrafted creation [29]. The DeepFlow algorithm is
similar to a deep learning method; however, it does not use weights that have been previously
learned.

In recent times, the fields of semantic segmentation and computer vision have increasingly
adopted deep learning techniques alongside optical flow methods. FlowNet, a notable example,
utilizes a single-stack architecture within the conventional CNN framework to compute optical flow.
This system processes a pair of images as input and generates optical flow fields as output. FlowNet
introduced two distinct designs known as FlowNetS (Simple) and FlowNetC (Correlation).
Designed to handle large displacements, FlowNet underwent training on a dataset featuring flying
chairs and three-dimensional objects, enabling it to effectively manage complex visual data.

Because image semantic segmentation using deep learning was such a tremendous success,
there are now many current studies focusing on video semantic segmentation for applications such
as autonomous driving, indoor navigation, augmented reality, and many more. Utilizing image
segmentation networks is one of the most straightforward approaches to accomplishing video
segmentation. However, they operate on a "per frame" basis, which makes the computation more
complicated given that videos contain a greater number of frames than still photos. In addition,
picture semantic segmentation does not take into account the temporal links between different
frames. Exploiting the temporal relationship that exists between the frames of the video leads to an
increase in the accuracy of the prediction [41].

Gadde et al. [41] demonstrated semantic segmentation of video via representation warping. In
this strategy, the authors transfer CNN models for image segmentation to video models. They start
by introducing a warping module called NetWarp, which warps intermediate CNN representations
and mixes them with the current frame. Their network warps internal network representations using
nearby optical frames. Their concept builds on PSPNet [13].

The frames are processed in an online manner by the video CNN models that are produced as a
result [41]. The NetWarp technique was shown to obtain good performance on semantic
segmentation; however, as their feature calculation is performed on a per-frame basis, they are not
very effective in terms of minimising the number of computations required. The warping approach
does make it possible to increase the speed of the video, but its effectiveness is constrained by video
dynamics. This refers to recordings that contain moving objects, in which the entire scene moves
relative to the camera, which results in a considerable warping inaccuracy.

Deep feature flow techniques effectively reduce calculation time by 74%. This was
accomplished by proposing the use of two distinct networks, a segmentation network and an optical
flow network, alongside fixed keyframe scheduling. However, because it uses fixed keyframe
scheduling (implying a constant update time between subsequent frames), it lacks both adaptability
and customization [11]. The unsupervised learning strategy for video semantic segmentation that
was proposed by Zhang et al. [47] introduces a completely conventional adaptive network for
semantic segmentation. Whereas, they plan to use labelled instances from the source domain in
conjunction with a large number of unlabeled examples from the target domain to reduce the amount
of error in their predictions of the target data [47, 48]. On the other hand, the supervised learning
strategy [49] is the one that we will use for our study. To achieve low latency for real-time
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applications, this project aims to create a network architecture similar to DVSNet using a separate
segmentation network (ResNet50 SegNet) on a road. In this case, the purpose is to speed up the
transfer of information from one location to another.
3. Methodology

This research is motivated by an existing work of dynamic video segmentation network
(DVSNet), which segments video frames using both per-frame and optical flow network. The main
goal is to achieve low latency for a video segmentation network. Utilizing both of these extremely
powerful networks enables us to get the benefits of both networks. The accuracy with which the
segmentation network can predict the result of its operations is very high. However, it is well known
that Optical Flow networks can predict motion information extremely quickly. This, in conjunction
with spatial warping (in which the optical flow output is warped with the segmentation output),
helps to make the segmentation process both faster and more performant. However, none of these
networks is without its flaws; the segmentation network is sluggish because its processing is done on
a per-frame basis, and the flows of the optical flow network can be erroneous at certain periods.
Detailed descriptions of network architectures and strategies used in this study are provided in this
section. In this study, we use three low-latency networks for video semantic segmentation. But we
utilise a segmentation network that is different from SegNet and FlowNet2S as an optical flow
network with spatial warping function, SegNet with ResNet50 encoder as a segmentation network.
Judgment networks (DN) are added to make the final decision based on the difference between
consecutive frames. In order to determine the difference between two frames, DVSNet uses the
frame region technique. Contrary to this, we use an adaptive key frame scheduling policy on the full
frame instead of the traditional "frame region" approach. To begin, we'll go over the many types of
network designs that have been implemented as part of this project.

