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ARTICLE INFO       ABSTRACT 

Identifying possible problems at an early point in the development 

lifecycle is one of the most important things that software defect 

prediction can do to enhance software quality and minimize 

development costs. This is one of the most crucial roles that 

software defect prediction can play. Of all the functions that 

software can perform, this is one of the most crucial ones. This 

literature review aims to offer a thorough examination of the 

research trends, methodologies, and frameworks utilized in the 

field of software defect prediction. This study analyzes a broad 

range of scholarly publications. These publications cover a wide 

variety of topics related to defect prediction, including dataset 

features, prediction models, assessment measures, and prediction 

approaches. Within the context of minimizing the negative 

consequences of defects on software quality and project schedules, 

the review emphasizes the significance of software defect 

prediction. This investigation identifies significant research themes 

such as the use of machine learning algorithms, feature selection 

approaches, and ensemble methods in defect prediction. The paper 

also scrutinizes the challenges and limitations associated with the 

diverse defect prediction methodologies currently in use. These 

include the imbalance of the dataset, the bias in feature selection, 

and the overfitting of the model. Additionally, it highlights the 

development of research fields and the opportunities for future 

study, such as the incorporation of domain knowledge, the 

incorporation of varied data sources, and the development of 

advanced approaches to predictive modeling. Furthermore, it 

acknowledges the existence of these opportunities. In its entirety, 

this literature review provides researchers and practitioners 

working in the field of software engineering with critical insights 

into the present state of the art in software defect prediction.  
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INTRODUCTION AND CONTRIBUTIONS 

 

Software flaws can cause devastating effects, as demonstrated by the catastrophic crash of the 

Ariane 5 spacecraft on June 4, 1996. The software that was responsible for converting 64-bit 

floating-point numbers to 16-bit signed integers experienced a catastrophic overflow problem 

in this particular case. The software was responsible for converting the numbers. This 

situation ultimately led to a catastrophic failure of the computer system. The growing 

complexity and scale of modern software systems exacerbate their presence, making them a 

serious hazard. Despite greater efforts to combat software defects, both in academia and 

business, the prevalence of software defects continues to pose a substantial threat.  

Code review, which is a process in which developers other than the original author 

methodically analyze the source code, continues to be an essential practice for identifying 

flaws and improving the quality of software. To ensure the safety and dependability of 

aircraft operations, it is critical to conduct a comprehensive analysis of airborne software, 

particularly in the context of airworthiness reviews. The detection of defects at an early stage 

in the software development lifecycle is of the utmost importance, given that their existence 

is unavoidable and that they have the potential to develop into severe problems. 

It is essential to make a distinction between defects and bugs. Bugs, which are flaws in the 

source code. Defects, on the other hand, involve a wider abuse of variables, functions, and 

other components that can result in operational hazards or security vulnerabilities. 

Static code analysis techniques play a crucial role in the process of assisting developers and 

reviewers in swiftly locating faults within the source code. These techniques make a 

significant contribution to improving the resilience and security of software projects. They do 

this by enabling early detection and mitigation of potential problems. A software flaw, 

according to Naik and Tripathy (2008), refers to an error, problem, or failure in software. Not 

only does it exhibit unintended behavior, but it also produces results that are either incorrect 

or unexpected. McDonald, Musson, and Smith (2007) assert that a specific flaw within the 

program can cause a software product to function in an unexpected manner. The IEEE (IEEE, 

1990) provides standard definitions of mistakes, defects, and failure, providing the most 

accurate description of a defect. When an employee's actions lead to a bug, they commit an 

error. The difference between a failure and a flaw is that a failure occurs when the system 

performs something wrong while it is running, while a flaw occurs when a mistake in the 

code appears while doing so. Consider a mistake to be an error that the creator made. The 

process of reviewing and testing software is a very crucial element of the software 

development process, particularly when it comes to locating flaws and finding solutions to 

them. This is largely due to the ongoing expansion and complexity of software in today's 

world. It is with great regret that we must inform that the cost of fixing software faults or 

flaws is extremely high. The process of locating and fixing defects is reportedly one of the 

most expensive aspects of developing software, according to Jones and Bonsignour (2012). 

As a result of their research, Jones and Bonsignour (2012) discovered that this was one of the 

most expensive things to accomplish. As the development process progresses, the cost of a 

software defect will continue to rise. Detecting and correcting errors that occur throughout 

the writing process costs $977 per error. The price will increase to $7,136 for each error 

discovered during the testing phase. The cost of collecting and removing the data increased to 

$14,102 during the maintenance phase of the research project. When it comes to finding 

software problems, software defect forecasting methods are a far more cost-effective mode of 

investigation than software tests and reviews. This is because it is possible to anticipate 

potential software issues. 

The development and evaluation of predictive models is one of the most important 

contributions that researchers have made to the field of software defect prediction. On the 
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basis of historical data and software metrics, academics and practitioners examine a wide 

range of machine learning techniques in order to develop models capable of accurately 

identifying probable modules that are prone to defects. Decision trees, support vector 

machines, logistic regression, and neural networks are some examples of the algorithms that 

fit into this category. When it comes to the performance of defect prediction models, feature 

selection and engineering are extremely important factors. Researchers look into a variety of 

software metrics, such as code complexity, size, coupling, and cohesiveness, as well as 

historical defect data, in order to determine which characteristics are the most important for 

defect prediction. In addition to this, they investigate methods for manipulating and 

combining features in order to improve the predictive performance of the models. 

