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Abstract

With the rapid advancement of Internet of Things (IoT), mobile
internet, and big data technologies, edge computing has emerged
as a novel computing paradigm. In the hybrid architecture of edge
computing,Complementary Metal-Oxide-Semiconductor (CMOS)
integrated circuits play a pivotal role in empowering edge devices
and servers with essential computing, storage, and communication
capabilities. Despite their critical importance, CMOS integrated
circuits in edge computing environments confront significant
challenges in low-power electronics. These challenges include an
increase in power density and a decrease in system stability and
reliability. This paper delves into the key technologies of the
hybrid architecture in edge computing and sheds light on the vital
role of CMOS integrated circuits in edge devices. It introduces a
novel approach for low-power electronics, which encompasses
methods like optimization of double threshold voltage and
refinement of algorithmic processes. These methods aim to tackle
the power-efficiency issues while maintaining the performance of
edge computing systems.Furthermore, the paper presents a
detailed analysis of the proposed low-power techniques, focusing
on how they can effectively reduce power consumption without
compromising the functionality and efficiency of the edge
computing systems. It concludes with a comprehensive discussion
on the optimization results, highlighting the benefits and potential
implications of implementing these low-power strategies in edge
computing environments. This discussion not only underscores
the importance of energy efficiency in edge computing but also
opens new avenues for future research and development in this
rapidly evolving field.

Keywords: Edge Computing, CMOS ICs, Hybrid Architecture,
Low Power Design

1. Introduction
With the rapid development of technologies such as IoT, mobile Internet, and big data, more

and more devices and sensors are connected to the Internet, generating massive amounts of data.
The traditional cloud computing model suffers from high latency, bandwidth bottleneck, data
privacy, and other problems in processing these data, which cannot meet the demand of real-time
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and low latency [1], [2], [3]. To solve these problems, edge computing has emerged as an emerging
computing model [4].

Edge computing is a distributed computing model that shifts data processing and computing
power from the cloud to edge devices or edge servers close to the data source [5]. The edge
computing architecture places computing and storage resources as close as possible to the data
source, enabling faster data processing and decision-making, resulting in low-latency, real-time
responses [6]. At the same time, edge computing can also reduce the load pressure on the cloud,
reduce data transmission bandwidth requirements, and improve system reliability and security [7].
The development background of edge computing stems from the inadequacy of the traditional cloud
computing model and the demand for real-time and reliability [8]. The cloud computing model has a
centralized architecture, and data needs to be transmitted and processed over long distances to get
results, which leads to higher latency [9]. Especially for some application scenarios that require high
real-time performance, such as intelligent transportation, intelligent manufacturing, and IoT, cloud
computing cannot meet the demand for fast response [10]. Convolutional neural network (CNN), as
an emerging AI implementation, is usually deployed on network edge devices to achieve functions
such as object detection and recognition [11]. However, traditional convolutional neural networks
often require 1 to 1.5 orders of magnitude more computing power than ordinary edge devices and
are difficult to work in edge nodes in the context of edge computing [12]. Therefore, one of the
challenges is how to properly design a network architecture that is suitable for offloading to the edge
nodes so that the edge and cloud computing power can play their respective advantages [13], [14],
[15], [16]. At the same time, the hardware design of edge computing nodes needs to fit the specific
characteristics of CNN edge implementations [17], [18], [19].

CMOS (Complementary Metal-Oxide-Semiconductor) integrated circuits are a common
semiconductor device technology that plays a key role in edge computing and are widely used in
edge devices and edge servers [20], [21]. First, the low power consumption of CMOS ICs enables
edge devices to operate with a limited energy supply and extend the endurance of the devices [22].
Second, the high integration and small size of CMOS ICs enable edge devices to integrate more
functions and processing capabilities for real-time data processing and analysis [23]. In addition, the
lower cost of CMOS integrated circuits can reduce the manufacturing cost of edge devices and drive
the popularity and adoption of edge computing [24].

In edge servers, CMOS integrated circuits provide powerful computing and storage capabilities
that enable the processing and analysis of large-scale data [25]. The high integration and high
performance of CMOS integrated circuits enable edge servers to handle complex computing tasks
and large-scale data storage, meeting the requirements for high performance and large capacity in
edge computing [26].

In summary, the application of CMOS integrated circuits in edge computing is of great
significance. It not only provides the computational and storage capabilities required by edge
devices and edge servers but also provides technical support for the implementation of hybrid
architectures for edge computing. With the continuous development and innovation of CMOS
integrated circuit technology, edge computing will further enhance its processing power and
efficiency, bringing more applications and business opportunities to various industries [27].

