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This study introduces a novel deep learning classification (DLC) 
method for reconstructing high-resolution medical images, 
showcasing its superiority over traditional techniques such as 
zero-filled (ZF) and compressed sensing (CS), as well as deep 
learning regression methods with L1 (DLR-L1) and L2 (DLR-L2) 
loss functions. Unlike conventional methods, DLC generates a 
probability distribution for each pixel, allowing for the 
approximation of continuous pixel values, which effectively 
reduces quantization errors and preserves fine image details. To 
address the computational challenges of high bit-depth imaging, 
a divide-and-conquer strategy was implemented, enabling the 
DLC network to handle 16-bit images without a significant 
increase in network parameters. The DLC method's performance 
was compared to ZF, CS, DLR-L1, and DLR-L2 across scenarios 
with high acceleration factors, low signal-to-noise ratios (SNR), 
and high bit-depths. The results demonstrated that DLC 
consistently produced images with superior resolution, sharper 
edges, and better preservation of low-contrast features. 
Quantitative metrics, including structural similarity index (SSI), 
peak signal-to-noise ratio (PSNR), relative error, and mean 
squared error (MSE), further validated the DLC method’s 
superiority, particularly in noisy environments. These findings 
highlight the potential of DLC as a powerful tool in medical 
imaging, offering significant improvements in image quality and 
diagnostic accuracy across various applications. 
Keywords: Deep learning classification; High-resolution 
medical images; Probability distribution; High bit-depth 
imaging; Image quality improvement 

 
 