In computer vision, ResNet (ResNet) is a common architecture that is used frequently.
ImageNet has achieved the best score of 96.4 percent accuracy in this design. Adding outputs from a
previous layer to the outputs of a stacked layer is done using the skip connection which is as shown
in Figure 1. In contrast to LeNet, VGG16, etc., ResNet can train a deeper network without vanishing
gradient descent. ImageNet categorization has been enhanced by using skip connections. Semantic
segmentation is a strength of theirs.

Figure 1. Residual Building Block
It is possible to utilize ResNet as a fixed feature extractor, to fine-tune a neural network, or to

train a new dataset because it is a model that has been trained on ImageNet and includes the weights
for each feature. It helps with similar issues. Versions of ResNet include ResNet18, ResNet50, and
ResNet101. At 18, 50, and 100, ResNet101 is the deepest network. SegNet's encoder backbone will
be ResNet50 [15], [19].

y = F x, Wi + WsX (1)
Where, Y is the output function, function F(x, {Wi}) represents the residual mapping to be

learned, Ws is the weight of identity mapping.
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3.1 SegNet
SegNet is characterized by its use of convolution, batch normalization, ReLU activation, and

max pooling. Its decoder, as illustrated in Figure 2, includes components like upsampling,
deconvolution, and a Softmax classifier. The SegNet encoder employs thirteen convolution layers.
In contrast, our research utilizes ResNet50, a more intricate network than VGG16, for both encoding
and decoding tasks. For initial training, ResNet50 weights are preloaded from ImageNet. We refer to
our combination of the ResNet50 encoder with the SegNet decoder as ReSNet. SegNet, being a fully
convolutional network, has its fully connected layer omitted, which simplifies the encoder network
by reducing the number of variables it needs to handle.

Figure 2. Illustrating the SegNet Architecture
Encoder input is convolution-filtered to build feature maps. These feature maps are batch

normalised and ReLU is applied element-wise. Max pooling uses a non-overlapping 2x2 window
and stride 2 to ensure translation invariance when an input image frame is slightly shifted. Max-
pooling output is subsampled to get a big input image frame context for every feature map pixel.
Max-pooling and subsampling can improve translation invariance. This reduces feature map
resolution. Such lossy image representations aren't suitable for semantic segmentation, where
boundary information is crucial. Storing border information from feature maps can alleviate this
problem, but it's impractical. SegNet stores only Max-pooling indices, which contain each window's
maximum value. Rather than keeping all border information in feature maps, use this method.
Corresponding decoders in the network upsample feature maps using encoder max pooling indices
to yield sparse feature maps. At the decoder, filter banks are used to convolve sparse feature maps
into dense ones. Softmax classifier calculates the probability for each class using high-dimensional
representations from the final decoder. The first encoder's decoder produces multi-channel feature
maps, even if the encoder's input has 3 channels (i.e. RGB). Other network decoders' output feature
maps are the same size and channel as encoder inputs. SegNet segments frames. The next frames are
processed after the preceding frame is finished. Each frame in a 3-minute video can take a lot of
time to process. They're sluggish yet good at segmenting output. ResNet50 SegNet is trained on
CamVid using ResNet50's ImageNet weights.

3.2 FlowNet
FlowNet is an optical flow algorithm that uses a convolutional neural network. The movement

of every pixel in a picture that is caused by relative object movement between frames or by a
moving camera is referred to as optical flow. For calculating object motion correction, FlowNet2.0
will be employed. As depicted in Figure 3, FlowNet2.0's architecture is composed of three tiers:
Correlation, Simple, and Small Displacement. Each level of this layered network, namely FlowNet-
C, FlowNet-S, and FlowNet-SD, is tailored to handle large shifts between objects within an image
frame. It's important to note that the datasets utilized by FlowNet-S and FlowNet2S differ in their
composition. Flying chair practice takes place without set schedules prior. While Slong went
through 1.2 million iterations, Short only went through 600 thousand.
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Figure 3. Architecture of FlowNet-Simple
The FlowNet2-Simple architecture, functioning as an encoder-decoder, is designed to create

flow fields between two images. It operates by taking two frames, a key frame (Ik) and the current
frame (Ii), as inputs, and produces a flow field (F) as the output. FlowNet2S is solely focused on
generating flow fields and does not provide segmented outputs. For the final segmentation output,
the plan is to integrate the outcomes from the segmentation network with those from the optical flow
network. This combination will account for the spatial movements captured in the feature maps at
each convolutional layer, tracking changes between the keyframe and its corresponding frame.
FlowNet2 offers a significant speed advantage over per-frame segmentation, leading to faster
computation times and thus enhanced segmentation speeds.

