
International Journal of Communication Networks and Information Security

2024, 16(4)

ISSN: 2073-607X, 2076-0930

https://https://ijcnis.org/ Research Article

Copyright © 2024 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Literature Review on Software Defect Prediction: Trends,

Methods, and Frameworks

Suresh Jat1, Dr. Gurveen Vaseer2

1Research Scholar Oriental University, Indore.
2Associate Professor Symbiosis University of Applied Sciences Indore.

Email: 1sureshjat.cs@gmail.com, 2gurveenv@yahoo.com

ARTICLE INFO ABSTRACT

Identifying possible problems at an early point in the development

lifecycle is one of the most important things that software defect

prediction can do to enhance software quality and minimize

development costs. This is one of the most crucial roles that

software defect prediction can play. Of all the functions that

software can perform, this is one of the most crucial ones. This

literature review aims to offer a thorough examination of the

research trends, methodologies, and frameworks utilized in the

field of software defect prediction. This study analyzes a broad

range of scholarly publications. These publications cover a wide

variety of topics related to defect prediction, including dataset

features, prediction models, assessment measures, and prediction

approaches. Within the context of minimizing the negative

consequences of defects on software quality and project schedules,

the review emphasizes the significance of software defect

prediction. This investigation identifies significant research themes

such as the use of machine learning algorithms, feature selection

approaches, and ensemble methods in defect prediction. The paper

also scrutinizes the challenges and limitations associated with the

diverse defect prediction methodologies currently in use. These

include the imbalance of the dataset, the bias in feature selection,

and the overfitting of the model. Additionally, it highlights the

development of research fields and the opportunities for future

study, such as the incorporation of domain knowledge, the

incorporation of varied data sources, and the development of

advanced approaches to predictive modeling. Furthermore, it

acknowledges the existence of these opportunities. In its entirety,

this literature review provides researchers and practitioners

working in the field of software engineering with critical insights

into the present state of the art in software defect prediction.

Keywords: Software defect prediction Machine learning Model

generalization Domain knowledge integration.

Received: 28 Apr 2024

Accepted: 05 Sep 2024

https://https/ijcnis.org/
mailto:sureshjat.cs@gmail.com
mailto:2gurveenv@yahoo.com

121 S. Jat et al. / IJCNIS, 16(4), 120-141

INTRODUCTION AND CONTRIBUTIONS

Software flaws can cause devastating effects, as demonstrated by the catastrophic crash of the

Ariane 5 spacecraft on June 4, 1996. The software that was responsible for converting 64-bit

floating-point numbers to 16-bit signed integers experienced a catastrophic overflow problem

in this particular case. The software was responsible for converting the numbers. This

situation ultimately led to a catastrophic failure of the computer system. The growing

complexity and scale of modern software systems exacerbate their presence, making them a

serious hazard. Despite greater efforts to combat software defects, both in academia and

business, the prevalence of software defects continues to pose a substantial threat.

Code review, which is a process in which developers other than the original author

methodically analyze the source code, continues to be an essential practice for identifying

flaws and improving the quality of software. To ensure the safety and dependability of

aircraft operations, it is critical to conduct a comprehensive analysis of airborne software,

particularly in the context of airworthiness reviews. The detection of defects at an early stage

in the software development lifecycle is of the utmost importance, given that their existence

is unavoidable and that they have the potential to develop into severe problems.

It is essential to make a distinction between defects and bugs. Bugs, which are flaws in the

source code. Defects, on the other hand, involve a wider abuse of variables, functions, and

other components that can result in operational hazards or security vulnerabilities.

Static code analysis techniques play a crucial role in the process of assisting developers and

reviewers in swiftly locating faults within the source code. These techniques make a

significant contribution to improving the resilience and security of software projects. They do

this by enabling early detection and mitigation of potential problems. A software flaw,

according to Naik and Tripathy (2008), refers to an error, problem, or failure in software. Not

only does it exhibit unintended behavior, but it also produces results that are either incorrect

or unexpected. McDonald, Musson, and Smith (2007) assert that a specific flaw within the

program can cause a software product to function in an unexpected manner. The IEEE (IEEE,

1990) provides standard definitions of mistakes, defects, and failure, providing the most

accurate description of a defect. When an employee's actions lead to a bug, they commit an

error. The difference between a failure and a flaw is that a failure occurs when the system

performs something wrong while it is running, while a flaw occurs when a mistake in the

code appears while doing so. Consider a mistake to be an error that the creator made. The

process of reviewing and testing software is a very crucial element of the software

development process, particularly when it comes to locating flaws and finding solutions to

them. This is largely due to the ongoing expansion and complexity of software in today's

world. It is with great regret that we must inform that the cost of fixing software faults or

flaws is extremely high. The process of locating and fixing defects is reportedly one of the

most expensive aspects of developing software, according to Jones and Bonsignour (2012).

As a result of their research, Jones and Bonsignour (2012) discovered that this was one of the

most expensive things to accomplish. As the development process progresses, the cost of a

software defect will continue to rise. Detecting and correcting errors that occur throughout

the writing process costs $977 per error. The price will increase to $7,136 for each error

discovered during the testing phase. The cost of collecting and removing the data increased to

$14,102 during the maintenance phase of the research project. When it comes to finding

software problems, software defect forecasting methods are a far more cost-effective mode of

investigation than software tests and reviews. This is because it is possible to anticipate

potential software issues.

The development and evaluation of predictive models is one of the most important

contributions that researchers have made to the field of software defect prediction. On the

122 S. Jat et al. / IJCNIS, 16(4), 120-141

basis of historical data and software metrics, academics and practitioners examine a wide

range of machine learning techniques in order to develop models capable of accurately

identifying probable modules that are prone to defects. Decision trees, support vector

machines, logistic regression, and neural networks are some examples of the algorithms that

fit into this category. When it comes to the performance of defect prediction models, feature

selection and engineering are extremely important factors. Researchers look into a variety of

software metrics, such as code complexity, size, coupling, and cohesiveness, as well as

historical defect data, in order to determine which characteristics are the most important for

defect prediction. In addition to this, they investigate methods for manipulating and

combining features in order to improve the predictive performance of the models.

Major Factor of Software Failure

Most people believe that a software system can be defined as any software product or

application that supports businesses. Numerous fields, including industry, banking,

healthcare, insurance, aviation, social networking, e-commerce, and others, can implement

these actions. To build and design software systems, one needs money, people with field

knowledge, a lot of time, the right tools, and the right infrastructure. Additionally, having

ample time is crucial. Table 1 shows that the number of software problems is steadily going

up. This costs the company money and wastes time and energy. Even if a software company

is very good at planning and carrying out projects, this is still the case. As a result of a flaw

that was present throughout the entire software development cycle, the system may not work

properly if the client does not understand IT projects or political or cultural issues. This is

because the flaw was present throughout the whole process. Furthermore, it's possible that the

customer will not give you the correct requirements.

We also asked the poll respondents to identify the factors that contribute to project difficulty.

Many factors can lead to software failures, but the most prevalent ones include: users' lack of

involvement, unclear goals and objectives, incomplete requirements, insufficient resources,

poor project planning and scheduling, ineffective team communication, and incorrect testing.

According to Table 1 below, the most important things that affect the success of projects are

not allowing users to connect with them and not correctly identifying what they want. The

following table shows some examples of the main things that can go wrong with software.

Table I Major factor for software failures

Factor Description

Inadequate testing
bugs or problems that can't be found because testing methods are

absent or not good enough.

Poor requirements

gathering

Requirements that aren't clear, full, or consistent lead to bad software

design.

Miscommunication
It's not clear how stakeholders, coders, and testers are talking to each

other.

Tight deadlines
Project plans that are too ambitious cause development to be rushed

and mistakes to happen more often..

Inexperienced team

members

Team members who don't have enough experience or knowledge lead

to answers that aren't as good as they could be.

Complexity of

software

The program architecture is very complicated, which makes it hard to

understand and keep up to date.

This study presents a comprehensive literature analysis on software defect prediction,

focusing on the current trends, approaches, and frameworks in the field. The introduction

begins with a discussion that emphasizes the value of software defect prediction in reducing

123 S. Jat et al. / IJCNIS, 16(4), 120-141

the most significant component that contributes to software failure. A synthesis of previous

research, the identification of major trends, and a discussion of approaches and frameworks

utilized in software defect prediction are the contributions that this study makes. It is clear

that defect prediction is of the utmost significance in software engineering methods, as

highlighted by the primary cause of software failure. This study investigates several facets of

software defect prediction, particularly its role in enhancing software quality and

dependability. Specifically, the paper is organized as follows:

Section II gives a summary of the research that is pertinent to the topic at hand,

contextualizing the current state of the area within the context of the existing literature.

Section III provides an overview of the methodology that was utilized in the process of

performing the literature review, as well as insights into the selection criteria and procedures

for analysis.

Section IV examines trends, approaches, and frameworks that are utilized in the field related

to software defect prediction. Explores research subjects that are relevant to software defect

prediction. The purpose of this part is to provide an in-depth analysis of the present state of

research concerning the prediction of software defects.