Introduction 
Magnetic Resonance Imaging (MRI) has revolutionized medical diagnostics and research by providing 
detailed images of internal structures without the need for ionizing radiation. The non-invasive nature 
of MRI, coupled with its ability to offer high-resolution images, has made it an indispensable tool in 
various clinical and research applications. However, the inherently slow data acquisition process 
remains a significant limitation. Extended scanning times can cause patient discomfort and increase 
the likelihood of motion artifacts, which can degrade image quality. Consequently, accelerating MRI 
acquisition has been a critical area of research since the inception of the technology. Initial 
advancements in speeding up MRI were made through the development of fast imaging sequences, 
such as echo planar imaging (EPI) and gradient echo sequences [1-2]. These rapid sequences 
significantly reduced acquisition times but introduced new challenges, such as nerve stimulation due 
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to the rapid switching of magnetic field gradients. This phenomenon, known as peripheral nerve 
stimulation, set practical limits on the acceleration achievable through these sequences. The quest for 
faster imaging without compromising safety and image quality led to the exploration of alternative 
approaches. 
A transformative development in the field was the introduction of multiple receiver channels. Initially 
intended to improve the signal-to-noise ratio (SNR) of MRI scans, multichannel systems opened the 
door to parallel imaging techniques [3-5]. These techniques take advantage of the spatially distinct 
sensitivity profiles of multiple receiver coils to reconstruct images from undersampled k-space data. 
By doing so, they significantly reduce acquisition times while maintaining high image quality. Notable 
parallel imaging methods, such as SENSE (Sensitivity Encoding) and GRAPPA (Generalized 
Autocalibrating Partially Parallel Acquisitions), have since become standard in clinical MRI practice, 
offering substantial speed improvements.  
In parallel with the development of hardware-based acceleration techniques, software-based methods 
like compressed sensing (CS) have also gained prominence [6-7]. CS leverages the inherent sparsity of 
MR images in specific transform domains, such as wavelets or total variation, to reconstruct high-
quality images from undersampled data. The core idea is to solve an optimization problem that 
enforces both data consistency and sparsity, often requiring iterative algorithms. While these methods 
are computationally intensive, advances in algorithm efficiency and hardware acceleration, such as 
GPU-based implementations, have made CS-MRI increasingly viable for clinical use [8-10]. 
The emergence of deep learning (DL) has further revolutionized MRI by introducing a new paradigm 
for image reconstruction [11-12]. Convolutional neural networks (CNNs), a popular subset of DL, have 
demonstrated exceptional performance in various imaging tasks, including image classification and 
segmentation [11-14]. In the context of MRI, DL techniques have been applied to reconstruct images 
from undersampled k-space data, effectively transforming iterative reconstruction processes into 
direct inference tasks. This shift has enabled the development of sophisticated network architectures, 
such as Unet and cascaded CNNs, which mimic traditional iterative methods [14]. Despite their 
promise, DL-based approaches face challenges related to high memory requirements and 
implementation complexity, particularly when dealing with high-resolution images. 
A novel and intriguing approach to MRI reconstruction involves the direct reconstruction of quantized 
images. Traditionally, the quantization process—where pixel intensity levels are represented using a 
fixed number of bits—occurs post-reconstruction, particularly in formats like DICOM. However, 
framing the reconstruction task as a pixel classification problem rather than a regression problem 
aligns well with the capabilities of DL classification networks. This approach can offer computational 
efficiency and enhanced noise robustness, especially in scenarios with low SNR. 
This paper focuses on leveraging a deep learning framework to address image reconstruction in MRI 
by converting the problem into a pixel classification task. The proposed method introduces a divide-
and-conquer strategy to handle high-bit precision images, specifically targeting 16-bit depth. We 
compare the performance of this pixel classification approach with traditional CS methods and DL 
regression networks, validating the framework using various datasets, including T1 and T2-weighted 
MR images. Furthermore, we explore the effect of noise on image reconstruction, providing a 
comprehensive evaluation of the proposed method's robustness and effectiveness.  
Methods 
To train and validate our deep learning (DL) models, we utilized T1 and T2 weighted 3D volumetric 
images from the publicly available IXI dataset (https://brain-development.org/ixi-dataset/). For each 
contrast, T1 and T2, a total of 250 subjects were employed for training, while 60 subjects were set 
aside for validation. The training images were created by undersampling the k-space data by a factor 
of 7 in two of the encoding directions, using a variable density undersampling pattern. This choice of 
2D undersampling, as opposed to 1D, facilitated a higher acceleration factor of 7, reducing the 
likelihood of severe artifacts that might arise from the latter. For training our networks, we used the 
Keras deep learning library with a TensorFlow backend. The Adam optimizer, initialized with a 
learning rate of 0.0001, was employed, and the learning rate was decayed by a factor of 0.96 per 
epoch. Each epoch consisted of 2500 iterations, and the total training encompassed 150 epochs. The 
model corresponding to the minimum validation loss was selected as the final trained model. We 
compared four distinct methods for MR image reconstruction from undersampled k-space data: (i) a 
compressed sensing (CS) reconstruction utilizing a wavelet and total variation (TV) penalty, (ii) a DL 
regression reconstruction with mean squared error (MSE) loss, (iii) a DL regression reconstruction 
with mean absolute error (MAE) loss, and (iv) a DL classification reconstruction with 16-bit precision. 
These models were evaluated using three experimental setups: the IXI datasets, IXI datasets with 
added noise. 
In the CS reconstruction approach, the parameters for wavelet and TV regularization were carefully 
optimized to maximize the structural similarity index (SSI). The chosen regularization parameters 
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were 0.0001 for wavelet and 0.0005 for TV. The reconstruction was performed using a nonlinear 
conjugate gradient method. For DL-based reconstructions, the final layer of the regression network 
predicted pixel values directly. In contrast, the classification network predicted the probability 
distribution for each pixel intensity, categorizing them into 256 classes. The coefficients a0 and a1 were 
computed using the network's outputs, and the final 16-bit images were obtained accordingly. 
To evaluate the impact of noise, random Gaussian noise was introduced to the undersampled k-space 
data, resulting in Rician distributed noise in the magnitude images. The performance of each 
reconstruction method under these conditions was assessed, with hyperparameters for the CS method 
re-optimized for the noisy scenario. 
Results and discussions 
The deep learning classification method generates a probability distribution for each pixel, rather than 
assigning a direct pixel value as shown in Fig. 1. In this study, DL-C Avg reconstruction technique was 
utilized which uses a weighted sum of the probability distribution to approximate continuous pixel 
values between [0,𝑀 − 1], aiming to reduce quantization errors. This is expressed as: 𝐼(𝑥) = ∑ 𝑝 × 𝑃(𝑝, 𝑥)𝑀−1𝑝=0 (1) 