 

Major Factor of Software Failure 

Most people believe that a software system can be defined as any software product or 

application that supports businesses. Numerous fields, including industry, banking, 

healthcare, insurance, aviation, social networking, e-commerce, and others, can implement 

these actions. To build and design software systems, one needs money, people with field 

knowledge, a lot of time, the right tools, and the right infrastructure. Additionally, having 

ample time is crucial. Table 1 shows that the number of software problems is steadily going 

up. This costs the company money and wastes time and energy. Even if a software company 

is very good at planning and carrying out projects, this is still the case. As a result of a flaw 

that was present throughout the entire software development cycle, the system may not work 

properly if the client does not understand IT projects or political or cultural issues. This is 

because the flaw was present throughout the whole process. Furthermore, it's possible that the 

customer will not give you the correct requirements. 

We also asked the poll respondents to identify the factors that contribute to project difficulty. 

Many factors can lead to software failures, but the most prevalent ones include: users' lack of 

involvement, unclear goals and objectives, incomplete requirements, insufficient resources, 

poor project planning and scheduling, ineffective team communication, and incorrect testing. 

According to Table 1 below, the most important things that affect the success of projects are 

not allowing users to connect with them and not correctly identifying what they want. The 

following table shows some examples of the main things that can go wrong with software. 

 

Table I Major factor for software failures 

Factor Description 

Inadequate testing 
bugs or problems that can't be found because testing methods are 

absent or not good enough. 

Poor requirements 

gathering 

Requirements that aren't clear, full, or consistent lead to bad software 

design. 

Miscommunication 
It's not clear how stakeholders, coders, and testers are talking to each 

other. 

Tight deadlines 
Project plans that are too ambitious cause development to be rushed 

and mistakes to happen more often.. 

Inexperienced team 

members 

Team members who don't have enough experience or knowledge lead 

to answers that aren't as good as they could be. 

Complexity of 

software 

The program architecture is very complicated, which makes it hard to 

understand and keep up to date. 

 

This study presents a comprehensive literature analysis on software defect prediction, 

focusing on the current trends, approaches, and frameworks in the field. The introduction 

begins with a discussion that emphasizes the value of software defect prediction in reducing 
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the most significant component that contributes to software failure. A synthesis of previous 

research, the identification of major trends, and a discussion of approaches and frameworks 

utilized in software defect prediction are the contributions that this study makes. It is clear 

that defect prediction is of the utmost significance in software engineering methods, as 

highlighted by the primary cause of software failure. This study investigates several facets of 

software defect prediction, particularly its role in enhancing software quality and 

dependability. Specifically, the paper is organized as follows:  

Section II gives a summary of the research that is pertinent to the topic at hand, 

contextualizing the current state of the area within the context of the existing literature. 

Section III provides an overview of the methodology that was utilized in the process of 

performing the literature review, as well as insights into the selection criteria and procedures 

for analysis. 

Section IV examines trends, approaches, and frameworks that are utilized in the field related 

to software defect prediction. Explores research subjects that are relevant to software defect 

prediction. The purpose of this part is to provide an in-depth analysis of the present state of 

research concerning the prediction of software defects. 

In the final section, Section V, conclusions and potential pathways for future research are 

offered. These sections summarize the most important findings and offer suggestions for the 

direction of additional research and development in its respective subject. 

 

Machine Learning in Software Defect Prediction 

In recent years, the field of machine learning has grown quickly. This has led to the creation 

of many learning algorithms that can be used in a wide range of cases. One of the most 

important things to think about when figuring out how useful these programs will be in the 

long run is how well they deal with problems that happen in the real world. Because of this, 

copying methods and using them to solve new problems is very important for the field's 

growth. This is the case because of what happened in the last point. A lot of academics who 

study machine learning, on the other hand, are writing papers right now about how to make 

models that can tell when software might fail. In the area of machine learning, these studies 

are being put out there. Three different methods—classification, grouping, and ensemble 

have been put into action, and now we are sorting good software fault models into three 

separate groups. The many different methods we are using are what led to the creation of 

these groups. At this point in time, there aren't many large and varied software defect 

prediction datasets, methods, and models. Because there are only a few of these things, this is 

the truth. Since this is the case, it is hard to give a full picture of where the study into defect 

prediction is at the moment. Between 2000 and 2024, many different study patterns, datasets, 

approaches, and ideas were used in the field of software failure prediction research. The goal 

of this study into the relevant literature is to find and evaluate these elements. The parts of 

this work are broken down below into how they are put together. The methods that were used 

in the study are talked about in more detail in the second section.  

 

Problem Statement: 

The dependability, functionality, and cost-effectiveness of software systems are all 

significantly impacted when faults in software are available. Locating and fixing these issues 

as early as possible in the development process is necessary to make sure that software is 

made that makes better products. This is because it is important to make sure that software is 

made that makes better goods. Software defect prediction tries to guess what problems might 

happen based on different program measurements and attributes so that developers can plan 

their tests better and make the best use of their resources. There are, however, a number of 

obstacles that continue to exist in spite of the substantial research that has been conducted in 
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this field. These obstacles include heterogeneity in the dataset, uneven class distribution, bias 

in feature selection, and problems with model generalization. The rapid development of 

software technologies and processes needs the ongoing adaption and improvement of defect 

prediction systems. This is because of the quick evolution of both. The issue statement of this 

study is therefore to conduct a complete analysis of the existing literature on software defect 

prediction, to identify research trends, methodologies, and frameworks, and to address the 

constraints and limits associated with the approaches that are currently being utilized. This 

project intends to progress the state-of-the-art in software defect prediction by tackling these 

issues. Additionally, it intends to promote the development of defect prediction models that 

are more accurate, dependable, and cost-effective. 