However, CMOS ICs still face some challenges in edge computing. The development of the
CMOS IC industry has enhanced the circuit operating frequency and integration but also made the
circuit power density increase [28]. As the process feature size decreases, the power consumption of
CMOS integrated circuit systems increases exponentially. Excessive power consumption reduces the
stability and reliability of the system and makes packaging difficult. Therefore, low-power design is
becoming an increasingly important part of current CMOS IC design. CMOS ICs continue to evolve
towards deep submicron industrial nodes, and the static power consumption of transistors can no
longer be ignored and must be taken into account in circuit design [29]. Meanwhile, [39] has
illustrated such aspect also functions well in designing of systems.

Based on the above analysis, by studying the characteristics of convolutional neural network
algorithms and FPGA features and then analyzing the characteristics of convolutional neural
network models and the needs of edge computing context [30], we finally propose a target
monitoring model suitable for working in the edge computing environment. At the same time, based
on the low-power development direction of the chip, the low-power design and optimization
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techniques of the embedded system are proposed. This paper realizes the dual improvement of
CMOS integrated circuit and edge computing based on the low-power design of CMOS integrated
circuit and the hybrid architecture acceleration algorithm of edge computing to achieve the purpose
of improving the overall structure operation efficiency.
2. Related Works

With the advent of the Internet of Things (IoT) and the era of big data, edge computing has
emerged as a promising computing paradigm that is gaining increasing attention. Edge computing
involves the deployment of computing and data processing capabilities on edge devices or edge
servers located closer to the data sources [31]. This enables real-time data processing and analysis,
offering faster and more efficient computing and service capabilities.

The hybrid architecture of edge computing combines edge computing with traditional cloud
computing, leveraging the collaborative functionality between edge devices, edge servers, and cloud
servers [32]. This integration enables more flexible and reliable computing and data processing
capabilities. The design of the hybrid architecture of edge computing encompasses various crucial
technological domains, including sensor technology and data acquisition, network communication
and data transmission, data processing and storage, as well as artificial intelligence and machine
learning. These technologies synergistically contribute to providing comprehensive support and
assurance for edge computing.

2.1 Edge Computing Overview
Edge computing is a highly virtualized platform that provides network services such as

computation and storage between end devices and the cloud and is an extension of cloud computing.
Edge computing operates on downlinking data from the cloud and uplinking data from smart devices,
respectively. Edge devices have considerable computing power and idle resources. If the system can
handle some simple edge devices with low latency, then the system can have low latency as it does
for real-time tasks. The application of the edge computing model has the following 3 advantages.

(1) Processing huge amounts of temporary data at the edge of the network, only data with high
computational complexity is uploaded to the cloud, which greatly reduces the pressure on network
bandwidth and data centres.

(2) Providing data processing services near data production terminals eliminates the step of
requesting responses from the cloud computing centre, achieving the purpose of reducing system
latency and enhancing service response.

(3) Edge computing can prevent users from uploading private data, mainly by storing private
data in network edge devices to reduce the risk of data leakage.

Figure 1. Generic Edge Computing Framework
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2.2 CMOS ICs in Edge Devices
As an important part of edge computing architecture, edge servers need to have high computing

power. CMOS integrated circuits in edge servers can provide high-performance computing power to
support complex data processing and algorithm execution. By integrating multiple CMOS integrated
circuits, the edge server can realize distributed computing and parallel processing to improve the
overall computing efficiency and throughput.

Edge servers require fast data transfer and communication with edge devices to acquire real-
time data and perform processing. CMOS integrated circuits enable fast data interaction between
edge devices and edge servers through high-speed data transfer interfaces and communication
protocols. This fast data transfer capability can reduce data transfer latency and improve real-time
data processing and efficiency.

As a bridge between edge computing architecture and cloud computing, the edge server can
work with cloud servers. CMOS ICs in the edge server can realize task offloading and distribution
and send part of the computing tasks to cloud servers for processing to improve the overall
computing efficiency and resource utilization. CMOS ICs, through high-speed network interfaces
and protocols, realize edge server CMOS ICs enable fast data transmission and communication
between edge servers and cloud servers through high-speed network interfaces and protocols to
realize the collaborative work between edge computing and cloud computing.
3. Methodology

CMOS integrated circuit low-power design plays a key role in the edge computing hybrid
architecture [33]. The goal of edge computing hybrid architecture is to enable efficient data
processing and computation between edge devices and edge servers to provide low latency, high
performance, and reliable services. The edge computing hybrid architecture requires collaborative
data transfer and computation tasks between edge devices and edge servers. Since data transmission
and computation tasks consume energy, low-power designs can reduce energy waste and improve
energy efficiency. By designing low-power CMOS integrated circuits, the overall system energy
consumption can be reduced, resulting in more energy-efficient and efficient edge computing.