In the final section, Section V, conclusions and potential pathways for future research are

offered. These sections summarize the most important findings and offer suggestions for the

direction of additional research and development in its respective subject.

Machine Learning in Software Defect Prediction

In recent years, the field of machine learning has grown quickly. This has led to the creation

of many learning algorithms that can be used in a wide range of cases. One of the most

important things to think about when figuring out how useful these programs will be in the

long run is how well they deal with problems that happen in the real world. Because of this,

copying methods and using them to solve new problems is very important for the field's

growth. This is the case because of what happened in the last point. A lot of academics who

study machine learning, on the other hand, are writing papers right now about how to make

models that can tell when software might fail. In the area of machine learning, these studies

are being put out there. Three different methods—classification, grouping, and ensemble

have been put into action, and now we are sorting good software fault models into three

separate groups. The many different methods we are using are what led to the creation of

these groups. At this point in time, there aren't many large and varied software defect

prediction datasets, methods, and models. Because there are only a few of these things, this is

the truth. Since this is the case, it is hard to give a full picture of where the study into defect

prediction is at the moment. Between 2000 and 2024, many different study patterns, datasets,

approaches, and ideas were used in the field of software failure prediction research. The goal

of this study into the relevant literature is to find and evaluate these elements. The parts of

this work are broken down below into how they are put together. The methods that were used

in the study are talked about in more detail in the second section.

Problem Statement:

The dependability, functionality, and cost-effectiveness of software systems are all

significantly impacted when faults in software are available. Locating and fixing these issues

as early as possible in the development process is necessary to make sure that software is

made that makes better products. This is because it is important to make sure that software is

made that makes better goods. Software defect prediction tries to guess what problems might

happen based on different program measurements and attributes so that developers can plan

their tests better and make the best use of their resources. There are, however, a number of

obstacles that continue to exist in spite of the substantial research that has been conducted in

124 S. Jat et al. / IJCNIS, 16(4), 120-141

this field. These obstacles include heterogeneity in the dataset, uneven class distribution, bias

in feature selection, and problems with model generalization. The rapid development of

software technologies and processes needs the ongoing adaption and improvement of defect

prediction systems. This is because of the quick evolution of both. The issue statement of this

study is therefore to conduct a complete analysis of the existing literature on software defect

prediction, to identify research trends, methodologies, and frameworks, and to address the

constraints and limits associated with the approaches that are currently being utilized. This

project intends to progress the state-of-the-art in software defect prediction by tackling these

issues. Additionally, it intends to promote the development of defect prediction models that

are more accurate, dependable, and cost-effective.

REVIEW METHODOLOGY

The technique of conducting systematic literature reviews (SLRs) has swiftly become a well-

established review procedure in the area of software engineering. A systematic literature

review (SLR) is a process that involves finding, evaluating, and interpreting all of the study

material available to provide answers to specific research questions, as stated by Kitchenham

and Charters (2007). This method is characterized by a structured approach to discovering,

evaluating, and interpreting these study materials. Using the principles initially established by

Kitchenham and Charters (2007), this literature research was conducted in the form of a

systematic literature review.

Search Strategy

A search involves several steps, such as choosing which digital libraries to use, defining the

search string, running a pilot search, changing the search string, and getting a first set of

primary studies from digital libraries that match the search phrase. The thorough search

process incorporates each of these steps. Prior to initiating the search, select a collection of

databases that enhances the likelihood of discovering articles particularly relevant to the topic

under consideration. This crucial step must be taken before beginning the search, as it holds

significant importance. To find the most complete collection of research that is not only

possible but also possible, you need to search the most well-known literature sources in the

field. In order to provide an accurate and thorough analysis of the books, it is crucial to

examine them from various perspectives. Here is a list of the digital sources we examined:

Among the resources available to researchers are the following:

The ACM Digital Library (dl.acm.org),

IEEE eXplore (ieeexplore.ieee.org),

ScienceDirect (sciencedirect.com),

Springer (springerlink.com), and

Scopus (scopus.com).

The search string was constructed in the following way using the techniques listed below:

• The identification of search phrases that are included in titles, abstracts, and keywords that

are relevant to the search

• The development of a complicated search string by making use of the search keywords that

have been identified, ANDs and ORs in Boolean logic

• The discovery of probable synonyms, variant spellings, and antonyms for the words that are

being searched for on the internet

Determined that using the following search string would be the most effective: AND (fault,

defect, quality, or error-prone) this also applies to the terms "predict, prone, probability,

evaluate, detect, estimate, or classify." AND (classify by evaluating, detecting, or estimating)

The term encompasses both software and applications, as well as systems. Besides defects,

125 S. Jat et al. / IJCNIS, 16(4), 120-141

flaws, quality issues, or a tendency to make mistakes, THEN. We adjusted the search string,

but the previous one remained in use. This was because altering the search phrase would

significantly expand the already vast list of irrelevant studies. This was the reason for it.

Subsequently, we modified the search phrase to align with the specific requirements set by

each database in this instance. The databases utilized titles, keywords, and abstracts in their

search operations. The years 2000–2024,only considered for review. Considered two

categories of publications for inclusion in this collection: articles from journals and

proceedings from conferences and only considered items written in English for this search.

Figure 1 Systematic Literature Review Steps

Study Selection: The criteria for inclusion and exclusion were utilized as selection criteria

during the process of selecting the primary studies. Table 2 presents these requirements in

their entirety.

Table 2 Inclusion and Exclusion Criteria

Inclusion Criteria

Research conducted in both academic and industrial settings, utilizing

both big and small scale data sets

Only the journal version will be included for research that have

simultaneously been published in both the conference and journal

versions.

When there are many publications of the same study, only the one that

is the most comprehensive and published most recently will be

included.

Exclusion Criteria

Examples of software defect prediction studies that lack a robust

validation or that do not include experimental results

In the context of anything other than software defect prediction, studies

that explore defect prediction datasets, methodologies, and frameworks

Research that was not written in English

Record Identified
(N=200)

Record After Duplicate
Remove (N=30)

Record Screened
(N=170)

Full Text Article Excluded
Because (Lacked Full Text

Availability)(N=45)

Full Text Article
Assessed For

Eligibility(N=135)

Record Excluded
(N=35)

Acrticle Assessed
Inlcuding For (N=90)

126 S. Jat et al. / IJCNIS, 16(4), 120-141

Study Quality Assessment and Data Synthesis

The study quality evaluation, the eighth phase, can provide a direction for the interpretation

of the synthesis results. Additionally, we can use the evaluation to assess the validity of the

extended conclusions. The process of data synthesis gathers evidence from selected studies to

answer the research questions. While a single piece of evidence may have a low evidence

force, the integration of numerous pieces of evidence can make a claim more compelling. We

extracted both quantitative and qualitative data for this evaluation. We synthesised the

retrieved data using a wide range of distinct research approaches, catering to various types of

research inquiries. Most of the time, we employed a method commonly known as narrative

synthesis. We tallied the collected information in a manner consistent with the asked

questions. We utilized specialized visualization tools to enhance the data display of software

defect prediction approaches and their accuracy. We used these tools to enhance the data

display further. This compilation featured a variety of visualization tools, including bar

charts, pie charts, and tables.

Threats to Validity

This work aims to analyze previous software fault prediction research. Machine learning and

statistical techniques will form the foundation of the analysis. This review highlights the

limited understanding of biases in the selection process of research findings. We did not carry

out the search by individually reading the titles of every published article in a journal. This

study may not have included all software defect prediction publications that appeared in

specific journals or conference proceedings. The aforementioned fact is the reason behind

this. Conference proceedings frequently publish experience reports, which means they

include all studies presented during these sessions. This leads to the availability of a source of

knowledge based on the industry's experience. Several systematic literature assessments,

including one by Jorgensen and Shepperd in 2007, did not include conference proceedings.

The reason for this is that incorporating conference proceedings would significantly increase

the researcher's workload. On the other hand, Catal and Diri are in charge of doing a full

literature review, which will consist of papers retrieved from conference proceedings as

primary research.

Significant Journal Publications

There are ninety important studies that investigate the effectiveness of software flaw

prediction methods, as indicated by this overview of the relevant literature. We provide the

spread over the years to illustrate how people's interest in forecasting software defects has

fluctuated over time at various points. We selected the most significant software flaw

prediction publications based on the primary papers we studied, as illustrated in Figure 2.

Please note that we have not displayed the conference materials here. This is a crucial

issue.The following table breaks down the total number of articles written about software

engineering across various domains, according to publishing. With seven scholarly articles,

the Journal of Software came in first. Advanced Science Letters published a total of six

articles, IEEE Transactions on Reliability and the Journal of Systems and Software published

five papers, and Information Sciences published four papers. The MDPI came in second with

ten articles, and the IEEE Transactions on Software Engineering came in third with five

papers. This list includes only a handful of prestigious magazines. Five different journals,

including Automated Software Engineering, Information and Software Technology,

Empirical Software Engineering, and IET Software, published the article. In each issue, there

were three studies. The IEEE Transactions on Systems, Man, and Cybernetics, the IEEE

Transactions on Knowledge and Data Engineering, the Software Quality Journal, and the

International Journal of Software Engineering and Its Applications all published two studies.