where𝐼(𝑥) represents the reconstructed image and 𝑃(𝑝, 𝑥) is the probability distribution predicted by 
the DL classification network at the spatial location 𝑥 for 𝑀 = 2𝑛 classes, with n being the bit depth 
used for quantization.  

Figure 1. Probability distribution for a pixel’s quantized intensities predicted by the classification 
network. The x-axis shows quantized pixel intensities, while the y-axis displays predicted 

probabilities. Uncertainty is represented by the 95% confidence interval around the mean values. 
 
We design an encoder-decoder Unet architecture with skip connections (Fig. 2), tailored to predict the 
probability distribution of each pixel's intensity in the artifact-free image. The network is similar for 
both regression and classification tasks, except for the final layer and the loss function used. The 
regression network minimizes the mean absolute error between the predicted and target images, while 
the classification network uses softmax activation and cross-entropy loss to predict class probabilities. 
The network architecture's memory requirements grow exponentially with increasing bit-depth. For 
an n-bit unsigned integer, the dynamic range is [0,2𝑛 − 1]. To predict the probability of each pixel 
intensity using the proposed classification approach, 2𝑛output channels are needed. This can be 
impractical for high bit-depth images due to the large number of required channels (65,536 channels 
for 16-bit depth), posing challenges in terms of physical memory and the risk of overfitting due to the 
sheer number of parameters. To address this, a divide-and-conquer strategy was incorporated in this 
study, splitting the original problem into smaller, more manageable sub-problems. These sub-
problems are then solved independently, with their solutions combined to reconstruct the final high 
bit-depth image. The novel network architecture designed around this strategy allows for the 
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prediction of higher bit-depth images without a significant increase in learnable parameters. 
Specifically, the approach involves decomposing an n-bit integer (N) into a linear combination of two 
n/2- bit integers: 𝑁 = 2𝑛2𝑎0 + 𝑎1; ∀𝑎0, 𝑎1 ∈ [0, 2𝑛2 − 1](2) 

The network is adapted to predict both 𝑎0and 𝑎1which are then used to compute N. This approach 
minimizes the increase in the number of parameters, making it feasible to apply the proposed method 
to higher bit-depth images. 

 
Figure 2.  Network architecture for 16-bit classification, where the Unet outputs two 256-channel 
predictions (𝑎0and 𝑎1) for the probability distributions of two 8-bit values. These distributions are 

combined to determine the final pixel value using Eq. 2. 
 
We compared five distinct reconstruction techniques for an acceleration factor of 6. The methods 
include ZF (zero-filled reconstruction), where absent k-space lines are substituted with zeros and the 
image is reconstructed via Fourier transform; CS (compressed sensing reconstruction) utilizing total 
variation and wavelet regularizations; DLR-L2 (deep learning regression reconstruction) with a 
network trained using mean squared error; DLR-L1 (deep learning regression reconstruction) with a 
network optimized using mean absolute error; and DLC (deep learning classification reconstruction), 
which operates on 16-bit images. It is important to note that separate networks were trained for T1 
and T2 weighted images. Figure 3 presents the reconstructed images for T1 and T2 weighted 
sequences, comparing zero-filled (ZF), compressed sensing (CS), deep learning regression with L2 loss 
(DLR-L2), deep learning regression with L1 loss (DLR-L1), and the deep learning classification (DLC) 
approaches. These reconstructions were derived based on Eqs. 1 and 2. It is evident from Fig. 3 that 
the compressed sensing reconstruction (CS) displays a reduction in resolution and suffers from 
blurred edges, as highlighted by the enlarged image sections. The DLR-L2 method also exhibited 
resolution loss and blurred edges, whereas the DLR-L1 reconstructions struggled to recover low-
contrast features, leading to their attenuation. As shown by the black arrow in Fig. 2, the DLC 
reconstruction provided better delineation between white and gray matter, resulting in higher 
resolution and sharper edges. This was in contrast to the other methods, where low-contrast features 
were less distinctly recovered. The DLC network’s superior performance is further supported by 
quantitative metrics, including the structural similarity (SSI) index, peak signal-to-noise ratio (PSNR), 
relative error, and mean squared error (MSE), as shown in Table 1. 
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Figure 3.  Comparison of T1 and T2 weighted image reconstructions using Zero-Filled (ZF), 