The power consumption of CMOS integrated circuits consists of many factors and can be
analyzed by type and composition [34]. According to the type of power consumption can be divided
into dynamic power consumption, static power consumption, and surge power consumption, and the
power consumption percentage depends on the application scenario requirements and system
architecture algorithms. Low-power design is a top-down design, i.e., the design of low-power
strategy starts at the system architecture level [35]. A proper system architecture design can save
more than 60% of power consumption. The design at this level is often done by system and
architecture designers, integrating multi-power and multi-voltage design, system clock design,
software/hardware co-design, algorithm design, asynchronous design, IP selection, etc. It is
demanding for designers and requires extensive design and practical experience. This paper
implements a tool-based improvement to the dual-threshold algorithm to achieve a proven low-
power design goal through simulation experiments.

3.1 Digital Threshold Voltage Optimization
The dual-threshold voltage technique is a widely used low-power design technique, and its role

in reducing the static power consumption of the circuit is relatively significant. And it is a circuit
optimization design technique that is widely used to reduce the static power consumption of
integrated circuits. This design method is that the transistor devices of the circuit are designed with
one threshold voltage, based on which the circuit is designed with transistor devices of multiple
threshold voltages instead; that is, different threshold voltages are used for circuit units on different
timing paths to ensure the timing requirements of the critical path, and the power consumption
requirements of the non-critical path, thus reducing the static power consumption of the circuit.

In integrated circuit design, the delay of the off-key path determines the clock speed of the
synchronous circuit. The timing delay of the critical path between the flip-flop and the synchronous
circuit is compared with the delay of the non-critical path in Figure 2.
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Figure 2. Idle Time of Different Paths
In a standard circuit design, the delay of the most critical paths determines the target clock

frequency. However, since the number of these critical paths is only a small fraction of the total
number of IC paths, the gate units on the non-critical paths work very slowly to a significant extent
(their signals arrive earlier than required so that the signal arrival time at the receiver side and the
usage time form a time interval). The performance of the circuit, in this case, is not improved by the
early arrival of the signal at the receiving end of the non-critical path. The gate unit circuit on the
non-critical path then consumes additional energy as a result, resulting in wasted power
consumption.

Due to local timing constraints, all gate cells in the non-critical paths of the circuit cannot be
replaced with high threshold cells at the same time. In order not to degrade the total system
operation performance and stability, the gap between timing paths must be low and greater than zero.
If the delay requirement cannot be met by replacing all gate cells on a path, then a combination of
gates with both high and low threshold cells is required for that path.

Figure 3. Leakage Current of a Dual Threshold Voltage Cell

3.2 Algorithm Process

To simplify the problem, some settings are made in this thesis for algorithm design as follows.
In this paper, we assume that the high threshold voltage will not additionally increase the static
power consumption of the boost circuit. Also, in the algorithm implementation, we will only
consider the effect of the dual-threshold low-power design threshold voltage on the power
consumption and delay of the entire timing circuit while the other conditions in the circuit remain
unchanged. In addition, we assume that after this optimization of the threshold voltage circuit, the
reduction in static power consumption is directly related to the proportion of high threshold voltage
circuit components, i.e., the proportion of high threshold voltage devices in the circuit used in this
paper to represent the effect of the algorithm in reducing power consumption. The algorithm
procedure is as follows:

Step 1. Initialize, read into a netlist, and set a target time of T0.
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Step 2. Calculate the slack margin for each timing path. By adjusting the timing constraints, the
slack margin of the timing path P=(v1,v2.. .vk) is compared with our given target time T0, the
relaxation margin minus the target time To is calculated, and all the timing paths Р with relaxation
margins less than 0 are marked into the path set R. The individual nodes on these paths are marked
into set V1.

Step 3. The initial circuit optimization is performed by swapping the cells of each path in set V1
to low-threshold cells, calculating the relaxation margin difference of the cells on these paths before
and after the replacement, marking them to that node cell, and then swapping the node cells back to
high-threshold voltage cells. Then, the node cells with large intrinsic delay in set V1 are operated
and replaced with low-threshold voltage cells, and these nodes are moved to the replacement set V1.
The set VLVT is read into the circuit netlist.

