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ARTICLE INFO	     ABSTRACT
Utilizing a Geoinformatics Information System (GIS)-based deep learning model for sugarcane crops can effectively address challenges faced by farmers, particularly in disease detection and classification within specific regions. To overcome overfitting issues, the study employs data augmentation techniques, enlarging the dataset and introducing a self-created database of sugarcane leaf diseases to the research community. The database comprises 2539 images across five classes/categories, encompassing both healthy and diseased leaves. Given the significant threat sugarcane leaf diseases pose to smallholder farmers, an automated diagnosis model is crucial for early detection. The proposed methodology generates predictions for test samples, incorporating scores from conventional metrics such as recall, precision, accuracy, and f1-score obtained from base learners. Customized GIS-based CNN models are employed for training, leading to improved results. The approach is evaluated using a real-world sugarcane leaf dataset, with GIS providing information on coverage, mapping, and disease classification on land cover. Satellite imagery is utilized for mapping areas with different sugarcane diseases, identifying specific characteristics and disease infestation using the GIS model. The GIS-based CNN model exhibits a training accuracy of 0.9591 and validation accuracy of 0.9948 on 30th epochs and an acceptable number of parameters for disease recognition. Validation is conducted using pictures collected from villages in Maharashtra, India. Comparisons with another other models highlights the effectiveness of the GIS-based CNN model as a valuable tool for recognizing sugarcane diseases. Overall, the study underscores the potential of integrating GIS and deep learning in agricultural monitoring, offering a promising solution for early disease detection and classification in sugarcane crops.Received: 20 Apr 2024
Accepted: 31 Aug 2024
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INTRODUCTION