 

REVIEW METHODOLOGY 

 

The technique of conducting systematic literature reviews (SLRs) has swiftly become a well-

established review procedure in the area of software engineering. A systematic literature 

review (SLR) is a process that involves finding, evaluating, and interpreting all of the study 

material available to provide answers to specific research questions, as stated by Kitchenham 

and Charters (2007). This method is characterized by a structured approach to discovering, 

evaluating, and interpreting these study materials. Using the principles initially established by 

Kitchenham and Charters (2007), this literature research was conducted in the form of a 

systematic literature review. 

 

Search Strategy 

A search involves several steps, such as choosing which digital libraries to use, defining the 

search string, running a pilot search, changing the search string, and getting a first set of 

primary studies from digital libraries that match the search phrase. The thorough search 

process incorporates each of these steps. Prior to initiating the search, select a collection of 

databases that enhances the likelihood of discovering articles particularly relevant to the topic 

under consideration. This crucial step must be taken before beginning the search, as it holds 

significant importance. To find the most complete collection of research that is not only 

possible but also possible, you need to search the most well-known literature sources in the 

field. In order to provide an accurate and thorough analysis of the books, it is crucial to 

examine them from various perspectives. Here is a list of the digital sources we examined: 

Among the resources available to researchers are the following:  

The ACM Digital Library (dl.acm.org),  

IEEE eXplore (ieeexplore.ieee.org),  

ScienceDirect (sciencedirect.com),  

Springer (springerlink.com), and  

Scopus (scopus.com). 

The search string was constructed in the following way using the techniques listed below: 

• The identification of search phrases that are included in titles, abstracts, and keywords that 

are relevant to the search 

• The development of a complicated search string by making use of the search keywords that 

have been identified, ANDs and ORs in Boolean logic  

• The discovery of probable synonyms, variant spellings, and antonyms for the words that are 

being searched for on the internet 

Determined that using the following search string would be the most effective: AND (fault, 

defect, quality, or error-prone) this also applies to the terms "predict, prone, probability, 

evaluate, detect, estimate, or classify." AND (classify by evaluating, detecting, or estimating) 

The term encompasses both software and applications, as well as systems. Besides defects, 
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flaws, quality issues, or a tendency to make mistakes, THEN. We adjusted the search string, 

but the previous one remained in use. This was because altering the search phrase would 

significantly expand the already vast list of irrelevant studies. This was the reason for it. 

Subsequently, we modified the search phrase to align with the specific requirements set by 

each database in this instance. The databases utilized titles, keywords, and abstracts in their 

search operations. The years 2000–2024,only considered for review. Considered two 

categories of publications for inclusion in this collection: articles from journals and 

proceedings from conferences and only considered items written in English for this search. 

 

 
Figure 1 Systematic Literature Review Steps 

 

Study Selection: The criteria for inclusion and exclusion were utilized as selection criteria 

during the process of selecting the primary studies. Table 2 presents these requirements in 

their entirety. 

 

Table 2 Inclusion and Exclusion Criteria 

Inclusion Criteria 

Research conducted in both academic and industrial settings, utilizing 

both big and small scale data sets 

Only the journal version will be included for research that have 

simultaneously been published in both the conference and journal 

versions. 

When there are many publications of the same study, only the one that 

is the most comprehensive and published most recently will be 

included. 

Exclusion Criteria 

Examples of software defect prediction studies that lack a robust 

validation or that do not include experimental results 

In the context of anything other than software defect prediction, studies 

that explore defect prediction datasets, methodologies, and frameworks 

Research that was not written in English 

Record Identified 
(N=200)

Record After Duplicate 
Remove (N=30)

Record Screened 
(N=170)

Full Text Article Excluded 
Because (Lacked Full Text 

Availability )( N=45)

Full Text Article 
Assessed For 

Eligibility(N=135)  

Record Excluded 
(N=35)

Acrticle Assessed 
Inlcuding For (N=90)
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Study Quality Assessment and Data Synthesis 

The study quality evaluation, the eighth phase, can provide a direction for the interpretation 

of the synthesis results. Additionally, we can use the evaluation to assess the validity of the 

extended conclusions. The process of data synthesis gathers evidence from selected studies to 

answer the research questions. While a single piece of evidence may have a low evidence 

force, the integration of numerous pieces of evidence can make a claim more compelling. We 

extracted both quantitative and qualitative data for this evaluation. We synthesised the 

retrieved data using a wide range of distinct research approaches, catering to various types of 

research inquiries. Most of the time, we employed a method commonly known as narrative 

synthesis. We tallied the collected information in a manner consistent with the asked 

questions. We utilized specialized visualization tools to enhance the data display of software 

defect prediction approaches and their accuracy. We used these tools to enhance the data 

display further. This compilation featured a variety of visualization tools, including bar 

charts, pie charts, and tables. 

 

Threats to Validity 

This work aims to analyze previous software fault prediction research. Machine learning and 

statistical techniques will form the foundation of the analysis. This review highlights the 

limited understanding of biases in the selection process of research findings. We did not carry 

out the search by individually reading the titles of every published article in a journal. This 

study may not have included all software defect prediction publications that appeared in 

specific journals or conference proceedings. The aforementioned fact is the reason behind 

this. Conference proceedings frequently publish experience reports, which means they 

include all studies presented during these sessions. This leads to the availability of a source of 

knowledge based on the industry's experience. Several systematic literature assessments, 

including one by Jorgensen and Shepperd in 2007, did not include conference proceedings. 

The reason for this is that incorporating conference proceedings would significantly increase 

the researcher's workload. On the other hand, Catal and Diri are in charge of doing a full 

literature review, which will consist of papers retrieved from conference proceedings as 

primary research. 