127 S. Jat et al. / IJCNIS, 16(4), 120-141

The Software Quality Journal also published a pair of papers. It is crucial to acknowledge that

this distribution underscores the numerous locations where collaborative research in software

engineering can take place. These establishments cover a wide range of subjects, from

academic to real-world research, in their writings.

Figure 2 Journal Publications and Distribution of Selected Studies

Research Topics in the Software Defect Prediction Field

The prediction of software faults is considered to be one of the most significant study areas

that are pertinent to the field of software engineering, as stated by Song et al. (2011). After

doing an analysis of the important articles that were selected, it was found that the current

research on software defect prediction concentrated on the five issues that are listed below:

 Utilising the technique of estimation (estimating) in order to arrive at an estimate of the

number of defects that are still present in software systems

 By utilizing the association rule algorithm (Association), the identification of defect links

can be accomplished.

 The utilization of the association rule algorithm (Association) for the purpose of problem

connection identification

 Using the clustering approach in conjunction with the clustering methodology to cluster

the software faults depending on the item

 Carrying out an analysis and preparatory processing on the datasets, which includes the

identification of software flaws (Dataset Process)

Within the first category of work, known as estimation, statistical methods and neural

networks (Benaddy and Wakrim 2012) (Zhang and Chang 2012) are used to estimate the

number of defects that are still present in software. It is known as estimation for this type of

task. This is achieved through the utilization of inspection data as well as data regarding the

quality of the process. For the purpose of providing software engineers with support, the

forecast result refers to an important tool that can be utilized. Furthermore, the conclusion of

the prediction can be utilized to manage the software process and to evaluate the quality of a

software system that is going through the process of being constructed at the present time.

In this kind of research, association rule mining methods are used, which come from the

7%

6% 3%

3%

4%

4%

4%

7%

4%
6%

3%

6%

9%

10%

4%

6%

14%

Journal Publications and Distribution of Selected Studies

Journal Publications

IEEE Transactions on Software
Engineering

Information Sciences

IEEE Transactions on Systems,
Man, and Cybernetics

IEEE Transactions on Knowledge and
Data Engineering

Empirical Software Engineering

128 S. Jat et al. / IJCNIS, 16(4), 120-141

group of data miners. The goal is to find out how software bugs are connected. It is

specifically said that this second type of work can be used for three different purposes by

Song et al. After the first step, which is to find as many problems as possible that are linked

to the recorded faults and how they affect each other, is finished, the computer program will

be changed to work better. Something that could be useful is that this makes it possible for

testing to be more targeted and makes better use of the limited testing resources that are

accessible. The second step in the process is to look at the results of the software reviewers

who were there for the inspection. So, to be sure that the job is done, it needs to be looked

over again. The third goal of this project is to help software development managers improve

the software development process by looking into what causes certain mistakes to happen one

after the other. It is possible to reach this goal with the help of software development

managers. In the event that the research shows that there is a problem with the process,

however, the management can come up with ways to fix the issue.

Categorization is the third type of work. It sorts software units into two groups: those that are

likely to have bugs and those that are not likely to have bugs. This classification was finished

with the help of metric-based classification.

According to Lessmann et al. (2008), the classification approach is a well-known machine

learning method that is used to expect software errors. This method is used to predict

mistakes in software. The use of this method makes it possible to predict software bugs.

Gayatri, Reddy, and Nickolas (2010) say that it describes the features of the software code as

either broken or not broken. Based on the features of the software code, this description was

made. The method used to group these things into these categories is a classification model

made from data about software metrics and the successful finishing of previous development

projects. There is a chance that the classification system can figure out which parts are more

likely to have problems. This makes it possible to use testing tools in a more targeted way,

which is good. If a problem is found during field or system tests, it is recorded as a 1 in the

fault data for that module. Any other module's fault data is recorded as a 0 in the fault data.

This is because the module that is causing the fault has fault data with a number of 1. Catal

says that the measures made by the software are used as separate factors to improve

prediction models. For this method, on the other hand, the fault data is the dependent

variable. For the calculation process that happens when the prediction model's parameters are

being set, fault data and software readings from the past are used. A number of classification

methods, such as logical regression, decision trees, neural networks, and naive bayes, have

been used over the years to help predict software bugs.

The fourth type of work is clustering, which is the process of finding software fault groups by

using clustering methods created by the community of data miners. Clustering is an example

of an unsupervised learning method that could be used to reach the goal of predicting bugs in

software modules. In cases where fault labels are hard to find, the above comment is very

helpful to remember. Bishnu and Bhattacherjee (2012) came up with the K-Means method to

predict when bugs would happen in software modules. Their plan was to make the guess.

Most of the time, Quad Trees are used by the K-Means Algorithm to find the first cluster

centers that will be fed into the algorithm. A concept called "clustering gain" was used to

make it easier to figure out the quality of clusters so that the Quad Tree-based initialization

method could be tested. It was discovered that the Quad Tree-based methods produced

groups with the highest possible gain values. This was found out through the finding process.

Figure 3 showing the Distributions of Research Topics used in this literature study

129 S. Jat et al. / IJCNIS, 16(4), 120-141

Figure 3 Distributions of Research Topics

Research Topics in the Software Defect Prediction Field

Within the realm of software engineering, the prediction of software faults is considered to be

one of the most fascinating topics of research, as stated by Song et al. (2011). The present

research on software defect prediction focuses on the following five areas, as determined by

the findings of the analysis of the primary papers that were selected for evaluation:

 Using the estimating algorithm (estimating) to make an estimate of the amount of

software systems that still have flaws.

 Using the association rule algorithm (Association) to figure out the associations between

defects

 Utilizing the classification technique (Classification) to divide the types of software

modules that are prone to defects into two distinct categories, namely defect-prone and

non-defect-prone software modules

 Using the clustering algorithm to group the software defects into clusters according to the

objects they affect (Clustering)

 Performing an analysis and preliminary processing on the datasets including software

defects (Dataset Analysis)

Datasets Used for Software Defect Prediction A dataset, as defined by Sammut and Webb

(2011), is an assemblage of data obtained with the intention of facilitating machine learning.

A training set, on the other hand, is a collection of data that is used as input by a learning

system, which uses the data analysis to build a model. Test sets and evaluation sets are

collections of data that are used to assess the model that a learning system has learned. Two

further subsets of a training set are a growth set and a pruning set. However, because a test set

includes data sets that are unrelated to the training set, it is also known as a holdout set.

Catal and Diri (2009a) state that one of the biggest obstacles to a software defect prediction

study's success is using non-public datasets. Many companies created defect prediction

models using their own data, which they subsequently showcased at conferences.

Nevertheless, it is not feasible to compare the results of such study with the results of the

suggested models because their datasets cannot be analyzed. Because they faced similar

difficulties, machine learning researchers founded a repository known as the University of

Estimation
14%

Clustering
14%

Association
22%

Dataset analsysis
21%

Classification
29%

Distribution of Research Topics

130 S. Jat et al. / IJCNIS, 16(4), 120-141

California Irvine (UCI) in the 1990s. The PROMISE repository was established in 2005 by

software engineering researchers and houses a multitude of public datasets. The work at the

University of California, Irvine served as the model for this repository. The datasets that

NASA uses to predict software flaws are available in PROMISE. The ARFF format is used as

the default format file when these datasets are used straight out of the open source machine

learning applications WEKA or Rapid Miner. This enables the use of these datasets.

This literature review contains information from various previous studies. The effectiveness

of software defect prediction is examined in this research. The PROMISE and NASA MDP

(metrics data program) archives include the great majority of public datasets, which are

available for free distribution. "Public datasets" and "private datasets" are not synonymous

concepts. Private enterprises are the owners of private datasets. Graph 8: The Whole Dataset

Distribution The way the distribution has been presented over the years shows how interest in

various dataset types has changed over time. It's bad that 35.21 percent of the studies used

private datasets. Because of this, the results of only one of the three investigations can be

compared, and the results are repeatable.

It is not possible to compare the results of this research with the results of the models that

have been provided because the datasets from these investigations are not publicly available.

(Duri and Catal 2009a) Because standard datasets are used, the research may be replicated,

challenged, and confirmed. The distribution of the primary studies throughout time and

according to the sources is shown in Figure 9. Both the number of published publications and

the quantity of publicly available datasets used in software defect prediction research have

increased since 2005. The PROMISE repository was established in 2005, as previously

mentioned. Furthermore, scholars are beginning to agree more and more on the usage of

publicly accessible datasets. 14.08 percent 1.41% is equal to 77.46%. 1.41%, 5.63%, and A

guess Relationship Classification Cluster-Based Dataset Analysis 34.21 percent

To illustrate the evolution of interest in various dataset types over time, the distribution

throughout the years is presented. 35.21 percent of the studies used private datasets in total.