Agricultural management relies on accurate and current information, both spatial and non-spatial, for effective planning and execution of activities to enhance land productivity and input efficiency. The adoption of Global Positioning System (GPS) and Geographic Information System (GIS) technologies in agriculture facilitates better land and resource management for sustainable crop production [1-4].
Remote sensing (RS) plays a crucial role in acquiring spatial data within GIS platforms, offering an accurate, efficient, economical, and reliable technique for comprehensive inventory of natural resources. RS, integrated with GIS and GPS, enables the identification and monitoring of various crop indicators, including photosynthesis, phenology, plant function, development, nitrogen stress, drought stress, crop quality, and yield. The imagery obtained from RS can be integrated with other spatial data layers in GIS, and GPS receivers aid in locating positions of interest, allowing for targeted management actions and corrective measures in specific zones [5-6].
Recent advancements, such as higher resolution imagery (0.6 m pixel), have increased the utility of RS for agronomic purposes and precision agriculture. With improvements in bandwidth technology and the development of hyperspectral sensors, RS has become a major tool for information gathering in precision agriculture. The increasing number of satellites is expected to make remotely sensed data more affordable, with better resolution and faster delivery time [5,7].
Sugarcane, a major global crop, faces the emerging threat of Leaf Disease, causing significant yield losses in various countries. Crop monitoring, crucial for Precision Farming, aids in maximizing quantity and quality through early stress diagnosis. Remote sensing, utilizing satellite imagery, proves valuable in mapping crops, detecting diseases, and assessing plant health. This study employs remote sensing to map disease affected sugarcane areas, utilizing the difference in mean values between disease affected and healthy fields [8]. 
Throughout history, humanity evolved from hunting and gathering to cultivating crops, contributing to civilization's progress. Sugarcane holds agricultural significance in India. Despite India leading globally in sugarcane cultivation area, disease, pests, and climate impact productivity. Leaf spot diseases, influenced by humidity and temperature, notably affect production. Early leaf spot, impacting crops in the early growth phase. Early detection of fungal diseases is challenging, prompting the use of computational imaging, neural networks, and graphic processing units for disease identification in sugarcane plants worldwide [9-11].
Agricultural productivity is crucial for nations heavily reliant on agrarian activities. Factors like bad weather, inadequate irrigation, poor crop choices, plant diseases, and outdated farming facilities contribute to production losses. Technological advancements, similar to those seen in healthcare, are now making their way into agriculture. Intelligent irrigation systems, utilizing data acquisition, decision support, and scheduling systems, help address water scarcity issues. Precision agriculture with GPS and GIS enhances machinery efficiency and information management [12-15].
In harvesting, the use of hyperspectral imaging and semantic segmentation algorithms aids in categorizing and selecting high-quality produce. Sugarcane, a vital cash crop in many Indian states, has seen various studies using neural networks for price calculation and UAV-acquired images for precise yield estimation. The integration of IoT and deep learning shows promise in increasing crop yield and improving quality. Managing diseases is critical for agricultural productivity, with deep learning techniques proving effective in disease control. The summary in Table 1 showcases various deep learning practices, their underlying technology, datasets, and accuracy for specific plant applications. Overall, increased technological advancements are expected to enhance agricultural yields [16-17].
Researchers working on deep learning face challenges related to dataset availability. Transfer learning techniques, where pre-trained models are systematically trained with small databases, help overcome overfitting issues. While the Plant Village dataset is useful for deep learning experiments, it has limitations, such as not covering all plant species worldwide and containing images from controlled environments only. This raises concerns about algorithm performance in real-time settings [18].
To address the need for a sugarcane disease detection system, a customized dataset is created, including real-time field images of sugarcane leaves. Various transfer learning algorithms are applied and compared with a proposed ensemble deep learning model to find the optimum sugarcane disease diagnosis system [18]. The paper's major contributions include proposing a self-generated sugarcane dataset, conducting a detailed analysis of transfer learning methods, suggesting an optimal method for real-time sugarcane disease diagnosis, and proposing an ensemble model that outperforms major transfer learning methods on the sugarcane dataset.
Traditional methods of visually inspecting crops for diseases are time-consuming, impractical, and prone to human error. To address this, technology has evolved to employ instruments for automated disease detection in plants. Advances in image processing, pattern recognition, and computer vision have led to the development of efficient systems for disease diagnosis. Deep learning, particularly Convolutional Neural Networks (CNNs), has gained popularity due to its ability to automatically learn from large datasets, improving the accuracy of disease identification [19-20].
The paper outlines the challenges in sugarcane cultivation and the impact of diseases. It emphasizes the role of deep learning, especially CNNs, in automating the identification of plant diseases, providing a more efficient and accurate solution for farmers using GIS. The paper is organized into sections covering GIS, CNN, Methodology, proposed model, results and discussions, conclusion, and references.

1.   Geographical Information System 
Modern, environmentally-conscious agriculture heavily relies on information-driven approaches. The adoption of innovative management strategies like integrated crop and pest management necessitates accessible environmental data. The Geographical Information System (GIS) emerges as a crucial tool in facilitating land use planning through its software application for managing and analyzing spatial data. GIS enables the storage, retrieval, and transformation of information pertinent to productivity and agronomy, drawing from various sources such as digital maps, photographs, soil and crop surveys, sensor data, and yield maps. Through its graphical interface, GIS produces maps that depict spatial relationships among factors like yield, soil fertility, pests, diseases, and landscape changes [2]. These maps serve as invaluable resources for making informed decisions in precision agriculture. GIS excels in overlaying and displaying different data layers, creating primary information maps for soil types, nutrient distributions, topography, soil moisture, pH, and crop cover. However, the statistical validation of relationships may require additional spatial statistical techniques. The integration of GIS with other precision agriculture technologies, including CNN, enhances decision-making through a visual interface. Despite challenges related to differences in spatial resolutions between technologies, GIS remains an essential tool for linking spatial data to crop characteristics in precision agriculture [2, 21-22].