Step 4. Recalculate the relaxation margin of each timing path and reset the set of paths R and the
set of nodes V1.

Step 5. The high threshold voltage of the node of the timing path Р in the timing path set R is
replaced by the low threshold voltage, and the slack margin of that timing path is calculated after
each replacement. Where the relaxation margin of each node is obtained by weighting both wns and
tns, and the tns value of the node is calculated only for path values less than a specific value s0 in
each round. This particular s0 is updated after one round of computation, and the size of the value is
related to the size of the worst slack value after each re-update of the timing.

Step 6. After calculating the relaxation margin, the standard unit of the node with the largest
negative relaxation margin on the path is replaced. If the relaxation margin is positive at this point,
the temporal path P is removed from the set R, while these nodes are removed from V1 and moved
to the replacement set VLVT. If not, the standard unit of the next node on the path is replaced. This
is an iterative backtracking process that performs all the paths in the set R once.

Step 7. The node transformation in VLVT is read into the circuit, the circuit timing is updated,
values such as s0 are updated, and at the same time, whether the path of the violation is eliminated
or the number of iterations is reached is judged, and step 7 is executed; otherwise, step 4 is executed
by backtracking.

Step 8 Statistical results, end of the algorithm.
The specific flowchart representation of the algorithm is shown in Figure 4:
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Figure 4. Algorithm Implementation Flow

3.3 Analysis of Results

Usually, the target period we set is a little tighter than the actual requirement, keeping some
margin. After we optimize the circuit, the path of delay violation in the timing path of the circuit can
achieve convergence of the timing. Since the library used can achieve a frequency of 200M, in order
to verify the simulation results, we use a clock period constraint of 4.5ns in practice; then in the STA
stage, the clock period is reset to 4.3ns, run the algorithm script, and simulate the calculations.

The optimization calculation is performed on the chip, and the slack margin of the timing paths
of the violation is tracked. And these paths are marked in the algorithm to obtain their unoptimized
timing violation.

During the optimization process of the algorithm, we record the slack margin of the circuit
nodes and record the circuit timing slack margin as Slack A when it is not optimized, Slack B when
it is initially optimized, and Slack C when it is finally optimized, then the slack margin of the
violated paths in the timing paths changes as shown in Figure 5.
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Figure 5. Chip Circuit Timing Path Relaxation Margin Variation

The dual-threshold low-power idea is to map each circuit cell in the gate-level netlist to a high-
threshold voltage circuit cell and then to replace the high-threshold cell with a low-threshold voltage
cell without violating the timing violation. Comparison between this algorithm and the algorithm in
this paper Table 1:

Table 1. Comparison of the Two Algorithms

Total
Units

Low Threshold
Cell Count

Proportion Of Low
Threshold Units Timing

Control Algorithm 8710 1567 0.18 4.35ns

Algorithms in this
Paper 9120 1277 0.14 4.75ns

Compared with the control algorithm, this algorithm can make better use of the lose her margin
in the path to maximize the use of high threshold voltage cells and thus reduce chip power
consumption.
4. Convolutional Neural Network Acceleration Algorithm for Edge Computing

Hybrid Architecture
In recent years, with the proliferation of computing power and data, neural network algorithms

have developed significantly and have shown accuracy and efficiency beyond traditional algorithms
in tasks such as image, speech, and video processing [36]. Especially after the AlexNet network
model was proposed in 2012, intelligent image processing methods based on convolutional neural
networks (CNNs) have gradually become mainstream methods and started to be applied in key
areas of production life, such as aerospace, industrial inspection, and autonomous driving [37].
However, while convolutional neural networks provide powerful image feature extraction capability,
they also bring huge computational parameters and billions of floating point computations, but their
large number of parameters, computational complexity, and high inter-layer independence make
them difficult to be efficiently deployed in edge scenarios with lower power consumption and fewer
resources [38].

4.1 Hybrid Architecture Overall Design
First, to efficiently utilize the less storage resources inside the FPGA, the network model is

compressed and optimized in this paper before deploying it. After that, a Digital Signal Processor
(DSP) array computation acceleration architecture with data flow controlled by instructions is
implemented on a Xilinx FPGA. Finally, the CPU processing speed was also optimized using multi-
threading techniques to achieve a flowing processing effect.