As a result, the results of one study out of three studies can only be compared, and the study

can be repeated. However, it is not possible to compare the results of this research with the

results of the models that have been presented or proposed because their datasets are not

publicly available. Because the study was carried out with standard datasets, it may be

replicated, contested, and verified (Catal and Diri 2009a). The number of major studies that

were carried out over time and in accordance with the relevant sources is depicted in Figure

9. Since 2005, there has been an increase in the quantity of articles published and the number

of public datasets used in software defect prediction research. As previously mentioned, the

PROMISE repository was established in 2005. Another encouraging trend is that academics

are starting to appreciate the value of using public datasets more often.

Proposed Method Improvements for Software Defect Prediction

In an attempt to increase machine learning classifier accuracy for software defect prediction,

researchers proposed several different strategies or techniques. Improving the prediction

accuracy of a created model is the goal of recently developed technologies. Some instances of

these methods are as follows: Various strategies have been employed in the field of machine

learning:

 Adapting and grouping particular machine learning techniques (Mısırlı, Bener, & Turhan,

2011) (Tosun, Turhan, & Bener, 2008)

 Applying a boosting algorithm (Zheng, 2010) (Jiang, Li, Zhou, & Member, 2011)

 Including feature selection (Gayatri et al. 2010) (Khoshgoftaar and Gao, 2009) (Catal and

Diri 2009b) (Song et al., 2011)

 Applying parameter optimization for particular classifiers (Peng and Wang 2010).

131 S. Jat et al. / IJCNIS, 16(4), 120-141

While many defect prediction techniques have been developed, none of them have

consistently proven to be reliable (Challagulla et al., 2005, Lessmann et al., 2008). This is the

case even if a lot of techniques have been developed. In the realm of software defect

prediction, the subject of how to create a more reliable and accurate classification method to

build a better prediction model is still open. It is essential to have frameworks that can

accurately predict defects, and these frameworks also need to be more resilient to noise and

other issues related to datasets.

Feature Selection

Feature selection in the context of improving machine learning efficacy refers to the

investigation of techniques that account for the dimensionality of the data. The goal of feature

selection in the context of a dataset with N characteristics and M dimensions (or features,

attributes) is to determine a means of reducing M to M', where M' is either equal to or fewer

than M (Sammut and Webb 2011). One technique that is frequently employed and that many

people believe to be very important is dimensionality reduction. Another method that

effectively fulfills its aim is the extraction of features. The results of the two ways are one of

the most essential factors that distinguish them from one another and give them their own

unique characteristics. The two features that were chosen are a subset of the four features that

were initially selected (for instance, F1 and F3), but the two features that were extracted are a

combination of the four features that were first selected. Given that we have four

characteristics, which are represented by the letters F1, F2, F3, and F4, this is the assumption

that we are making.

Applications that need to preserve the original attributes while keeping their integrity

frequently use feature selection. There are numerous examples, such as document

classification, medical condition diagnosis and prognosis, and gene expression profiling. It

advances machine learning in terms of predicted accuracy, comprehensibility, learning

efficiency, compact models, and effective data collection. There are several benefits

associated with the feature selection process, and these benefits are multifaceted. Maimon

and Rokach (2010) state that the goal of feature selection is to eliminate characteristics that

are superfluous or unimportant, leaving only those that are pertinent to the current

circumstance. The results of a study by Khoshgoftaar and Van Hulse (2009) show that some

academics have labeled certain features as redundant and worthless because they include

noisy attributes. There is no need to worry about the learning performance being negatively

affected by the elimination of any parts that are judged irrelevant. Redundant features are a

type of feature that falls under the category of characteristics that are not relevant. It is

essential to bring to your attention the fact that a redundant feature is one that presumes the

existence of another feature present. The learning performance of the system will not be

affected in any way by the removal of either of the features themselves, despite the fact that

each feature is significant in its own right.

Filtering, wrappering, and embedding are the three methods of feature selection that are

considered to be the older and more conventional approaches. According to the findings of

study conducted on the subject, feature selection can be advantageous to the learning

performance of a classifier that has incorporated feature selection capacity. When it comes to

the operation of a filter model, metrics that pertain to the naturally occurring qualities of the

data are absolutely necessary. The evaluation of the quality of data can be accomplished by

the utilization of a variety of measurements, including mutual information and data

consistency, to name just two examples. A learning algorithm, which is sometimes referred to

as a classifier, is utilized by a wrapper model at the beginning stages of the process of

determining the quality of the features. If, for example, the removal of a feature does not have

132 S. Jat et al. / IJCNIS, 16(4), 120-141

an effect on the accuracy of the classifier, then it is acceptable to do so. It should come as no

surprise that the selection of features is tweaked in this manner in order to enhance a

particular classification algorithm. In order to decide whether a feature should be kept or

eliminated, a classifier must be created for each feature that is considered. To decide which

feature should be chosen, this is done. As such, the wrapper model's implementation may

need a large financial outlay. Feature selection can be incorporated into the classifier's

learning process through the use of an embedded model. The requirement that a feature be

chosen first at each branching point serves as the best example of decision tree induction.

This holds true for the duration of the procedure. Filler and wrapper models are commonly

employed in feature selection processes aimed at facilitating data preparation. The filter

model is most frequently used when the goal of feature selection is something other than

improving learning performance (such increased classification accuracy). This is so because

the most suitable model is the filter model.

Ensemble Machine Learning

According to Sammut and Webb (2011), the term "ensemble learning" describes methods for

training a large number of learning machines and combining their outputs, treating them as a

"committee" of stakeholders. When individual predictions are integrated appropriately, it is

anticipated that the committee's decision will have, on average, a higher overall accuracy than

any one member's. This is the main concept. A substantial body of empirical and theoretical

research has shown that ensemble models often achieve greater accuracy than single models.

The ensemble members can forecast a great deal of different things, such as real-valued

values, class labels, posterior probabilities, ranks, clusterings, and more. Therefore, it is

possible to include their decisions using a variety of techniques, such as voting, averaging,

and probabilistic methods. It is true that most ensemble learning techniques are general,

meaning they can be used to a wide range of model types and learning situations. It is a

reality that this exists.

To do this, a multitude of machine learning techniques can be applied. These methods

involve picking up a variety of models and using them in tandem with each other. According

to Witten, Frank, and Hall (2011), bagging, boosting, and stacking are the most widely used

strategies of these. These are the tactics that yield the greatest results. When compared to a

single model, it is conceivable for all of them to improve prediction performance most of the

time. It is truly feasible to accomplish this. These generic approaches can be applied to

numerical prediction challenges as well as classification jobs, yielding answers for both kinds

of issues. The techniques of bagging, boosting, and stacking have been developed during the

previous few decades, and these processes often work quite well. It has been challenging for

machine learning researchers to comprehend the reasons underlying this phenomena. In the

course of this conflict, new tactics have been developed, some of which have proven to be

even more effective than those that were previously employed. Although human committees

usually do not benefit from loud interruptions, adding random classifiers to the bagging

process can improve performance. This is true even if ineffective noise diversion rarely

benefits human committees.

Hrishikesh Kumar et al. (2023) this study focuses on software fault prediction, addressing

critical challenges like class imbalance and the need for robust, generalizable predictive

models. It involves cross-project analysis to explore how well models trained on one project

can predict faults in another. Key research questions include handling class imbalance, the

effectiveness of cross-project prediction, and the impact of diverse training samples on

prediction accuracy. The authors highlight the importance of correcting class imbalance and

using datasets with similar features to the target project for reliable predictions.

Comprehensive experiments compare various classifiers, considering metrics such as

133 S. Jat et al. / IJCNIS, 16(4), 120-141

accuracy, precision, recall, and F1 score, to improve model resilience and dependability.

Sagnik Mondal et al. (2023) this paper systematically reviews literature on machine learning

algorithms for software fault prediction, analyzing 52 articles published from 2009 to 2022. It

categorizes the algorithms based on their application methods, revealing that supervised

learning algorithms like Support Vector Machine (SVM), Random Forest, and Naive Bayes

are most commonly used. The study finds that the most effective prediction models often

employ a combination of different algorithms, underscoring the potential of hybrid

approaches in enhancing prediction accuracy.

S. Kaliraj et al. (2024) the authors propose a Genetic Algorithm-based feature selection

method to improve software fault prediction by identifying the most useful subset of features.

They integrate this method with classifiers like KNN, Decision Tree, and Naive Bayes.

Experimental results show that using Genetic Algorithms for feature selection significantly

enhances prediction accuracy and reduces the number of features needed, demonstrating its

efficacy in handling large datasets.

Khoa Phung et al. (2023) this research introduces a supervised feature selection method based

on ant colony optimization for software fault prediction. The method aims to reduce dataset

dimensionality and remove redundant features. Using classifiers such as KNN, Naive Bayes,

and Decision Tree, the study demonstrates that the ant colony optimization algorithm

effectively improves prediction accuracy. Fitness plots and accuracy tables across 12 datasets

highlight the method's success.

Gabriel Omar Navarro Cedeño et al.(2023) The paper presents a novel set of software metrics

called Error-type Software Metrics (ESM), focusing on predicting Java runtime errors like

Index Out Of Bounds Exception, Null Pointer Exception, and Class Cast Exception. By

modeling and extracting error patterns using Stream X-Machine and machine learning

techniques, the study shows that ESM significantly enhances the performance of fault-

proneness prediction models, providing valuable insights into software fault prediction.