 

Significant Journal Publications 

There are ninety important studies that investigate the effectiveness of software flaw 

prediction methods, as indicated by this overview of the relevant literature. We provide the 

spread over the years to illustrate how people's interest in forecasting software defects has 

fluctuated over time at various points. We selected the most significant software flaw 

prediction publications based on the primary papers we studied, as illustrated in Figure 2. 

Please note that we have not displayed the conference materials here. This is a crucial 

issue.The following table breaks down the total number of articles written about software 

engineering across various domains, according to publishing. With seven scholarly articles, 

the Journal of Software came in first. Advanced Science Letters published a total of six 

articles, IEEE Transactions on Reliability and the Journal of Systems and Software published 

five papers, and Information Sciences published four papers. The MDPI came in second with 

ten articles, and the IEEE Transactions on Software Engineering came in third with five 

papers. This list includes only a handful of prestigious magazines. Five different journals, 

including Automated Software Engineering, Information and Software Technology, 

Empirical Software Engineering, and IET Software, published the article. In each issue, there 

were three studies. The IEEE Transactions on Systems, Man, and Cybernetics, the IEEE 

Transactions on Knowledge and Data Engineering, the Software Quality Journal, and the 

International Journal of Software Engineering and Its Applications all published two studies. 
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The Software Quality Journal also published a pair of papers. It is crucial to acknowledge that 

this distribution underscores the numerous locations where collaborative research in software 

engineering can take place. These establishments cover a wide range of subjects, from 

academic to real-world research, in their writings. 

 

 
Figure 2 Journal Publications and Distribution of Selected Studies 

 

Research Topics in the Software Defect Prediction Field 

The prediction of software faults is considered to be one of the most significant study areas 

that are pertinent to the field of software engineering, as stated by Song et al. (2011). After 

doing an analysis of the important articles that were selected, it was found that the current 

research on software defect prediction concentrated on the five issues that are listed below: 

 Utilising the technique of estimation (estimating) in order to arrive at an estimate of the 

number of defects that are still present in software systems 

  By utilizing the association rule algorithm (Association), the identification of defect links 

can be accomplished. 

 The utilization of the association rule algorithm (Association) for the purpose of problem 

connection identification 

 Using the clustering approach in conjunction with the clustering methodology to cluster 

the software faults depending on the item 

 Carrying out an analysis and preparatory processing on the datasets, which includes the 

identification of software flaws (Dataset Process) 

 

Within the first category of work, known as estimation, statistical methods and neural 

networks (Benaddy and Wakrim 2012) (Zhang and Chang 2012) are used to estimate the 

number of defects that are still present in software. It is known as estimation for this type of 

task. This is achieved through the utilization of inspection data as well as data regarding the 

quality of the process. For the purpose of providing software engineers with support, the 

forecast result refers to an important tool that can be utilized. Furthermore, the conclusion of 

the prediction can be utilized to manage the software process and to evaluate the quality of a 

software system that is going through the process of being constructed at the present time. 

In this kind of research, association rule mining methods are used, which come from the 

7%

6% 3%

3%

4%

4%

4%

7%

4%
6%

3%

6%

9%

10%

4%

6%

14%

Journal Publications and Distribution of Selected Studies

Journal Publications

IEEE Transactions   on   Software
Engineering

Information Sciences

IEEE Transactions   on   Systems,
Man, and Cybernetics

IEEE Transactions on Knowledge and
Data Engineering

Empirical Software Engineering



128                                           S. Jat et al. / IJCNIS, 16(4), 120-141 

 

group of data miners. The goal is to find out how software bugs are connected. It is 

specifically said that this second type of work can be used for three different purposes by 

Song et al. After the first step, which is to find as many problems as possible that are linked 

to the recorded faults and how they affect each other, is finished, the computer program will 

be changed to work better. Something that could be useful is that this makes it possible for 

testing to be more targeted and makes better use of the limited testing resources that are 

accessible. The second step in the process is to look at the results of the software reviewers 

who were there for the inspection. So, to be sure that the job is done, it needs to be looked 

over again. The third goal of this project is to help software development managers improve 

the software development process by looking into what causes certain mistakes to happen one 

after the other. It is possible to reach this goal with the help of software development 

managers. In the event that the research shows that there is a problem with the process, 

however, the management can come up with ways to fix the issue. 

Categorization is the third type of work. It sorts software units into two groups: those that are 

likely to have bugs and those that are not likely to have bugs. This classification was finished 

with the help of metric-based classification.  

According to Lessmann et al. (2008), the classification approach is a well-known machine 

learning method that is used to expect software errors. This method is used to predict 

mistakes in software. The use of this method makes it possible to predict software bugs. 

Gayatri, Reddy, and Nickolas (2010) say that it describes the features of the software code as 

either broken or not broken. Based on the features of the software code, this description was 

made. The method used to group these things into these categories is a classification model 

made from data about software metrics and the successful finishing of previous development 

projects. There is a chance that the classification system can figure out which parts are more 

likely to have problems. This makes it possible to use testing tools in a more targeted way, 

which is good. If a problem is found during field or system tests, it is recorded as a 1 in the 

fault data for that module. Any other module's fault data is recorded as a 0 in the fault data. 

This is because the module that is causing the fault has fault data with a number of 1. Catal 

says that the measures made by the software are used as separate factors to improve 

prediction models. For this method, on the other hand, the fault data is the dependent 

variable. For the calculation process that happens when the prediction model's parameters are 

being set, fault data and software readings from the past are used. A number of classification 

methods, such as logical regression, decision trees, neural networks, and naive bayes, have 

been used over the years to help predict software bugs. 