2. Convolutional Neural Network
Deep Learning (DL) holds a significant role in the advancement of artificial human intelligence and automated systems. Characterized by extensive neural networks (NNs), DL employs computer processors or embedded video processors to control each neuron within a NN, known as a single node [23]. DL has found application in various fields, including crop variety detection and classification [13], plant identification and classification [15], and fruit grading from images [19]. The widespread use of mobile cameras and cameras on robots [18] has further popularized DL for image-related tasks. A pivotal architecture in computer vision is the Convolutional Neural Network (CNN). CNNs undergo multi-layered processing involving input images, convolutional layers, pooling layers, fully connected layers, activation functions, and an output. Figure 1 illustrates the intricate architecture and sequential flow of information through the various layers of a CNN model.
[image: ]
Figure 1: Convolutional Neural Network Architecture

Figure 2 depicts the various stages in plant disease prediction utilizing a CNN architecture. The detailed implementation of the model is further elucidated in the proposed work.

[image: ]
Figure 2: Disease Prediction using CNN architecture

A. Convolution Layer:
Convolutional layers retain the output of kernels from the previous layer, which includes weights and biases to be learned [13]. The optimization function is directed at producing kernels that faithfully represent the data. This layer utilizes a series of mathematical operations to derive the feature map of the input image [6].

B. Activation Layer:
The activation layer consistently applies a non-linear Rectified Linear Unit (ReLU) in each convolutional layer.


C. Pooling Layer:
Pooling layers are essential for reducing overfitting and downsizing neurons in the down-sampling layer. A 2x2 filter size is utilized in the pooling layer, determining the output through the pooling type. This layer effectively reduces the size of the feature map, the number of parameters, training time, computation rate, and controls overfitting [18]. Overfitting, in this context, refers to a model achieving 0.9591 accuracy on the training dataset but only an average of 25% on the test data. To achieve dimension reduction in the feature map, max pooling is integrated with stride and ReLU [17].

D. Fully Connected Layers:
Fully connected layers are employed to analyze class probabilities, and the results serve as input to the classifier. In this layer, the well-known softmax classifier is utilized for the recognition and classification of sugarcane diseases.

METHODOLOGY

The work flow diagram of methodology adopted to design a GIS-based CNN model is given below in figure 3. Here each block of the flow diagram of methodology is explained in details:
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Figure 3: Work flow diagram of methodology for the GIS-based CNN model
2.1 Collecting Raw Images
A crucial prerequisite for the effective deployment of deep learning architectures is a comprehensive dataset, and the task of collecting problem-specific data is both challenging and resource-intensive. In the context of plant disease diagnosis and classification, which demands substantial datasets for successful application of deep learning techniques, the Plant Village database has been a commonly used resource, containing over 2539 images across different classes, specifically covering sugarcane plants/leaves [8-10]. While the Plant Village database offers an extensive range of plant/leaf samples with diverse variants, the author was motivated to create a bespoke database tailored to the needs of the farming community, focusing on the sugarcane crop season under Indian environmental conditions. Data augmentation techniques were applied to mitigate potential overfitting issues, resulting in a total of 5239 images resized to (256 × 256 × 3). The experimentation considered a total of 5 classes/categories. To address the lack of technical expertise among Indian marginal farmers and their limited familiarity with recent digital trends, no specific attention was given to illumination conditions, orientations, or other physical factors during the image acquisition process [15-18].

2.2 Number of classes 
The sugarcane database comprises five primary classes or categories, namely healthy, rust, leaf spot, red rot, and yellow leaf diseases, as outlined in Table 1. Each disease class is represented by approximately 500 images.

Table 1: Images per class in sugarcane dataset
	Image name
	Class/Category
	Number of images
	in percentage

	Healthy
	A
	510
	20.09%

	Rust
	B
	511
	20.13%

	Leaf Spot
	C
	510
	20.09%

	Yello
	D
	507
	19.97%

	Red Rot
	E
	501
	19.73%

	Total
	
	2539
	100%



2.3 Number of images capturing devices
The process involved using general smartphone cameras for GIS capturing or Geotagging images, including longitudes and latitudes. The overarching objective of this endeavor is to develop a real-time disease detection system. To ensure the system's universality and reliability for lower-end farmers, mobile phones within the INR 8K-13K range were specifically selected.