Raghuraj Singh et al. (2024) this systematic review examines machine learning algorithms

used for software fault prediction, analyzing 52 articles from 2009 to 2022. It finds that

supervised learning algorithms, including SVM, Random Forest, and Naive Bayes, are

predominant. However, combining different algorithms yields more effective prediction

models. The review highlights the complementary nature of these techniques and suggests

ensemble methods for improved performance.

Mashiat Zahan (2023) the study explores deep learning techniques for software fault

prediction, emphasizing their ability to extract complex patterns from large datasets. It

reviews various deep learning models, feature engineering approaches, evaluation metrics,

and datasets. The findings suggest that hybrid deep learning and nature-inspired techniques

outperform traditional machine learning and deep learning methods, offering better prediction

accuracy and robustness.

Sushant Kumar Pandey et.al. (2023)The paper evaluates seven machine learning algorithms,

including AdaBoost, CatBoost, LightGBM, Random Forest, XGBoost, and ensemble

methods, for predicting faults in embedded software. Using six datasets and eight

performance metrics, Random Forest and ensemble stacking methods show the best results in

accuracy, precision, and specificity. The study demonstrates the effectiveness of these models

in software fault prediction.

Roshan Samantaray et.al.(2023)This research focuses on Just-In-Time Software Fault

Prediction (JIT-SFP), proposing a method using a deep belief network and long short-term

memory (JITCP-Predictor) to address the challenge of insufficient training data in early

software development stages. Cross-Project (CP) data is utilized to enhance predictive

performance, and the proposed model significantly outperforms benchmark methods, proving

effective for large and moderate-sized projects by avoiding class imbalance and overfitting

134 S. Jat et al. / IJCNIS, 16(4), 120-141

issues.

Fatuhu Habib Abba et.al. (2023), the study investigates the impact of the bagging ensemble

technique on software fault prediction. Using classifiers like Decision Tree, Logistic

Regression, KNN, Gaussian Naive Bayes, and SVM, the research finds that Random Forest,

which employs bagging, consistently delivers the best predictive performance. The results

highlight the effectiveness of ensemble methods in improving fault prediction accuracy.

Yoginee Surendra Pethe et.al. (2023), this paper explores the use of the Cat Swarm

optimization algorithm for predicting functional bugs during the software testing stage. The

study shows that this algorithm achieves high accuracy, precision, recall, and F1 scores,

demonstrating its effectiveness in reducing rework costs by identifying defects early in the

testing process. The results highlight the potential of optimization algorithms in enhancing

software fault prediction.

Aman Omer et al. (2024), The authors present a Differential Evolutionary Algorithm (DE)

for feature selection in software fault prediction, contrasting it with traditional evolutionary

algorithms. The study combines DE with classifiers like Naive Bayes, KNN, and Decision

Tree, showing that DE improves prediction accuracy across all classifiers. The findings

emphasize the importance of feature selection in handling large datasets for fault prediction.

Baraah Alsangari et al. (2023) The paper introduces a Mixture-of-Experts (MoE) approach

for software fault prediction, combining decision trees and multilayer perceptrons with a

Gaussian mixture model for improved performance. Experiments on 35 datasets reveal that

the MoE-based models outperform individual and ensemble methods, offering better fault

prediction accuracy and robustness. The study underscores the potential of combining

different learning techniques for enhanced predictive capability.

Xhulja Shahini et al. (2023) this study investigates various machine learning techniques for

software fault prediction using the NASA JM1 dataset. Techniques like Logistic Regression,

Random Forest, Naive Bayes, SVM, and KNN are evaluated with different normalization

methods. The results indicate that Random Forest achieves the highest accuracy, highlighting

the effectiveness of this technique in software fault prediction.

Nanfei Yang et al. (2023) The research analyzes the variance caused by no determinism-

introducing (NI) factors in machine learning algorithms for software fault prediction.

Experimental results show significant variance in prediction accuracy due to stochastic

elements, posing challenges for reproducing research results and practical application. The

study discusses strategies to mitigate such variance, emphasizing the need for stable and

reliable fault prediction models.

Proposed Frameworks for Software Defect Prediction

Recent advances in software fault prediction and reliability modeling have shown significant

improvements in addressing the challenges associated with predicting software faults in

various contexts. Pradeep Kumar Rath et al. (2023) highlighted the need for enhanced

prediction models within agile frameworks, particularly the Scaled Agile Framework (SAFe).

Their proposed model, which utilizes a Bi-Directional Gated Recurrent Unit (BiGRU) and a

self-attention mechanism, offers a comprehensive approach by considering cumulative sprint

effects. This methodology contrasts with traditional models that treat each sprint

independently, thereby providing a more accurate and reliable prediction of software faults in

large-scale agile projects.Complementing this, Hrishikesh Kumar et al. (2023) tackled the

challenges of class imbalance and cross-project prediction in software fault prediction. Their

study emphasizes the importance of addressing class imbalance and using datasets with

similar features to the target project for reliable predictions. Through comprehensive

experiments, they demonstrated the effectiveness of various classifiers in improving model

resilience and dependability, highlighting the significance of diverse training samples.

135 S. Jat et al. / IJCNIS, 16(4), 120-141

Additionally, Sagnik Mondal et al. (2023) conducted a systematic review of machine learning

algorithms for software fault prediction, analyzing 52 articles published between 2009 and

2022. They found that supervised learning algorithms such as Support Vector Machine

(SVM), Random Forest, and Naive Bayes are most commonly used. The study revealed that

hybrid approaches, combining different algorithms, enhance prediction accuracy,

underscoring the potential of such methods.

S. Kaliraj et al. (2024) proposed a Genetic Algorithm-based feature selection method to

improve software fault prediction by identifying the most useful subset of features. Their

integration of this method with classifiers like KNN, Decision Tree, and Naive Bayes

demonstrated significant enhancements in prediction accuracy and reduction in the number of

features needed, showcasing its efficacy in handling large datasets.

Khoa Phung et al. (2023) introduced a supervised feature selection method based on ant

colony optimization for software fault prediction. Their research demonstrated that this

method effectively reduces dataset dimensionality and removes redundant features, resulting

in improved prediction accuracy when used with classifiers such as KNN, Naive Bayes,

Gabriel Omar Navarro Cedeño et al. (2023) presented a novel set of software metrics called

Error-type Software Metrics (ESM), focusing on predicting Java runtime errors. By modeling

and extracting error patterns using Stream X-Machine and machine learning techniques, they

showed that ESM significantly enhances the performance of fault-proneness prediction

models, providing valuable insights into software fault prediction.

V Conclusion and Future Works

This literature review presents a comprehensive analysis of software defect prediction

research from 2000 to 2024. This review aims to illuminate the key trends, approaches, and

frameworks employed in this field. By identifying probable problems at an earlier stage in the

development lifecycle, the review highlights the significance of defect prediction in terms of

improving software quality and lowering development costs. It draws attention to the

development of significant trends in defect prediction research, including the utilization of

machine learning algorithms, feature selection techniques, and ensemble methods. The paper

identifies several obstacles to enhance the efficiency and dependability of defect prediction

models. These challenges include heterogeneity in the dataset, imbalanced class distribution,

and model generalization issues. In spite of these obstacles, the review serves to illustrate that

defect prediction has the potential to have a considerable impact on software development

processes. Furthermore, it highlights the necessity of continuing study and innovation in this

particular field. Considering this literature evaluation, we can identify several potential

directions for future research. First, we need to construct reliable defect prediction models

that can efficiently manage the heterogeneity of the dataset, the imbalanced distribution of

classes, and other inherent issues in real-world software datasets. In order to accomplish this,

it may be necessary to investigate novel feature selection strategies, ensemble methods, and

hybrid approaches that incorporate a variety of data sources and modeling models. In

addition, there is a growing interest in infusing defect prediction models with domain

knowledge and relevant context information in order to improve the accuracy of these models

and their application in a variety of software development scenarios. The review highlights

the importance of benchmarking and assessment procedures to objectively compare the

performance of various defect prediction models. In order to promote fair comparisons and

the reproducibility of outcomes, future research should concentrate on standardized

evaluation methods and datasets. Future work in software defect prediction has the potential

to greatly enhance the state-of-the-art and improve the quality and reliability of software

systems. This is due to its ability to tackle current research challenges and explore emerging

opportunities.

136 S. Jat et al. / IJCNIS, 16(4), 120-141

REFERENCES

[1] Aedah Abd Rahman, Nurdatillah Hasim (2015) Defect Management Life Cycle Process

for Software Quality Improvement 2015 3rd International Conference on Artificial

Intelligence, Modelling and Simulation (AIMS) 2015 IEEE

[2] Arvinder Kaur; Kamaldeep Kaur (2016) Value and Applicability of Academic Projects

Defect Datasets in Cross-Project Software Defect Prediction 2016 2nd International

Conference on Computational Intelligence and Networks (CINE) 2016, IEEE

[3] Azar, D., & Vybihal, J. (2011). An ant colony optimization algorithm to improve

software quality prediction models: Case of class stability. Information and Software

Technology, 53(4), 388– 393. http://doi.org/10.1016/j.infsof.2010.11.013

[4] Buzan, T., & Griffiths, C. (2013). Mind Maps for Business: Using the ultimate thinking

tool to revolutionize how you work (2nd Edition). FT Press.