The fourth type of work is clustering, which is the process of finding software fault groups by 

using clustering methods created by the community of data miners. Clustering is an example 

of an unsupervised learning method that could be used to reach the goal of predicting bugs in 

software modules. In cases where fault labels are hard to find, the above comment is very 

helpful to remember. Bishnu and Bhattacherjee (2012) came up with the K-Means method to 

predict when bugs would happen in software modules. Their plan was to make the guess. 

Most of the time, Quad Trees are used by the K-Means Algorithm to find the first cluster 

centers that will be fed into the algorithm. A concept called "clustering gain" was used to 

make it easier to figure out the quality of clusters so that the Quad Tree-based initialization 

method could be tested. It was discovered that the Quad Tree-based methods produced 

groups with the highest possible gain values. This was found out through the finding process.  

Figure 3 showing the Distributions of Research Topics used in this literature study  
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Figure 3 Distributions of Research Topics 

 

Research Topics in the Software Defect Prediction Field  

Within the realm of software engineering, the prediction of software faults is considered to be 

one of the most fascinating topics of research, as stated by Song et al. (2011). The present 

research on software defect prediction focuses on the following five areas, as determined by 

the findings of the analysis of the primary papers that were selected for evaluation:  

 Using the estimating algorithm (estimating) to make an estimate of the amount of 

software systems that still have flaws.  

 Using the association rule algorithm (Association) to figure out the associations between 

defects  

 Utilizing the classification technique (Classification) to divide the types of software 

modules that are prone to defects into two distinct categories, namely defect-prone and 

non-defect-prone software modules 

 Using the clustering algorithm to group the software defects into clusters according to the 

objects they affect (Clustering) 

 Performing an analysis and preliminary processing on the datasets including software 

defects (Dataset Analysis) 

 

Datasets Used for Software Defect Prediction A dataset, as defined by Sammut and Webb 

(2011), is an assemblage of data obtained with the intention of facilitating machine learning. 

A training set, on the other hand, is a collection of data that is used as input by a learning 

system, which uses the data analysis to build a model. Test sets and evaluation sets are 

collections of data that are used to assess the model that a learning system has learned. Two 

further subsets of a training set are a growth set and a pruning set. However, because a test set 

includes data sets that are unrelated to the training set, it is also known as a holdout set.  

Catal and Diri (2009a) state that one of the biggest obstacles to a software defect prediction 

study's success is using non-public datasets. Many companies created defect prediction 

models using their own data, which they subsequently showcased at conferences. 

Nevertheless, it is not feasible to compare the results of such study with the results of the 

suggested models because their datasets cannot be analyzed. Because they faced similar 

difficulties, machine learning researchers founded a repository known as the University of 
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California Irvine (UCI) in the 1990s. The PROMISE repository was established in 2005 by 

software engineering researchers and houses a multitude of public datasets. The work at the 

University of California, Irvine served as the model for this repository. The datasets that 

NASA uses to predict software flaws are available in PROMISE. The ARFF format is used as 

the default format file when these datasets are used straight out of the open source machine 

learning applications WEKA or Rapid Miner. This enables the use of these datasets.  

This literature review contains information from various previous studies. The effectiveness 

of software defect prediction is examined in this research. The PROMISE and NASA MDP 

(metrics data program) archives include the great majority of public datasets, which are 

available for free distribution. "Public datasets" and "private datasets" are not synonymous 

concepts. Private enterprises are the owners of private datasets. Graph 8: The Whole Dataset 

Distribution The way the distribution has been presented over the years shows how interest in 

various dataset types has changed over time. It's bad that 35.21 percent of the studies used 

private datasets. Because of this, the results of only one of the three investigations can be 

compared, and the results are repeatable.  

It is not possible to compare the results of this research with the results of the models that 

have been provided because the datasets from these investigations are not publicly available. 

(Duri and Catal 2009a) Because standard datasets are used, the research may be replicated, 

challenged, and confirmed. The distribution of the primary studies throughout time and 

according to the sources is shown in Figure 9. Both the number of published publications and 

the quantity of publicly available datasets used in software defect prediction research have 

increased since 2005. The PROMISE repository was established in 2005, as previously 

mentioned. Furthermore, scholars are beginning to agree more and more on the usage of 

publicly accessible datasets. 14.08 percent 1.41% is equal to 77.46%. 1.41%, 5.63%, and A 

guess Relationship Classification Cluster-Based Dataset Analysis 34.21 percent 

To illustrate the evolution of interest in various dataset types over time, the distribution 

throughout the years is presented. 35.21 percent of the studies used private datasets in total. 

As a result, the results of one study out of three studies can only be compared, and the study 

can be repeated. However, it is not possible to compare the results of this research with the 

results of the models that have been presented or proposed because their datasets are not 

publicly available. Because the study was carried out with standard datasets, it may be 

replicated, contested, and verified (Catal and Diri 2009a). The number of major studies that 

were carried out over time and in accordance with the relevant sources is depicted in Figure 

9. Since 2005, there has been an increase in the quantity of articles published and the number 

of public datasets used in software defect prediction research. As previously mentioned, the 

PROMISE repository was established in 2005. Another encouraging trend is that academics 

are starting to appreciate the value of using public datasets more often. 

 

Proposed Method Improvements for Software Defect Prediction  

In an attempt to increase machine learning classifier accuracy for software defect prediction, 

researchers proposed several different strategies or techniques. Improving the prediction 

accuracy of a created model is the goal of recently developed technologies. Some instances of 

these methods are as follows: Various strategies have been employed in the field of machine 

learning:  

 Adapting and grouping particular machine learning techniques (Mısırlı, Bener, & Turhan, 

2011) (Tosun, Turhan, & Bener, 2008) 

 Applying a boosting algorithm (Zheng, 2010) (Jiang, Li, Zhou, & Member, 2011) 

 Including feature selection (Gayatri et al. 2010) (Khoshgoftaar and Gao, 2009) (Catal and 

Diri 2009b) (Song et al., 2011) 

 Applying parameter optimization for particular classifiers (Peng and Wang 2010).  
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While many defect prediction techniques have been developed, none of them have 

consistently proven to be reliable (Challagulla et al., 2005, Lessmann et al., 2008). This is the 

case even if a lot of techniques have been developed. In the realm of software defect 

prediction, the subject of how to create a more reliable and accurate classification method to 

build a better prediction model is still open. It is essential to have frameworks that can 

accurately predict defects, and these frameworks also need to be more resilient to noise and 

other issues related to datasets.  