2.4 Image collection site 
The image collection took place under normal environmental conditions between July and August. Samples were gathered from various farms in the Sangli district of Maharashtra state, India. The selected region falls under the local steppe climate category, and the essential climate features of the area are detailed in Table 2.

Table 2: Description of the raw image collection site
	Parameters
	Details

	Region/Area
	Village of Sangli district, Maharashtra, India

	Soil type
	Black soil

	Annual average temperature
	25.4 degree Celsius

	Irrigation facility
	Surface irrigation

	Water source
	Arabian See



2.5 Splitting Dataset
Following the dataset collection, images were annotated using the Tool-labelImg. Subsequently, the annotated data was divided into training, testing, and validation sets.

2.6 Training CNN Model
The CNN model is trained using augmented images representing various classes collected from Sangli district, Maharashtra, India. Once the CNN model is trained to identify the image class, this information is then input into the GIS model for further processing. The GIS model is designed to specify the area/region of the image class by indicating the latitude and longitude.

2.7 GIS Model for Precision Farming 
[bookmark: _Hlk155288611][bookmark: _Hlk155288778]The rapid advancement of information technology has significantly expanded our ability to gather extensive spatial data, with key technologies such as yield monitors, remote sensing, and GIS recognized as essential components of modern precision agriculture. While these technologies are well-established in cereal cropping systems, their operational integration into the sugarcane production system requires further research and development. Despite technology being a cornerstone of precision agriculture, it is crucial to acknowledge its limitations. While technology plays a significant role in precision agriculture, its appropriateness in addressing specific management problems is crucial for successful implementation. Many enabling technologies are at various stages of development, and their application may vary at different levels, from the regional scale down to the within-paddock level. The adoption of GIS in selective harvesting for potential benefits requires thorough research into the spatial and temporal interactions between yield and commercial cane sugar (CCS), particularly in sugarcane farming within sensitive coastal floodplain ecosystems. The spatial distribution curve of the sugarcane image taken from the village of Sangli District of Maharashtra, India, is presented in Figure 4, showing different classes of disease in the specific region/area of any field in the Village of Sangli. 
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Figure 4: Spatial distribution of sugarcane images
2.8 Output
The output is presented in terms of metrics and the classification of images, along with their latitudes and longitudes, to identify the area/region corresponding to the class of leaf/plant in sugarcane.

3. Proposed model 
A GIS-based CNN model is formulated to improve prediction accuracy and pinpoint the region with GIS information, such as longitude and latitude, as illustrated in Figure 5. The model is trained on a dataset comprising 2539 images of various classes. The core idea behind this model is to train a CNN on the given data, employ the predictions as features to train a GIS model, and then amalgamate the predictions from both models effectively for a final prediction.
The GIS-based CNN model undergoes several steps in its implementation:
· Training the CNN model using the training data to classify the images.
· Utilizing the CNN's predictions and inputting them into the GIS model.
· Extracting GIS location information with accuracy from EXIF files using the PIL library.
· Training the GIS-based CNN model on the predictions from the validation set to optimize integration for generating a final prediction.
· Once the GIS-based CNN model is trained, predictions can be made using the test data.

[image: ]
Figure 5: Proposed GIS-based CNN model

RESULTS AND DISCUSSIONS

We present performance metrics and loss curves to analyze and showcase the performance of all models. Table 3 outlines the selected parameter set for experimentation. This section specifically addresses the results obtained from the experimentation with the GIS-based CNN model.