3.3 Spatial Warping
The integration of extra convolutional layers enables the encoding of both semantic and spatial

aspects of an image. Thanks to these spatial maps, the transfer of feature maps through spatial
warping becomes more efficient and cost-effective. Flow fields Mi>k can be computed using a flow
estimation method, denoted as F, which is applied according to Equation (2):

Mi→k = F (Ik, Ii) (2)
The propagation of feature maps involves expanding them to match the dimensions of the flow

fields through bilinear expansion. In this process, an object's position p in the current frame I is
shifted to p + δp in the keyframe k.

Where, δp = Mi→k(P). Feature warping is achieved by bilinear interpolation using Equation (3):

fic p =
q

G(q, p + δp)fkc q� (3)

In this context, 'q' represents the enumeration of all spatial locations within the feature maps,
while 'F' stands for the Feature maps themselves. 'G' denotes the two-dimensional bilinear
interpolation kernel, and 'C' refers to the total number of channels present in the feature maps.

G q, p + δp = g qx, px + δpx . g qy, py + δpy (4)

Where, g(a,b) will be equal to max(0, 1-|a-b|).
Due to potential inaccuracies in computed flows, object occlusions, and other variables, spatial

warping might not always be precise. To refine the estimation of features, it's essential to adjust their
magnitudes using "scale fields" Sik. These scale fields share the same spatial and channel
dimensions as the feature maps, ensuring a congruent scaling process. The calculation of the scale
field involves applying a scale function to both the keyframe and the current frame, as delineated by
the following set of equations.

Si→k = S(Ik, Ii) (5)
The following equation is used to calculate propagated feature maps:

fi = W(fk, Mi→k, Si→k) (6)
In this scenario, the operation W, as defined in Equation (6), performs feature warping across

all regions and channels of the feature maps. This warping is executed prior to the multiplication of
these maps with the scale fields.

3.4 Label Mapping
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In the process of label mapping, the target labels of FlowNet2S and ResNet50 SegNet are
amalgamated. Specifically, FlowNet2S features 19 labels, while ResNet50 SegNet is equipped with
12 labels within the Cityscape dataset. Given that both datasets focus on road scenes and share
similar labels, their intersection results in our derived label set. This culminates in a consolidated
collection of 11 labels. Following this mapping process, one label from CamVid is categorized as
'Unlabelled', and eight labels from Cityscape are excluded from consideration.

3.5 Decision Network
The Decision Network (DN) is structured with four layers, comprising one convolutional layer

and three fully connected layers, topped by the final layer. DN's role is to determine whether to use
the flow or segmentation network path for predicting segmentation output. It processes inputs from
hidden layers (layers 4 to 6 of the Convolutional layer) and calculates a predicted confidence score
based on the difference in ground truth pixels between Oout and Sout (outputs from the
segmentation network path). The network uses the flow prediction (F) to estimate Oout. The frame
ground truth confidence score is determined as per Equation (7).

pϵP

C Oout p , Sout p
P� (7)

Figure 4. Figure Illustrating Decision Network Architecture
Inference compares a goal threshold 't' to a frame's predicted confidence score to pick a path

(flow or segmentation). Figure 4 demonstrates the decision network design with segmentation and
flow label mapping.

3.6 Working Procedure of Video Semantic Segmentation Network
This section includes training and evaluation, system working, evaluation measures,

assumptions, and restrictions. This paragraph describes low-latency video segmentation networks.
Figure 5 displays our semantic segmentation network's response to the decision network. During our
network's initial iteration, the current frame is sent to the segmentation network path to generate
segmentation output. Next, the difference between key and current frames is determined. The
decision network determines each frame's predicted confidence score based on their difference to
segment. 't' is a 0-100 inference threshold. The current frame is delivered to the segmentation
network if a decision network's expected confidence score is over the threshold. FlowNet2S is
unable to create reliable predictions due to the enormous amount of pixels dividing the keyframe
from the current frame. The key frame and segmented network paths were changed as a result.
Whenever the expected confidence score is smaller than the cutoff, the optical flow network,
FlowNet2S, is thought to generate forecasts comparable to those produced by the segmentation
network.