This paper implements a Register Transfer Level RTL-level instruction-controlled data flow
architecture on FPGAs that use high-speed DSP arrays to accelerate convolutional computation. In
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addition, the architecture retains a certain degree of generality, using a dedicated set of software-
generated instructions to control the data flow for the forward propagation of different backbone
networks. A small amount of image pre-processing and feature map post-processing involving
floating-point computation is designed in this paper to use CPUs for computation and to accelerate
the inference computation of convolutional neural network algorithms using a hybrid architecture
form. The data flow and control flow diagram of the overall design is shown in Figure 6. The CPU
stores the pre-processed feature maps into the off-chip memory via the PCI-Express bus. The feature
cache and weight cache read and cache the feature map and weight data from the off-chip memory
according to the instruction opcode. These data are sent to the DSP array for multiplication and
addition calculation under command control, and the results are computed by quantization,
activation, pooling, upsampling, and other logic calculation modules to obtain the feature map under
command control. The intermediate layer feature map is written back to the feature cache for
subsequent propagation, and the output layer features are written back to the off-chip memory,
which is read by the CPU through the PCI-Express bus and post-processed according to different
algorithms to obtain the final results and display the output. Among them, instructions are pre-stored
in an on-chip cache (ROM).

Figure 6. Overall Design Diagram of the Hybrid Architecture

4.2 Accelerated Solution Design
According to the analysis above, the architecture must have the ability to support multiple

network structures and, maximize the efficiency of module operation and reduce the idle time of the
computing core if it is to work in the context of edge computing where multiple target applications
exist. Therefore, the architecture of the acceleration scheme under study is designed as a
reconfigurable module multiplexing architecture, and an FPGA platform is chosen for its
implementation: configurable basic network structures such as convolution and pooling are
implemented on-chip, and various types of network structures can be composed according to the
specific needs at the time of application. Such an architecture can significantly increase the module
reuse rate and make the acceleration scheme designed in this section somewhat general. The
acceleration scheme mainly consists of an interface module, a convolution module, a pooling
module, and a parameter configuration module. The main workflow can be summarized as follows:
First, the ARM Cortex-A9 CPU on the PS side sends a packet to the configuration module of the
acceleration scheme to configure the internal computing registers via the AXI_lite bus. After the
configuration is completed, the init_done flag bit is transmitted, and the configuration module sends
instruction packets to the computing module according to the internal communication protocol. The
specific structure is shown in Figure 7. Each module is sent a data request by the DMA module
according to the configuration, and the request is converted into a communication protocol in
AXI_full format by the interface module to take the corresponding weights and characteristics from
the Double Rate Synchronous Dynamic Random Access Memory (DDR SDRAM) for arithmetic.
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Figure 7. Overall Architecture and Development Environment of the Accelerated Solution
After the operation is completed, the operation module writes back and pulls up the completion

flag. The configuration module will continuously read the completion flag register after the
configuration is completed and feed the flag back to the driver function after successful reading to
mark the completion of this operation, and the next configuration and calculation can be performed.

4.3 Module IP and System Packaging
In the implementation of the gas pedal, the system-level implementation is carried out by

encapsulating various modules into IPs and then calling them in a unified way. The operational
properties of each module are realized by configuring the corresponding parameters in the driver
functions. Therefore, when the gas pedal handles the computing tasks of a multi-layer network, it
only needs to call the same driver function to instantiate different parameters when it encounters the
same type of network structure model. This approach increases the generality of the design and
facilitates the gas pedal to work in resource-sensitive edge computing environments.

In this paper, two main operational modules for convolution and pooling, two CAS modules for
convolution and pooling, and the ATIF interface module are implemented, and the packaging of the
above IP is performed in the Vivado 18.02 tool. Figure 8 shows the encapsulated CAS_POOL
module, CAS_CONV module, and their interfaces.
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Figure 8. Encapsulated IP

After implementing the various IPs, the complete Block Design is shown in Figure 9.

Figure 9. System-wide Block Design

The whole gas pedal works like a coprocessor. The main processor uses the AXI-lite bus to
configure it, and the coprocessor receives the configuration information and, reads the data through
its own AXI-full bus connected to the DDR controller, and then writes it back through the same path
after computing. The main processor is the CPU hardcore on the PYNQ-z2 development board.
Therefore, the whole system needs to be built in two packages, first assembling the gas pedal itself
composed of IP through BlockDesign, then calling in the BlockDesign of the whole system and
adding ZynqSystem, clock reset module, bus interconnect module, etc., to compose the final output
file. The two modules near the middle of the left column are the convolution and pooling operation
modules, which receive the configuration packets from the two CAS modules above and below the
left column, parse them into operation instructions, and then send the data handling signals to the
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ATIF module via its dma in the form of an internal protocol. After the ATIF module arbitrates the
attribution of the current request, it turns to AXI-full protocol and sends it outward.