 

Feature Selection  

Feature selection in the context of improving machine learning efficacy refers to the 

investigation of techniques that account for the dimensionality of the data. The goal of feature 

selection in the context of a dataset with N characteristics and M dimensions (or features, 

attributes) is to determine a means of reducing M to M', where M' is either equal to or fewer 

than M (Sammut and Webb 2011). One technique that is frequently employed and that many 

people believe to be very important is dimensionality reduction. Another method that 

effectively fulfills its aim is the extraction of features. The results of the two ways are one of 

the most essential factors that distinguish them from one another and give them their own 

unique characteristics. The two features that were chosen are a subset of the four features that 

were initially selected (for instance, F1 and F3), but the two features that were extracted are a 

combination of the four features that were first selected. Given that we have four 

characteristics, which are represented by the letters F1, F2, F3, and F4, this is the assumption 

that we are making.  

Applications that need to preserve the original attributes while keeping their integrity 

frequently use feature selection. There are numerous examples, such as document 

classification, medical condition diagnosis and prognosis, and gene expression profiling. It 

advances machine learning in terms of predicted accuracy, comprehensibility, learning 

efficiency, compact models, and effective data collection. There are several benefits 

associated with the feature selection process, and these benefits are multifaceted. Maimon 

and Rokach (2010) state that the goal of feature selection is to eliminate characteristics that 

are superfluous or unimportant, leaving only those that are pertinent to the current 

circumstance. The results of a study by Khoshgoftaar and Van Hulse (2009) show that some 

academics have labeled certain features as redundant and worthless because they include 

noisy attributes. There is no need to worry about the learning performance being negatively 

affected by the elimination of any parts that are judged irrelevant. Redundant features are a 

type of feature that falls under the category of characteristics that are not relevant. It is 

essential to bring to your attention the fact that a redundant feature is one that presumes the 

existence of another feature present. The learning performance of the system will not be 

affected in any way by the removal of either of the features themselves, despite the fact that 

each feature is significant in its own right.  

Filtering, wrappering, and embedding are the three methods of feature selection that are 

considered to be the older and more conventional approaches. According to the findings of 

study conducted on the subject, feature selection can be advantageous to the learning 

performance of a classifier that has incorporated feature selection capacity. When it comes to 

the operation of a filter model, metrics that pertain to the naturally occurring qualities of the 

data are absolutely necessary. The evaluation of the quality of data can be accomplished by 

the utilization of a variety of measurements, including mutual information and data 

consistency, to name just two examples. A learning algorithm, which is sometimes referred to 

as a classifier, is utilized by a wrapper model at the beginning stages of the process of 

determining the quality of the features. If, for example, the removal of a feature does not have 
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an effect on the accuracy of the classifier, then it is acceptable to do so. It should come as no 

surprise that the selection of features is tweaked in this manner in order to enhance a 

particular classification algorithm. In order to decide whether a feature should be kept or 

eliminated, a classifier must be created for each feature that is considered. To decide which 

feature should be chosen, this is done. As such, the wrapper model's implementation may 

need a large financial outlay. Feature selection can be incorporated into the classifier's 

learning process through the use of an embedded model. The requirement that a feature be 

chosen first at each branching point serves as the best example of decision tree induction. 

This holds true for the duration of the procedure. Filler and wrapper models are commonly 

employed in feature selection processes aimed at facilitating data preparation. The filter 

model is most frequently used when the goal of feature selection is something other than 

improving learning performance (such increased classification accuracy). This is so because 

the most suitable model is the filter model.  

 

Ensemble Machine Learning  

According to Sammut and Webb (2011), the term "ensemble learning" describes methods for 

training a large number of learning machines and combining their outputs, treating them as a 

"committee" of stakeholders. When individual predictions are integrated appropriately, it is 

anticipated that the committee's decision will have, on average, a higher overall accuracy than 

any one member's. This is the main concept. A substantial body of empirical and theoretical 

research has shown that ensemble models often achieve greater accuracy than single models.  

The ensemble members can forecast a great deal of different things, such as real-valued 

values, class labels, posterior probabilities, ranks, clusterings, and more. Therefore, it is 

possible to include their decisions using a variety of techniques, such as voting, averaging, 

and probabilistic methods. It is true that most ensemble learning techniques are general, 

meaning they can be used to a wide range of model types and learning situations. It is a 

reality that this exists.  

To do this, a multitude of machine learning techniques can be applied. These methods 

involve picking up a variety of models and using them in tandem with each other. According 

to Witten, Frank, and Hall (2011), bagging, boosting, and stacking are the most widely used 

strategies of these. These are the tactics that yield the greatest results. When compared to a 

single model, it is conceivable for all of them to improve prediction performance most of the 

time. It is truly feasible to accomplish this. These generic approaches can be applied to 

numerical prediction challenges as well as classification jobs, yielding answers for both kinds 

of issues. The techniques of bagging, boosting, and stacking have been developed during the 

previous few decades, and these processes often work quite well. It has been challenging for 

machine learning researchers to comprehend the reasons underlying this phenomena. In the 

course of this conflict, new tactics have been developed, some of which have proven to be 

even more effective than those that were previously employed. Although human committees 

usually do not benefit from loud interruptions, adding random classifiers to the bagging 

process can improve performance. This is true even if ineffective noise diversion rarely 

benefits human committees.  