Network flow routed. Segmentation allows just current frames. Keyframe and current frame
enter flow network path. ResNet50 SegNet segments output when the decision network chooses
segmentation. Frames delivered over FlowNet2S are distorted by using the most latest segmented
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result whenever the decision network selects a flow network path. Flow network scale fields are
label-mapped to further classify the 11 classes. These label-mapped scale fields and distorted output
produce segmented flow network output. The optical flow network alone cannot segment. Spatial
warping helps achieve segmentation on a flow network path comparable to a segmentation network.

Figure 5. Video Segmentation Network Architecture
First, we infer the segmentation network alone. NVIDIA Tesla T4 GPU and the CPU are used

to determine the inference time for a given set of input videos on Google Colab. ResNet50 SegNet's
per-frame processing is sluggish, but it produces accurate segmentation. An optical flow network
with spatial warping is quick, but not exact. Thus, switching between two networks and using a flow
network path most of the time and going through a segmentation network only when frame
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difference is greater speeds up segmentation and generates efficient segmentation. When a big frame
difference is detected between frames, the keyframe is updated. Adaptive keyframe scheduling
reduces processing time.
4. Results and Discussion
4.1 Training

A decisions network, a segmented network, as well as an optical flow network including
warping, are all included in this research. Training will be provided for segmentation and decision-
making networks. For the optical flow network, we'll train the FlowNet2S [38, 39] using the
cityscape dataset [18]. As encoders and decoders for the Imagenet database, SegNet has been trained
using ResNet50 and then fine-tuned using CamVid [19]. The Ada delta optimizer handles the
learning rate in an epoch-adaptive manner. To train ResNet50 SegNet, we used 367 images from
CamVid, each at 10-step durations. ResNet50 SegNet employs ResNet50's ImageNet-trained
weights. Transfer learning reuses model weights on a similar dataset. Thus, transfer learning is a
highly effective strategy because the previously trained model (ResNet50) is well-versed in many
labelled categories and contributes to issue performance improvement by fine-tuning our dataset.
Therefore, faster training and less generalization error. The segmentation network's output is label-
mapped to 11 classes. We discard the "unlabelled" or "Void" class from the CamVid dataset during
label mapping. This procedure maintains class labels after merging the segmentation network:
FlowNet2S with ResNet50 SegNet. FlowNet2S was then coupled to DVSNet to use its checkpoints
and corresponding labels were mapped utilizing scale variables. [9, 10] Applying checkpoints from
the baseline FlowNet really wouldn't enhance flows while gliding chairs and 3D-objects data are
distinct from road scenes/autonomous driving scenarios because the CamVid dataset [17] is tiny
enough to train FlowNet on data samples of road scene. As a result, we use the DVSNet design's
FlowNet2S developed on a cityscape sample (1.2 million data sets) [38, 39]. We map FlowNet2S
scale field class labels to 11 classes after warping ResNet50 SegNet segmentation output and flow.
Now segmentation and flow network class labels match. Multiplying distorted output and label-
mapped scale fields predicts flow network path segmentation.

Finally, we train the decision network with 6th-layer flow features. Using flow network
features, the decision network is trained as a regression model. Continuous learning should allow the
decision network to forecast the expected confidence score for a particular frame. 500 epochs of
training are done in 32-epoch batches with a 0.99 decay rate. Continuous learning and comparing
predicted confidence score to ground truth confidence score makes the decision network
increasingly accurate at predicting a frame's expected confidence score. Thus, segmentation and
flow network paths may be switched efficiently. The ground truth confidence score is exclusively
utilized for decision network training [9].

We used the CamVid dataset to develop the custom ResNet50 SegNet design, consisting of 701
video sequences having ground-truth labelling for 11 categories. A 30fps video of CamVid was
utilized in our research. The first 29 frames are critical, and the current frame is 30. ResNet50
SegNet just accepts the current frame as input, whereas FlowNet2S accepts the keyframe as well.

4.2 Experiments
The programming platform of Google Colab, and the specification of 2.2GHz Intel Core i7,

16GB DDR4 RAM, and an NVIDIA GPU were used throughout the research.