[5] Cao, H., Qin, Z., & Feng, T. (2012). A Novel PCA-BP Fuzzy Neural Network Model

for Software Defect Prediction. Advanced Science Letters, 9(1), 423–428.

[6] Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an Eclipse-based

software fault prediction tool using Naive Bayes algorithm. Expert Systems with

Applications, 38(3), 2347– 2353. http://doi.org/10.1016/j.eswa.2010.08.022

[7] Challagulla, V., Bastani, F., & Yen, I. (2006). A Unified Framework for Defect Data

Analysis Using the MBR Technique. 2006 18th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI’06), 39–46.

http://doi.org/10.1109/ICTAI.2006.23

[8] Chang, R. H., Mu, X. D., & Zhang, L. (2011). Software Defect Prediction Using Non-

Negative Matrix Factorization. Journal of Software, 6(11), 2114–2120.

http://doi.org/10.4304/jsw.6.11.2114-2120

[9] Dejaeger, K.,Verbraken, T.,& Baesens, B.(2013). Toward Comprehensible Software

Fault Prediction Models Using Bayesian Network Classifiers. IEEE Transactions on

Software Engineering, 39(2), 237–257. http://doi.org/10.1109/TSE.2012.20

[10] Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using

support vector machines. Journal of Systems and Software, 81(5), 649–660.

http://doi.org/10.1016/j.jss.2007.07.040

[11] Faheem Ahmed; Hasan Mahmood; Adeel Aslam Green computing and Software

Defects in open source software: An Empirical study 2014 International Conference on

Open Source Systems & Technologies 2014, IEEE

[12] Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., & Mishra, R.

(2007). Predicting software defects in varying development lifecycles using Bayesian

nets. Information and Software Technology, 49(1), 32–43.

http://doi.org/10.1016/j.infsof.2006.09.001

[13] Gondra, I. (2008). Applying machine learning to software fault- proneness prediction.

Journal of Systems and Software, 81(2), 186–195.

[14] Gray, D., Bowes, D., Davey, N., & Christianson, B. (2011). The misuse of the NASA

Metrics Data Program data sets for automated software defect prediction. 15th Annual

Conference on Evaluation & Assessment in Software Engineering (EASE 2011), 96–

103.

[15] Güneş Koru, a., & Liu, H. (2007). Identifying and characterizing change-prone classes

in two large-scale open-source products. Journal of Systems and Software, 80(1), 63–

73. http://doi.org/10.1016/j.jss.2006.05.017

[16] Hamdi A. Al-Jamimi Toward comprehensible software defect prediction models using

fuzzy logic 2016 7th IEEE International Conference on Software Engineering and

Service Science (ICSESS) 2016,: IEEE

http://doi.org/10.1016/j.infsof.2010.11.013
http://doi.org/10.1016/j.eswa.2010.08.022
http://doi.org/10.1109/ICTAI.2006.23
http://doi.org/10.4304/jsw.6.11.2114-2120
http://doi.org/10.1109/TSE.2012.20
http://doi.org/10.1016/j.jss.2007.07.040
http://doi.org/10.1016/j.infsof.2006.09.001
http://doi.org/10.1016/j.jss.2006.05.017

137 S. Jat et al. / IJCNIS, 16(4), 120-141

[17] J. Pai, G., & Bechta Dugan, J. (2007). Empirical Analysis of Software Fault Content

and Fault Proneness Using Bayesian Methods. IEEE Transactions on Software

Engineering, 33(10), 675–686. http://doi.org/10.1109/TSE.2007.70722

[18] Jie Zhang; Jiajing Wu; Chuan Chen; Zibin Zheng; Michael R. Lyu CDS: A Cross–

Version Software Defect Prediction Model With Data Selection IEEE Access Year:

2020 Volume: 8 Journal IEEE

[19] Jin, C., Jin, S.-W., & Ye, J.-M. (2012). Artificial neural network- based metric selection

for software fault-prone prediction model. IET Software, 6(6), 479.

[20] K. Punitha; S. Chitra 2013 Software defect prediction using software metrics - A survey

International Conference on Information Communication and Embedded Systems

(ICICES) 2013: IEEE

[21] Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An empirical study of

predicting software faults with case-based reasoning. Software Quality Journal, 14(2),

85–111. http://doi.org/10.1007/s11219-006-7597-z

[22] Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2011). Comparing Boosting and

Bagging Techniques With Noisy and Imbalanced Data. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 41(3), 552–568.

[23] Koru, A. G., & Liu, H. (2005). An investigation of the effect of module size on defect

prediction using static measures. In Proceedings of the 2005 workshop on Predictor

models in software engineering - PROMISE ’05 (Vol. 30, pp. 1–5). New York, New

York, USA: ACM Press. http://doi.org/10.1145/1082983.1083172

[24] Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary Optimization of

Software Quality Modeling with Multiple Repositories. IEEE Transactions on Software

Engineering, 36(6), 852–864.

[25] Lyu, M. R. (2000). Software quality prediction using mixture models with EM

algorithm. In Proceedings First Asia-Pacific Conference on Quality Software (pp. 69–

78). IEEE Comput. Soc. http://doi.org/10.1109/APAQ.2000.883780

[26] Ma, Y., Guo, L., & Cukic, B. (2007). A Statistical Framework for the Prediction of

Fault-Proneness. In Advances in Machine Learning Applications in Software

Engineering (pp. 1–26).

[27] Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for cross-company

software defect prediction. Information and Software Technology, 54(3),248–256.

http://doi.org/10.1016/j.infsof.2011.09.007

[28] Martin Shepperd; Tracy Hall; David Bowes Authors’ Reply to “Comments on

‘Researcher Bias: The Use of Machine Learning in Software Defect Prediction’” IEEE

Transactions on Software Engineering 2018 | Volume: 44, Issue: 11 Journal IEEE

[29] Mehmet Söylemez; Ayça Tarhan Using Process Enactment Data Analysis to Support

Orthogonal Defect Classification for Software Process Improvement 2013 Joint

Conference of the 23rd International Workshop on Software Measurement and the 8th

International Conference on Software Process and Product Measurement IEEE

[30] Mende, T., & Koschke, R. (2009). Revisiting the evaluation of defect prediction

models. Proceedings of the 5th International Conference on Predictor Models in

Software Engineering - PROMISE ’09, 1. http://doi.org/10.1145/1540438.1540448

[31] Menzies, T., DiStefano, J., Orrego, A. S., & Chapman, R. (2004). Assessing predictors

of software defects. In Proceedings of the Workshop on Predictive Software Models.

[32] Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and validity in

comparative studies of software prediction models. IEEE Transactions on Software

Engineering, 31(5), 380–391. http://doi.org/10.1109/TSE.2005.58

[33] Naik, K., & Tripathy, P. (2008). Software Testing and Quality Assurance. John Wiley

& Sons, Inc.

http://doi.org/10.1109/TSE.2007.70722
http://doi.org/10.1007/s11219-006-7597-z
http://doi.org/10.1145/1082983.1083172
http://doi.org/10.1109/APAQ.2000.883780
http://doi.org/10.1016/j.infsof.2011.09.007
http://doi.org/10.1145/1540438.1540448
http://doi.org/10.1109/TSE.2005.58

138 S. Jat et al. / IJCNIS, 16(4), 120-141

[34] Nur Hafizah Haron; Sharifah Mashita Syed-Mohamad Test and Defect Coverage

Analytics Model for the assessment of software test adequacy 2015 9th Malaysian

Software Engineering Conference (MySEC) 2015, IEEE

[35] Patrick Rempel; Parick Mäder Preventing Defects: The Impact of Requirements

Traceability Completeness on Software Quality IEEE Transactions on Software

Engineering Year: 2017 | Volume: 43, Issue: 8 | Journal Article | Publisher: IEEE

[36] Pelayo, L., & Dick, S. (2012). Evaluating Stratification Alternatives to Improve

Software Defect Prediction. IEEE Transactions on Reliability, 61(2), 516–525.

http://doi.org/10.1109/TR.2012.2183912

[37] Peng Xiao; Bin Liu; Xiaobo Yan; Fuqun Huang How Domain Knowledge

Accumulation Influences Software Defects: An Empirical Analysis 2017 IEEE

International Conference on Software Quality, Reliability and Security Companion

(QRS-C) 2017 ,IEEE

[38] Peng, Y., Wang, G., & Wang, H. (2012). User preferences based software defect

detection algorithms selection using MCDM. Information Sciences,191,3–13.