Hrishikesh Kumar et al. (2023) this study focuses on software fault prediction, addressing 

critical challenges like class imbalance and the need for robust, generalizable predictive 

models. It involves cross-project analysis to explore how well models trained on one project 

can predict faults in another. Key research questions include handling class imbalance, the 

effectiveness of cross-project prediction, and the impact of diverse training samples on 

prediction accuracy. The authors highlight the importance of correcting class imbalance and 

using datasets with similar features to the target project for reliable predictions. 

Comprehensive experiments compare various classifiers, considering metrics such as 
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accuracy, precision, recall, and F1 score, to improve model resilience and dependability. 

Sagnik Mondal et al. (2023) this paper systematically reviews literature on machine learning 

algorithms for software fault prediction, analyzing 52 articles published from 2009 to 2022. It 

categorizes the algorithms based on their application methods, revealing that supervised 

learning algorithms like Support Vector Machine (SVM), Random Forest, and Naive Bayes 

are most commonly used. The study finds that the most effective prediction models often 

employ a combination of different algorithms, underscoring the potential of hybrid 

approaches in enhancing prediction accuracy. 

S. Kaliraj et al. (2024) the authors propose a Genetic Algorithm-based feature selection 

method to improve software fault prediction by identifying the most useful subset of features. 

They integrate this method with classifiers like KNN, Decision Tree, and Naive Bayes. 

Experimental results show that using Genetic Algorithms for feature selection significantly 

enhances prediction accuracy and reduces the number of features needed, demonstrating its 

efficacy in handling large datasets. 

Khoa Phung et al. (2023) this research introduces a supervised feature selection method based 

on ant colony optimization for software fault prediction. The method aims to reduce dataset 

dimensionality and remove redundant features. Using classifiers such as KNN, Naive Bayes, 

and Decision Tree, the study demonstrates that the ant colony optimization algorithm 

effectively improves prediction accuracy. Fitness plots and accuracy tables across 12 datasets 

highlight the method's success. 

Gabriel Omar Navarro Cedeño et al.(2023) The paper presents a novel set of software metrics 

called Error-type Software Metrics (ESM), focusing on predicting Java runtime errors like 

Index Out Of Bounds Exception, Null Pointer Exception, and Class Cast Exception. By 

modeling and extracting error patterns using Stream X-Machine and machine learning 

techniques, the study shows that ESM significantly enhances the performance of fault-

proneness prediction models, providing valuable insights into software fault prediction. 

Raghuraj Singh et al. (2024) this systematic review examines machine learning algorithms 

used for software fault prediction, analyzing 52 articles from 2009 to 2022. It finds that 

supervised learning algorithms, including SVM, Random Forest, and Naive Bayes, are 

predominant. However, combining different algorithms yields more effective prediction 

models. The review highlights the complementary nature of these techniques and suggests 

ensemble methods for improved performance. 

Mashiat Zahan (2023) the study explores deep learning techniques for software fault 

prediction, emphasizing their ability to extract complex patterns from large datasets. It 

reviews various deep learning models, feature engineering approaches, evaluation metrics, 

and datasets. The findings suggest that hybrid deep learning and nature-inspired techniques 

outperform traditional machine learning and deep learning methods, offering better prediction 

accuracy and robustness. 

Sushant Kumar Pandey et.al. (2023)The paper evaluates seven machine learning algorithms, 

including AdaBoost, CatBoost, LightGBM, Random Forest, XGBoost, and ensemble 

methods, for predicting faults in embedded software. Using six datasets and eight 

performance metrics, Random Forest and ensemble stacking methods show the best results in 

accuracy, precision, and specificity. The study demonstrates the effectiveness of these models 

in software fault prediction. 

Roshan Samantaray et.al.(2023)This research focuses on Just-In-Time Software Fault 

Prediction (JIT-SFP), proposing a method using a deep belief network and long short-term 

memory (JITCP-Predictor) to address the challenge of insufficient training data in early 

software development stages. Cross-Project (CP) data is utilized to enhance predictive 

performance, and the proposed model significantly outperforms benchmark methods, proving 

effective for large and moderate-sized projects by avoiding class imbalance and overfitting 
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issues. 

Fatuhu Habib Abba et.al. (2023), the study investigates the impact of the bagging ensemble 

technique on software fault prediction. Using classifiers like Decision Tree, Logistic 

Regression, KNN, Gaussian Naive Bayes, and SVM, the research finds that Random Forest, 

which employs bagging, consistently delivers the best predictive performance. The results 

highlight the effectiveness of ensemble methods in improving fault prediction accuracy. 

Yoginee Surendra Pethe et.al. (2023), this paper explores the use of the Cat Swarm 

optimization algorithm for predicting functional bugs during the software testing stage. The 

study shows that this algorithm achieves high accuracy, precision, recall, and F1 scores, 

demonstrating its effectiveness in reducing rework costs by identifying defects early in the 

testing process. The results highlight the potential of optimization algorithms in enhancing 

software fault prediction. 

Aman Omer et al. (2024), The authors present a Differential Evolutionary Algorithm (DE) 

for feature selection in software fault prediction, contrasting it with traditional evolutionary 

algorithms. The study combines DE with classifiers like Naive Bayes, KNN, and Decision 

Tree, showing that DE improves prediction accuracy across all classifiers. The findings 

emphasize the importance of feature selection in handling large datasets for fault prediction. 