4.3 Experiment 1: Evaluation of Baseline Network
Using cross-entropy loss function and Ada delta optimizer, Resnet50 SegNet was trained at

different epochs. When the model stabilizes, accuracy and loss at different epoch rates are recorded.
MIoU values at different epoch rates were also tested. For epochs 10 to 50 and 100, MIoU and
Classwise MIoU on 233 current frame images were compared. The autonomous driving
environment was segmented into smaller groups overall. Result 1 compares and discusses ResNet50
SegNet and SegNet's segmentation predictions together with classwise MIoU scores at different
epochs.

4.4 Experiment 2: Evaluation of Video Semantic Segmentation Network
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In this experiment, we connect FlowNet2S with ResNet50 SegNet to reduce video
segmentation network latency while maintaining quality. After integrating the two networks, the
Decision network predicts the confidence score. On a test set of 6959 keyframes and current frames,
the combined network (a video segmentation network) is seen. Video Segmentation network
(ResNet50 SegNet + FlowNet2S) segmentation prediction is compared with each frame (ResNet50
SegNet) segmentation prediction to evaluate output quality and network speed. Result 2 has a
detailed discussion of the results.

4.5 Experiment 3: Validation of a Video Segmentation Model at Various 't' Thresholds
To test the decision network's performance by altering the threshold from 0-100. When 't' is

near '100,' the segmentation network path predicts the output. The flow network path for estimated
output is more likely to be chosen when 't' is close to zero. Considering this anticipated behavior, we
test the system with different threshold settings.

4.6 Experiment 4: Depth Inferences between Objects
The distance of an object from the driver's perspective was depicted. Determine in 2D the

separation between the driver and the centre of the targeted object you've selected. In this method,
the driver's reference point is the x-center of the image frame, and the target object's centre is its
diagonal midway. We only compute distances to cars, pedestrians, cyclists, and poles. Euclidean
distance between two points is computed using Equation (8):

Deuclidean = (x2 − x1)2 + (y2 − y1)2 (8)

The pixel distance is then transformed to metres by applying the equation 9, pixel in metres =
0.0002645833. In self-driving cars, depth information helps adjust the vehicle's speed based on how
far or close the item is. Helps avert accidents.

4.7 Outcome 1: Results of the Baseline Model
In this analysis, we delve into the outcomes of Experiment 1, with a focus on Figure 6 and 7.

These figures illustrate the predicted outputs for ResNet50 SegNet and the Original SegNet
respectively. Each figure presents the input image on the left, the predicted output on the right, and
the ground truth in the center. In these predictions, distinct colors are assigned to each class, such as
purple for cars and red for buildings, mirroring the color coding in the ground truth images. Notably,
the predicted output in Figure 7 closely aligns with its corresponding ground truth label and the
predictions made by the Original SegNet in Figure 6. However, some classes exhibit less accurate
segmentation maps. For instance, the pole segmentation mask in Figure 7 is noticeably less smooth
compared to its ground truth counterpart.

Figure 6. Authorized SegNet implementation

Figure 7. Customised ResNet50_SegNet
Table 1 presents the Intersection over Union (IoU) values for each of the 11 categories. At the

50-epoch mark, the class-specific IoU results on the test dataset were quite impressive, showing
improvements over earlier epochs. However, there was an exception for the 'pavement' category,
where the Mean IoU (MIoU) saw a 2% reduction. Increasing the number of epochs to 100 led to a
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decline in class-wise IoU for categories such as buildings, cyclists, fences, pedestrians, and trees,
each dropping by more than 1% on the test data.

Table 1. Each Class Label's IoU Classwise
ResNet50_SegNet

Classes ClassWiseIoU in % on test set
10 epochs 20 epochs 30 epochs 40 epochs 50 epochs 100 epochs

Sky 85.93 86.34 86.60 86.95 86.86 86.81
Building 73.94 74.64 75.04 74.84 75.088 73.55
Pole 3.7 6.44 10.7 10.88 12.49 14.73
Road 88.01 88.7 89.88 89.86 89.28 90.64

Pavement 64.99 66.89 69.68 69.25 67.67 71.76
Tree 69.22 70.22 70.48 70.82 71.09 69.19

Sign symbol 28.77 31.67 31.62 31.70 34.29 32.02
Fence 20.54 25.85 25.23 25.21 27.74 25.98
Car 70.05 72.13 72.74 73.49 73.44 73.89