[39] Peters, F., Menzies, T., Gong, L., & Zhang, H. (2013). Balancing Privacy and Utility in

Cross-Company Defect Prediction. IEEE Transactions on Software Engineering, 39(8),

1054–1068. http://doi.org/10.1109/TSE.2013.6

[40] Pizzi, N. J., Summers, A. R., & Pedrycz, W. (2002). Software quality prediction using

median-adjusted class labels. Proceedings of the 2002 International Joint Conference on

Neural Networks. IJCNN’02 (Cat. No.02CH37290), (1), 2405–

2409.http://doi.org/10.1109/IJCNN.2002.1007518

[41] Qinbao Song; Yuchen Guo; Martin Shepperd A Comprehensive Investigation of the

Role of Imbalanced Learning for Software Defect Prediction IEEE Transactions on

Software Engineering ,2019 Volume: 45, Issue: 12 Journal Publisher: IEEE

[42] Rakesh Rana; Miroslaw Staron; Jörgen Hansson; Martin Nilsson Defect prediction over

software life cycle in automotive domain state of the art and road map for future 2014

9th International Conference on Software Engineering and Applications (ICSOFT-EA)

Year: 2014, IEEE

[43] Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2009). Improving Software-Quality

Predictions with Data Sampling and Boosting. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 39(6), 1283–1294.

[44] Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis of Unlabeled

Program Modules with Semi supervised Clustering. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 37(2), 201–

211.http://doi.org/10.1109/TSMCA.2006.889473

[45] Shamsul Huda; Sultan Alyahya; Md Mohsin Ali; Shafiq Ahmad; Jemal Abawajy;

Hmood Al-Dossari; John Yearwood A Framework for Software Defect Prediction and

Metric Selection IEEE Access 2018, Volume: 6, Journal IEEE

[46] Shepperd, M., & Kadoda, G. (2001). Comparing software prediction techniques using

simulation. IEEE Transactions on Software Engineering, 27(11), 1014–1022.

http://doi.org/10.1109/32.965341

[47] Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality: Some Comments on

the NASA Software Defect Datasets. IEEE Transactions on Software Engineering,

39(9), 1208– 1215. http://doi.org/10.1109/TSE.2013.11

[48] Song Wang; Taiyue Liu; Jaechang Nam; Lin Tan Deep Semantic Feature Learning for

Software Defect Prediction IEEE Transactions on Software Engineering Year: 2020 |

Volume: 46, Issue: 12 ,Journal Article IEEE

[49] Sun, Z., Song, Q., & Zhu, X. (2012). Using Coding-Based Ensemble Learning to

Improve Software Defect Prediction. IEEE Transactions on Systems, Man, and

http://doi.org/10.1109/TR.2012.2183912
http://doi.org/10.1109/TSE.2013.6
http://doi.org/10.1109/IJCNN.2002.1007518
http://doi.org/10.1109/TSMCA.2006.889473
http://doi.org/10.1109/32.965341
http://doi.org/10.1109/TSE.2013.11

139 S. Jat et al. / IJCNIS, 16(4), 120-141

Cybernetics, Part C (Applications and Reviews), 42(6), 1806–1817.

http://doi.org/10.1109/TSMCC.2012.2226152

[50] Syed Rashid Aziz; Tamim Khan; Aamer Nadeem Experimental Validation of

Inheritance Metrics’ Impact on Software Fault Prediction IEEE Access ,2019 Volume:

7 , Journal IEEE

[51] Turhan, B., Kocak, G., & Bener, A. (2009). Data mining source code for locating

software bugs: A case study in telecommunication industry. Expert Systems with

Applications, 36(6), 9986–9990. http://doi.org/10.1016/j.eswa.2008.12.028

[52] Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the relative value of

cross-company and within-company data for defect prediction. Empirical Software

Engineering, 14(5), 540– 578. http://doi.org/10.1007/s10664-008-9103-7

[53] Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., & Haesen, R.

(2008). Mining software repositories for comprehensible software fault prediction

models. Journal of Systems and Software, 81(5), 823–839.

[54] Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010). A Comparative Study of

Ensemble Feature Selection Techniques for Software Defect Prediction. 2010 Ninth

International Conference on Machine Learning and Applications, 135–140.

[55] Wang, S., & Yao, X. (2013). Using Class Imbalance Learning for Software Defect

Prediction. IEEE Transactions on Reliability, 62(2), 434–443.

[56] Wong, W. E., Debroy, V., Golden, R., Xu, X., & Thuraisingham, B. (2012). Effective

Software Fault Localization Using an RBF Neural Network. IEEE Transactions on

Reliability, 61(1), 149– 169. http://doi.org/10.1109/TR.2011.2172031

[57] Xing, F., Guo, P., & Lyu, M. R. (2005). A Novel Method for Early Software Quality

Prediction Based on Support Vector Machine. 16th IEEE International Symposium on

Software Reliability Engineering (ISSRE’05), 213–222.

http://doi.org/10.1109/ISSRE.2005.6

[58] Y. I. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, "Ensemble of Software Defect

Predictors: An Ahp-Based Evaluation Method," International Journal of Information

Technology & Decision Making, vol. 10, pp. 187- 206, 2011.

[59] Zhou, Y., & Leung, H. (2006). Empirical Analysis of Object-Oriented Design Metrics

for Predicting High and Low Severity Faults. IEEE Transactions on Software

Engineering, 32(10), 771–789. http://doi.org/10.1109/TSE.2006.102

[60] Song,Q.,Jia,Z.,Shepperd,M.,Ying,S.,&Liu,J.(2011).A General Software Defect-

Proneness Prediction Framework. IEEE Transactions on Software Engineering, 37(3),

356–370.

[61] El Emam, K., & Laitenberger, O. (2001). Evaluating capture- recapture models with

two inspectors. IEEE Transactions on Software Engineering, 27(9), 851–864.

http://doi.org/10.1109/32.950319

[62] Karthik, R., & Manikandan, N. (2010). Defect association and complexity prediction by

mining association and clustering rules. 2010 2nd International Conference on

Computer Engineering and Technology, V7–569–V7–573.

[63] Cukic, B., & Singh, H. (2004). Robust Prediction ofFault-Proneness by

RandomForests.15thInternationalSymposiumonSoftware Reliability Engineering,

 417–428. http://doi.org/10.1109/ISSRE.2004.35

[64] Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an Eclipse-based

software fault prediction to lousing Naive Bayes algorithm. Expert Systems with

Applications, 38(3), 2347– 2353. http://doi.org/10.1016/j.eswa.2010.08.022

[65] Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J. (1997). Application of

neural networks to software quality modeling of a very large telecommunications

system. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural

http://doi.org/10.1109/TSMCC.2012.2226152
http://doi.org/10.1016/j.eswa.2008.12.028
http://doi.org/10.1007/s10664-008-9103-7
http://doi.org/10.1109/TR.2011.2172031
http://doi.org/10.1109/ISSRE.2005.6
http://doi.org/10.1109/TSE.2006.102
http://doi.org/10.1109/32.950319
http://doi.org/10.1109/ISSRE.2004.35
http://doi.org/10.1016/j.eswa.2010.08.022

140 S. Jat et al. / IJCNIS, 16(4), 120-141

Networks Council, 8(4), 902–9. http://doi.org/10.1109/72.595888

[66] Bishnu, P. S., & Bhattacherjee, V. (2012). Software Fault Prediction Using Quad Tree-

BasedK-Means Clustering Algorithm. IEEE Transactions on Knowledge and Data

Engineering, 24(6), 1146–1150.

[67] Sun, Z., Song, Q., &Zhu, X. (2012). Using Coding-Based Ensemble Learning to

Improve Software Defect Prediction. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews),42(6), 1806–1817

[68] Mısırlı, A. T., Bener, A. B., & Turhan, B. (2011). An industrial case study of classifier

ensembles for locating software defects. Software Quality Journal, 19(3), 515–536.

http://doi.org/10.1007/s11219-010-9128-1

[69] Peng, J., & Wang, S. (2010). Parameter Selection of Support Vector Machine based on

Chaotic Particle Swarm Optimization Algorithm. Electrical Engineering, 3271–3274

[70] Challagulla, V. U. B., Bastani, F.B., & Paul, R.A. (2004).Empirical Assessment of

Machine Learning based Software Defect Prediction Techniques. In 10th IEEE

International

[71] Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook

Second Edition. Springer

[72] Khoshgoftaar, T.M.,& Van Hulse,J.(2009).Empirical Case Studies in Attribute Noise

Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 39(4),379–388.

[73] Sammut, C., & Webb, G. I. (2011). Encyclopedia of Machine Learning. Springer.

Sandhu, P.S., Kumar, S.,&Singh, H.(2007).Intelligence Systemfor Software

Maintenance Severity Prediction. Journal of Computer Science, 3(5),

 281–288. http://doi.org/10.3844/jcssp.2007.281.288

[74] Menzies,T.,Milton,Z.,Turhan,B.,Cukic,B.,Jiang,Y.,&Bener, A. (2010). Defect

prediction from static code features: current results, limitations, new approaches.

Automated Software Engineering, 17(4), 375–407.

[75] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking

Classification Models for Software Defect Prediction: A Proposed Framework and

Novel Findings. IEEE Transactions on Software Engineering, 34(4), 485–496.