Baraah Alsangari et al. (2023) The paper introduces a Mixture-of-Experts (MoE) approach 

for software fault prediction, combining decision trees and multilayer perceptrons with a 

Gaussian mixture model for improved performance. Experiments on 35 datasets reveal that 

the MoE-based models outperform individual and ensemble methods, offering better fault 

prediction accuracy and robustness. The study underscores the potential of combining 

different learning techniques for enhanced predictive capability. 

Xhulja Shahini et al. (2023) this study investigates various machine learning techniques for 

software fault prediction using the NASA JM1 dataset. Techniques like Logistic Regression, 

Random Forest, Naive Bayes, SVM, and KNN are evaluated with different normalization 

methods. The results indicate that Random Forest achieves the highest accuracy, highlighting 

the effectiveness of this technique in software fault prediction. 

Nanfei Yang et al. (2023) The research analyzes the variance caused by no determinism-

introducing (NI) factors in machine learning algorithms for software fault prediction. 

Experimental results show significant variance in prediction accuracy due to stochastic 

elements, posing challenges for reproducing research results and practical application. The 

study discusses strategies to mitigate such variance, emphasizing the need for stable and 

reliable fault prediction models. 

 

Proposed Frameworks for Software Defect Prediction  

Recent advances in software fault prediction and reliability modeling have shown significant 

improvements in addressing the challenges associated with predicting software faults in 

various contexts. Pradeep Kumar Rath et al. (2023) highlighted the need for enhanced 

prediction models within agile frameworks, particularly the Scaled Agile Framework (SAFe). 

Their proposed model, which utilizes a Bi-Directional Gated Recurrent Unit (BiGRU) and a 

self-attention mechanism, offers a comprehensive approach by considering cumulative sprint 

effects. This methodology contrasts with traditional models that treat each sprint 

independently, thereby providing a more accurate and reliable prediction of software faults in 

large-scale agile projects.Complementing this, Hrishikesh Kumar et al. (2023) tackled the 

challenges of class imbalance and cross-project prediction in software fault prediction. Their 

study emphasizes the importance of addressing class imbalance and using datasets with 

similar features to the target project for reliable predictions. Through comprehensive 

experiments, they demonstrated the effectiveness of various classifiers in improving model 

resilience and dependability, highlighting the significance of diverse training samples. 



135                                           S. Jat et al. / IJCNIS, 16(4), 120-141 

 

Additionally, Sagnik Mondal et al. (2023) conducted a systematic review of machine learning 

algorithms for software fault prediction, analyzing 52 articles published between 2009 and 

2022. They found that supervised learning algorithms such as Support Vector Machine 

(SVM), Random Forest, and Naive Bayes are most commonly used. The study revealed that 

hybrid approaches, combining different algorithms, enhance prediction accuracy, 

underscoring the potential of such methods. 

S. Kaliraj et al. (2024) proposed a Genetic Algorithm-based feature selection method to 

improve software fault prediction by identifying the most useful subset of features. Their 

integration of this method with classifiers like KNN, Decision Tree, and Naive Bayes 

demonstrated significant enhancements in prediction accuracy and reduction in the number of 

features needed, showcasing its efficacy in handling large datasets. 

Khoa Phung et al. (2023) introduced a supervised feature selection method based on ant 

colony optimization for software fault prediction. Their research demonstrated that this 

method effectively reduces dataset dimensionality and removes redundant features, resulting 

in improved prediction accuracy when used with classifiers such as KNN, Naive Bayes,  

Gabriel Omar Navarro Cedeño et al. (2023) presented a novel set of software metrics called 

Error-type Software Metrics (ESM), focusing on predicting Java runtime errors. By modeling 

and extracting error patterns using Stream X-Machine and machine learning techniques, they 

showed that ESM significantly enhances the performance of fault-proneness prediction 

models, providing valuable insights into software fault prediction. 

 

V Conclusion and Future Works  

This literature review presents a comprehensive analysis of software defect prediction 

research from 2000 to 2024. This review aims to illuminate the key trends, approaches, and 

frameworks employed in this field. By identifying probable problems at an earlier stage in the 

development lifecycle, the review highlights the significance of defect prediction in terms of 

improving software quality and lowering development costs. It draws attention to the 

development of significant trends in defect prediction research, including the utilization of 

machine learning algorithms, feature selection techniques, and ensemble methods. The paper 

identifies several obstacles to enhance the efficiency and dependability of defect prediction 

models. These challenges include heterogeneity in the dataset, imbalanced class distribution, 

and model generalization issues. In spite of these obstacles, the review serves to illustrate that 

defect prediction has the potential to have a considerable impact on software development 

processes. Furthermore, it highlights the necessity of continuing study and innovation in this 

particular field. Considering this literature evaluation, we can identify several potential 

directions for future research. First, we need to construct reliable defect prediction models 

that can efficiently manage the heterogeneity of the dataset, the imbalanced distribution of 

classes, and other inherent issues in real-world software datasets. In order to accomplish this, 

it may be necessary to investigate novel feature selection strategies, ensemble methods, and 

hybrid approaches that incorporate a variety of data sources and modeling models. In 

addition, there is a growing interest in infusing defect prediction models with domain 

knowledge and relevant context information in order to improve the accuracy of these models 

and their application in a variety of software development scenarios. The review highlights 

the importance of benchmarking and assessment procedures to objectively compare the 

performance of various defect prediction models. In order to promote fair comparisons and 

the reproducibility of outcomes, future research should concentrate on standardized 

evaluation methods and datasets. Future work in software defect prediction has the potential 

to greatly enhance the state-of-the-art and improve the quality and reliability of software 

systems. This is due to its ability to tackle current research challenges and explore emerging 

opportunities. 
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