Pedestrian 25.56 21.19 31.91 32.71 34.11 32.48
Bicyclist 13.1 22.38 27.51 26.19 32.47 37.165
The observed decline in accuracy across several categories with an increase in epochs could be

indicative of model overfitting, where the model becomes less adaptable and underperforms on
unfamiliar data. Such errors are particularly concerning in autonomous driving applications,
emphasizing the need for a model that generalizes well. After thorough evaluation, the 50-epoch
mark was identified as optimal for maintaining class generality. In the CamVid test set, ResNet50
SegNet achieved a mean IoU of 54.27% and demonstrated speeds of 1.92 fps and 19.57 fps on CPU
and GPU respectively, as detailed in Table 2. The ResNet50, a lighter and moderately deep encoder
network, outpaced the speed of DVSNet's deeplab-fast network on GPU. It is hypothesized that
deeper networks like ResNet100 or ResNet152 could enhance prediction accuracy. Table 2 also
draws a comparison between the original SegNet and ResNet50 SegNet results. The MIoU of our
baseline network is roughly 6% different from the SegNet benchmark, suggesting that ResNet50
SegNet matched the segmentation quality of the original. Although it didn't surpass the original
method's scores using ResNet50 as an encoder, it achieved comparable results in fewer iterations,
close to 100,000.

4.8 Outcome 2: Results of Video Semantic Segmentation Network
In Experiment 2, we observed the impact of integrating the Optical flow network with the

baseline model. The resulting predicted segmentation outputs, as shown in Figure 8, demonstrated a
decline in quality, appearing somewhat distorted. While the output of ResNet50 SegNet bore
resemblance to the model ’ s flow network path, distortions were noticeable in several class
predictions. Particularly, classes like poles and fences were only partially predicted. There were
instances of false predictions, such as erroneously identifying a sign as a pole, which can be critical
in certain contexts. This issue of partial segmentation and distortions could be attributed to the loss
of information during the flow generation process.

Figure 8. ResNet50_SegNet+FlowNet2S

220

https://ijcnis.org/


Available online at: https://ijcnis.org

Video Semantic Segmentation Network with Low Latency Based on Deep Learning

In the balancing mode, the combined network achieved a Mean IoU (MIoU) of 47% and
processing speeds of 16.84 fps and 31.27 fps on CPU and GPU respectively, as noted in Table 2.
The integration of the Flow network resulted in a 6% decrease in quality but an increase in
processing speed. This reduction in quality by 6% could likely be due to information loss during the
flow generation phase. Quality is better preserved near the segmentation network when the Flow
network path is selected, thanks to spatial warping. However, as the discrepancy between
consecutive frames widens, the spatial warping of segmentation network output with less accurate
flows leads to a decrease in both quality and MIoU values.

Table 2. Comparison of SegNet [15] Mean IoU Scores with our Developed
Model ResNet50_SegNet (our baseline) and ResNet50_SegNet+ FlowNet2S

Network Mean IoU Average fps on
CPU

Average fps on
GPU

SegNet (original implementation) 60.07% - -

ResNet50_SegNet (our baseline) 54.27% 1.92 19.57

ResNet50_SegNet+ FlowNet2S 47.65% 16.84 31.27

The inclusion of FlowNet2S, a rapid optical flow network, enhances the speed of our video
segmentation network, surpassing traditional per-frame methods. FlowNet2S is specialized in
generating flow data rather than conducting segmentation itself. By spatially warping the flow
information from the optical flow network and integrating it with the latest segmented output from
the segmentation network path, our system not only accelerates the segmentation process but also
maintains the quality of the output.

Table 3. Gain in fps Using two Network Approaches

Inference on GPU Segmentation network (Segmentation
network + FlowNet2S) fps Gain

Our Implementation 19.57 (resnet50_segnet) 31.27 11.7

DVSNet* 5.6 (deepLab-Fast) 19.8 14.2

Our dual-network setup, combining a segmentation network with an optical flow network,
leverages the latter's speed to compensate for the former's slower pace. This synergy has led to more
significant gains in frames per second (fps) compared to DVSNet [9], as detailed in Table 3. Our
system achieved an increase of 11.7 fps, while DVSNet registered a 14.2 fps improvement.
Although our network's fps boost to 31.27 was less pronounced compared to DVSNet, the advantage
is still notable. The extent of benefit observed is proportional to the segmentation network's speed;
since DVSNet's DeepLab-Fast is slower than our Resnet50 Segnet, the gains are somewhat similar.