Table 3: Parameters used for the proposed model
	Parameters
	Details

	Batch size
	32

	Image Size
	256x256

	Classes
	5

	Training: testing: validation
	70:15:15

	Total Parameters
	184202

	Epochs
	30



The accuracy and loss curves for the GIS-based CNN model, trained on the database for 30 epochs, are illustrated in Figure 6 and 7, respectively. The model achieved a training accuracy of 0.9591 and a validation accuracy of 0.9948 on the 30th epoch, surpassing the performance of other models as detailed in Table 5. Additionally, metrics such as precision, recall, F1-score, and support values for each class are presented in Table 4 to further fortify the proposed model. The prediction accuracy of the GIS-based CNN model consistently outperforms other conventional deep learning models, attributed to its enhanced ability to capture intricate patterns in the data. Figure 8 displays the ROC curve with an average accuracy (AUC) of 0.68 for class B.

[bookmark: _GoBack][image: ]
Figure 6: Training and validation loss curve of GIS-base CNN model
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Figure 7: Training and validation Accuracy curve of GIS-base CNN model
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Figure 8: ROC curve of GIS-base CNN model

Performance metrices
Precision, recall, F1 score, and support are pivotal metrics for evaluating the effectiveness of the GIS-based CNN model's methodology. Table 4 furnishes a comprehensive explanation of all parameters.

Table 4: Performance metrics of the proposed model (CNN-based GIS model)
	Class
	Precision
	Recall
	F1-score
	Support

	0
	1.0
	1.0
	1.0
	12

	1
	0.86
	0.86
	0.86
	8

	2
	0.80
	0.63
	0.69
	7

	3
	0.88
	1.0
	0.88
	7

	4
	0.74
	0.75
	0.74
	4



Validation Results
The validation results of the proposed GIS-based CNN model are depicted in Figure 9. The model undergoes validation on images from five classes/categories, which include GIS-captured or geotagged images. The validation results indicate a maximum confidence of 99.86% for class E (Red rot) with latitude 17.0, 9.0 and longitude 74.0,18.0, showcasing the superior performance of the designed model.
[image: ]
Figure 9: Validation results of the proposed GIS-based CNN model

Performance comparison 
A comparison of the performance of the proposed GIS-based CNN model with previous works is presented in Table 5. The results indicate that the GIS-based CNN model outperforms other techniques, showcasing its superior performance.

Table 5: Performance comparison of different models
	Model
	Accuracy
	Number of Parameters
	Reference

	VGG19
	0.7083
	20,026,949
	[18]

	ResNet50
	0.8064
	23,575,045
	[18]

	XceptionNet
	0.7917
	20,871,725
	[18]

	MobileNet_V2
	0.8324
	2,264,389
	[18]

	EfficientNet_B7
	0.7272
	2,264,389
	[18]

	Proposed Model (GIS-based CNN model)
	0.9948
	1,84,202

	



CONCLUSION

In this study, we introduce a GIS-based Convolutional Neural Network (CNN) model for the classification and detection of sugarcane diseases. Utilizing a GIS-based approach, the model exhibits efficiency, eliminating the need for extensive databases. The proposed technique automatically extracts distinctive features of sugarcane diseases, achieving a maximum confidence of 99.86% and a validation accuracy of 0.9948 after 30 epochs. With approximately 2539 self-collected images, the model, pretrained and thoroughly evaluated, caters to the needs of farmers in developing nations like India. It boasts fewer parameters and less computing overhead compared to other experimental variations. Loss curves illustrate the model's performance on a small database, acknowledging a longer convergence time. The study attains a training accuracy of 0.9591 and a validation accuracy of 0.9948 on the 30th epoch, showcasing the GIS-based CNN model's superior performance for small datasets in terms of accuracy and classification outcomes. This model emerges as an efficient means to enhance performance, particularly with a limited database and the need for swift training. Utilizing GIS-based models in diverse applications can elevate classification accuracy, presenting avenues for future advancements in deep learning models. Future endeavors will prioritize improving accuracy, and the database size will be expanded to address potential issues such as overfitting.
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