[76] Hrishikesh Kumar; Himansu Das(2023) “Software Fault Prediction using Wrapper

based Feature Selection Approach employing Genetic Algorithm” 2022 OPJU

International Technology Conference on Emerging Technologies for Sustainable

Development (OTCON) 2023

[77] Sagnik Mondal; Adarsh Kumar Sahu; Hrishikesh Kumar; Radha Mohan Pattanayak;

Mahendra Kumar Gourisaria; Himansu Das (2023)“Software Fault Prediction using

Wrapper based Ant Colony Optimization Algorithm for Feature Selection” 2023 6th

International Conference on Information Systems and Computer Networks (ISCON),

2023

[78] S. Kaliraj;A. M. Kishoore;V. Sivakumar(2024) “Software Fault Prediction Using Cross-

Project Analysis: A Study on Class Imbalance and Model Generalization” IEEE

Access,2024

[79] Khoa Phung; Emmanuel Ogunshile; Mehmet Aydin “Error-Type—A Novel Set

of Software Metrics for Software Fault Prediction” IEEE Access ,2023

[80] Gabriel Omar Navarro Cedeño; Katherine Cortés Moya; Ahmed Somarribas Dormond;

Antonio González- Torres; Yenory Rojas-Hernández(2023) “Systematic Literature

Review: Machine Learning for Software Fault Prediction” ,2023

[81] Raghuraj Singh; Kuldeep Kumar(2024) “Software Fault Prediction in Service-Oriented

Based Systems” 2024 IEEE International Conference on Computing, Power and

Communication Technologies (IC2PCT) ,2024

http://doi.org/10.1109/72.595888
http://doi.org/10.1007/s11219-010-9128-1
http://doi.org/10.3844/jcssp.2007.281.288
https://ieeexplore.ieee.org/author/37089828005
https://ieeexplore.ieee.org/author/37086199910
https://ieeexplore.ieee.org/document/10113911/
https://ieeexplore.ieee.org/document/10113911/
https://ieeexplore.ieee.org/xpl/conhome/10113898/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10113898/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10113898/proceeding
https://ieeexplore.ieee.org/author/37089451780
https://ieeexplore.ieee.org/author/37088664645
https://ieeexplore.ieee.org/author/37089828005
https://ieeexplore.ieee.org/document/10111995/
https://ieeexplore.ieee.org/document/10111995/
https://ieeexplore.ieee.org/xpl/conhome/10111836/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10111836/proceeding
https://ieeexplore.ieee.org/author/37089545655
https://ieeexplore.ieee.org/author/980608918015474
https://ieeexplore.ieee.org/author/447534086523182
https://ieeexplore.ieee.org/document/10521510/
https://ieeexplore.ieee.org/document/10521510/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/author/37088636123
https://ieeexplore.ieee.org/author/37088413509
https://ieeexplore.ieee.org/author/37576069400
https://ieeexplore.ieee.org/document/10082922/
https://ieeexplore.ieee.org/document/10082922/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/author/864153450387304
https://ieeexplore.ieee.org/author/862899054855313
https://ieeexplore.ieee.org/author/579891433937112
https://ieeexplore.ieee.org/author/38324499900
https://ieeexplore.ieee.org/author/38547150000
https://ieeexplore.ieee.org/document/10517566/
https://ieeexplore.ieee.org/document/10517566/
https://ieeexplore.ieee.org/author/37089795410
https://ieeexplore.ieee.org/author/37088910484
https://ieeexplore.ieee.org/document/10486778/
https://ieeexplore.ieee.org/document/10486778/
https://ieeexplore.ieee.org/xpl/conhome/10486056/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10486056/proceeding

141 S. Jat et al. / IJCNIS, 16(4), 120-141

[82] Mashiat Zahan (2023) “Prediction of Faults in Embedded Software Using Machine

Learning Approaches” 2023 International Conference on Information and

Communication Technology for Sustainable Development (ICICT4SD), 2023

[83] Sushant Kumar Pandey; Anil Kumar Tripathi (2023) “Cross-Project setting using Deep

learning Architectures in Just-In-Time Software Fault Prediction: An Investigation”

2023 IEEE/ACM International Conference on Automation of Software Test (AST)

,2023

[84] Roshan Samantaray; Himansu Das(2023) Performance Analysis of Machine Learning

Algorithms Using Bagging Ensemble Technique for Software Fault Prediction2023 6th

International Conference on Information Systems and Computer Networks (ISCON),

2023

[85] Fatuhu Habib Abba; Kabir Umar; Umar Adam Ibrahim; Abubakar Ibrahim

Dalhatu(2023)“Search-Based Prediction of Software Functional Fault Slip-

Through”2023 2nd International Conference on Multidisciplinary Engineering and

Applied Science (ICMEAS) ,2023

[86] Yoginee Surendra Pethe; Himansu Das(2023)“Software fault prediction using a

differential evolution-based wrapper approach for feature selection” 2023 International

Conference on Communication, Circuits, and Systems (IC3S) ,2023

[87] Aman Omer; Santosh Singh Rathore; Sandeep Kumar(2024) “ME-SFP: A Mixture-of-

Experts-Based Approach for Software Fault Prediction ”IEEE Transactions on

Reliability 2024

[88] Baraah Alsangari; Göksel Bircik (2023) “Performance Evaluation of various ML

techniques for Software Fault Prediction using NASA dataset” 2023 5th International

Congress on Human-Computer Interaction, Optimization and Robotic Applications

(HORA),2023

[89] Xhulja Shahini; Domenic Bubel; Andreas Metzger(2023) “Variance of ML

based software fault predictors: are we really improving fault prediction” 2023 49th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

,2023

[90] Nanfei Yang; Yuliang Shi; Zhiyuan Su; Xinjun Wang; Zhongmin Yan; Fanyu

Kong(2023) “FSFP: A Fine-Grained Online Service System

Performance Fault Prediction Method Based on Cross-attention” 2023 30th Asia-

Pacific Software Engineering Conference (APSEC),2023

https://ieeexplore.ieee.org/author/37090074856
https://ieeexplore.ieee.org/document/10303419/
https://ieeexplore.ieee.org/document/10303419/
https://ieeexplore.ieee.org/xpl/conhome/10303002/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10303002/proceeding
https://ieeexplore.ieee.org/author/37088959100
https://ieeexplore.ieee.org/author/38182007200
https://ieeexplore.ieee.org/document/10174208/
https://ieeexplore.ieee.org/document/10174208/
https://ieeexplore.ieee.org/xpl/conhome/10173932/proceeding
https://ieeexplore.ieee.org/author/37089827618
https://ieeexplore.ieee.org/author/37086199910
https://ieeexplore.ieee.org/document/10111952/
https://ieeexplore.ieee.org/document/10111952/
https://ieeexplore.ieee.org/xpl/conhome/10111836/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10111836/proceeding
https://ieeexplore.ieee.org/author/556727898950409
https://ieeexplore.ieee.org/author/37085415560
https://ieeexplore.ieee.org/author/37088348868
https://ieeexplore.ieee.org/author/706656046016154
https://ieeexplore.ieee.org/author/706656046016154
https://ieeexplore.ieee.org/document/10429889/
https://ieeexplore.ieee.org/document/10429889/
https://ieeexplore.ieee.org/xpl/conhome/10379199/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10379199/proceeding
https://ieeexplore.ieee.org/author/37089425279
https://ieeexplore.ieee.org/author/37086199910
https://ieeexplore.ieee.org/document/10169809/
https://ieeexplore.ieee.org/document/10169809/
https://ieeexplore.ieee.org/xpl/conhome/10169128/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10169128/proceeding
https://ieeexplore.ieee.org/author/750355733650458
https://ieeexplore.ieee.org/author/38485327400
https://ieeexplore.ieee.org/author/37082036900
https://ieeexplore.ieee.org/document/10196351/
https://ieeexplore.ieee.org/document/10196351/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=24
https://ieeexplore.ieee.org/author/37089888472
https://ieeexplore.ieee.org/author/37089885940
https://ieeexplore.ieee.org/document/10156708/
https://ieeexplore.ieee.org/document/10156708/
https://ieeexplore.ieee.org/xpl/conhome/10156655/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10156655/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10156655/proceeding
https://ieeexplore.ieee.org/author/638474679221516
https://ieeexplore.ieee.org/author/804554971460318
https://ieeexplore.ieee.org/author/38478292100
https://ieeexplore.ieee.org/document/10371691/
https://ieeexplore.ieee.org/document/10371691/
https://ieeexplore.ieee.org/xpl/conhome/10371370/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10371370/proceeding
https://ieeexplore.ieee.org/author/37090042920
https://ieeexplore.ieee.org/author/37276883500
https://ieeexplore.ieee.org/author/37085685387
https://ieeexplore.ieee.org/author/37540129600
https://ieeexplore.ieee.org/author/37652528700
https://ieeexplore.ieee.org/author/37288880000
https://ieeexplore.ieee.org/author/37288880000
https://ieeexplore.ieee.org/document/10479388/
https://ieeexplore.ieee.org/document/10479388/
https://ieeexplore.ieee.org/xpl/conhome/10479191/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10479191/proceeding