4.9 Outcome 3: Results collected at various threshold modes
Here we discuss experiment 3's outcomes. Table 4 illustrates MIoU and network speed at

different CPU and GPU levels. Whenever the threshold was fixed to 90, which corresponds to slow
mode, the segmentation method was selected the majority of the time, and the network achieved a
MIoU of 53.69 percent and a framerate of 7.87 and 26.69 on CPU and GPU. Once the threshold was
fixed to 80, the segmentation, as well as flow network paths, were selected evenly. The network
obtained an MIoU of 47.65%, fps of 16.84, and 31.27 on CPU and GPU. If the threshold were fixed
to 65, the flow network path was selected the majority of the time. This enhanced network
performance to 19.09 frames per second on CPU and 32.94 frames per second on GPU, with an
MIoU of 32.55 percent. Table 5 displays IoU by network speed mode. This table illustrates how a
class's efficiency decreased as speed increased.

Table 4. The Segmentation Approach Works at Varying Speed Modes
CPU GPU
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Speed mode threshold ’t’ speed(fps) MIoU speed(fps) MIoU
Very slow mode 95 1.92 54.27% 19.57 54.27%
Slow mode 90 7.87 53.69% 26.69 53.69%

Balanced mode 80 16.84 47.65% 31.27 47.65%
Fast mode 65 19.09 32.55% 32.94 32.54%

Very fast mode 0 25.45 18.00% 35.88 18.00%

Table 5. IoU by Classwise in % for Different Speed Modes

Classes Class wise IoU on Slow
mode ‘t’ = 90

Class wise IoU on balance
mode ‘t’ = 80

Class wise IoU on fast
mode ‘t’= 65

Sky 86.28 83.54 67.63
Building 75.30 72.49 53.16
Pole 6.44 8.51 3.68
Road 88.7 85.61 76.25

Pavement 66.16 62.24 39.15
Tree 70.38 65.59 42.44

Sign
symbol 30.95 25.04 12.79

Fence 29.30 25.63 12.25
Car 70.821 54.43 38.79

Pedestrian 28.89 18.59 5.35
Bicyclist 33.53 22.45 6.6

In fast mode, when fps climbed, MIoU decreased. When speed was reduced in slow mode,
MIoU rose. Thus, speed and output quality are compromised. The balanced mode combines speed
and quality. Real-time, users can adjust the ideal threshold based on interface suggestions. Providing
speed and MIoU accuracy flexibility. After a certain point, speed saturates and doesn't grow. Table 4
shows that with a threshold of 0, the maximum GPU speed is 35.88 fps, just 3 fps greater than fast
mode.

4.10 Outcome 4: Results of Depth Inference
Figure 9 depicts the distances between bicycles and cars on bounding boxes. The cycle rider is

6.68 metres away from the reference location. The distance between two target cars is 8m and 7.65m.
The 7.65m car is getting closer, while the 8.00m car is going away.

Figure 9. Illustrating Distance between Objects in streets
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When moving on a curving route, distance calculations are also erroneous. This may be
because the euclidean distance is estimated as a straight line.
5. Conclusion and Future Work

We have developed a video semantic segmentation network focused on achieving low latency.
Our ResNet50 SegNet model demonstrated a Mean IoU (MIoU) of 54.27% and managed 1.92 fps
on CPU and 19.57 fps on GPU. However, when FlowNet2S with spatial warping was incorporated,
the MIoU slightly decreased to 47.65%, but there was a notable increase in processing speeds to
16.84 fps on CPU and 30.19 fps on GPU. This enhancement underscores the effectiveness of
integrating an optical flow network to achieve both low latency and comparable segmentation
quality. A crucial aspect of our approach was label mapping, enabling the adaptation of models from
different datasets to our context. This strategy has allowed us to leverage well-established models on
extensive datasets for our purposes. Adding the optical flow network in balanced mode led to an
11.7 fps gain, though this was slightly lower than the improvement observed with DVSNet. As we
adjusted the network from slow to balanced mode, there was an increase in speed, accompanied by a
6% reduction in prediction quality for balanced mode and 15% for rapid mode. We also employed
distance calculations between objects in a frame from a specific reference point (center of the x-
axis), which is critical for assessing proximity to the vehicle and enhancing safety. Our findings
suggest that encoder-decoder networks, such as U-Net and FCN with various encoder backbones,
are effective in semantic segmentation with low latency, and alternative distance measurements
could further improve depth inference, especially on curved roads.
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