Since the DDR controller is integrated into the ZYNQ chip on the PYNQ board, the ATIF must
first pass through the PS side when driving the DDR. After the data is read back from the above path,
it is calculated by the corresponding arithmetic module and then written back to the corresponding
physical address. The fourth module in the left column is the system-generated clock reset module
when the clock is connected, and several modules in the right column, except ATIF and PS, are AXI
bus connectors for bridging AXI interfaces that cannot be directly connected due to inconsistencies
in bit width and timing. Because of the redundant connection lines, they are not drawn. After the
whole system is packaged by BlockDesign, it needs to be packaged as an Overlay for system calls
on the PYNQ board. Finally, it is exported as a bitstream file and the corresponding tcl file, which is
copied to the PYNQ onboard SD card. At this point, the acceleration system implementation is
complete.

4.4 Accelerated Solution Performance Analysis
Table 2 shows the resource consumption of the whole project. Due to the parallel computing

characteristics of this design, the Digital Signal Processing (DSP) resources are relatively more
consumed, with a total of 107, accounting for 48.64% of the overall resources, which are mainly
used for multiplication and addition operations. 64 BRAM resources are consumed, accounting for
45.71% of the overall resources, which are mainly used as on-chip caches to pre-store weights or
feature matrices. Look Up Table (LUT) resources consume 25.15% of the overall resources and are
mainly used to perform calculations or participate in data transfer. Since the design of this topic
involves a large amount of data multiplexing or moving, and there are also a large number of logical
fits at the periphery of the arithmetic unit matrix, the LUT resource consumption is relatively high.
Analysis of Table 2 shows that the multiplexing architecture adopted in this design keeps the overall
gas pedal's dependence on resources at a low level and still does not consume all available resources
on smaller FPGA boards, and there is some room for upward exploration of resources consumption
indicators such as parallelism and bit width. Therefore, it is well suited to work in the resource-
sensitive edge computing field.

Table 2. Resources Consumed by the Design

Resource Utilization % Available Utilization

LUT 24.36 52700 12986

FF 12.54 105800 14217

DSP 47.86 240 125

BRAM 45.71 160 66

LUTRAM 11.8 16400 1798

BUFG 2.89 32 1

Since applications in the context of edge computing are particularly sensitive to power
consumption, this gas pedal adopts a parallelized design and consumes fewer resources, so the
overall power consumption of the gas pedal is at a fairly low level. In this paper, the power
consumption information is analyzed using the Vivado tool, and the power consumption analysis of
each specific module is shown in Table 3.

Table 3. Power Consumption of Each Module
Specific Modules Power Consumption Ratio

processing_system7_0 1.358W 73%
POOL_0 0.036W 3%
Leaf Cells 0.001W <1%
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axi_smc 0.048W 2%
ATIF_4 0.009w 1%
CONV 0.165W 12%

ps7_0_axi_perph 0.006W 1%
ps7_0_axi_perph_1 0.003W 1%
rst_ps7_0_100M <0.001W <1%
CAS_CONV 0.005W <1%
CAS_POOL 0.002W <1%

5. Conclusion
This paper describes the role of CMOS integrated circuits in edge computing hybrid

architectures in edge devices and discusses the low-power design challenges faced in edge
computing. To address these challenges, two low-power design approaches, dual-threshold voltage
optimization and algorithmic process, are proposed.

Dual-threshold voltage optimization is achieved by using different operating voltages according
to the requirements of different modules in the chip to optimize power consumption. In the
experiment, by distinguishing the critical path and non-critical path of the circuit, a high threshold
unit is used to design the non-critical path, and a low threshold circuit unit is used to design the
critical path to achieve the improvement of circuit system performance and the reduction of circuit
power consumption based on ensuring the timing convergence of the experimental circuit. For the
algorithmic process, the power consumption can be reduced by algorithm optimization and
improvement, such as using more efficient algorithms and data compression techniques.

After analyzing and discussing these approaches, it can be concluded that CMOS integrated
circuits play an important role in edge computing but face the challenge of low-power design. With
a dual-threshold voltage optimization and algorithmic process approach, power consumption can be
effectively reduced, and the performance and reliability of edge devices can be improved.
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