Compressed Sensing (CS), DL-Regression with L2 loss (DLR-L2), DL-Regression with L1 loss (DLR-
L1), and DL-Classification (DLC) methods. 

 
 

Table 1. Performance metrics for T1 and T2 weighted images. 
 Structural 

Similarity 
Index (SSI) 

Peak Signal-to-
Noise Ratio 
(PSNR) 

Relative Error  Mean Squared 
Error (MSE) 

Quantitative Metrics for T1 weighted images 
CS 0.938 31.22 0.0498 7.924e-4 
DLR-L2 0.942 32.33 0.0492 6.721e-4 
DLR-L1 0.954 32.55 0.0481 6.311e-4 
DLC 0.957 33.43 0.0455 6.021e-4 
Quantitative Metrics for T2 weighted images 
CS 0.962 32.13 0.0522 7.122e-4 
DLR-L2 0.974 33.84 0.0432 5.711e-4 
DLR-L1 0.978 34.55 0.0411 4.231e-4 
DLC 0.983 34.83 0.0402 4.122e-4 

 
When working with low-field strengths, where the signal-to-noise ratio (SNR) is inherently lower, we 
tested the robustness of the DLC and DLR networks by introducing Gaussian noise to the dataset. This 
noise, complex in nature with both real and imaginary components drawn from a Gaussian 
distribution, was added to the undersampled k-space data, resulting in a peak SNR of approximately 
18.0 dB. Figure 4 illustrates the outcomes of image reconstructions for both T1 and T2 weighted 
images, where Gaussian noise has been introduced. The comparison includes reconstructions using 
zero-filled (ZF), compressed sensing (CS), deep learning regression with L2 loss (DLR-L2), deep 
learning regression with L1 loss (DLR-L1), and the deep learning classification (DLC) methods, 
computed according to Eqs. 1 and 2. The CS method was notably impacted by the noise, leading to 
excessive blurring and patchy artifacts in the reconstructed images, as evident from Fig. 4. The deep 
learning regression networks (DLR-L2 and DLR-L1) fared better but still showed a significant loss of 
low-contrast features under noisy conditions. Conversely, the DLC classification network 
outperformed the others, delivering images with crisper edges and effectively mitigating the noise’s 
impact. This superior performance is reflected in the quantitative scores for both T1 and T2 weighted 
images, as detailed in Table 2. Among these techniques, the DLC network was the most resilient to 
noise. Specifically, for T1-weighted images, the SSI score for the DLC method dropped by only 2.5 %, 
compared to declines of 3.1 %, 3 %, and 5.6 % for DLR-L1, DLR-L2, and CS, respectively. 
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Table 2. Performance metrics for T1 and T2 weighted images in presence of Gaussian noise. 

 Structural 
Similarity 
Index (SSI) 

Peak Signal-to-
Noise Ratio 
(PSNR) 

Relative Error  Mean Squared 
Error (MSE) 

Quantitative Metrics for T1 weighted images under Gaussian noise 
CS 0.882 27.88 0.0721 1.621e-3 
DLR-L2 0.912 28.09 0.0645 1.311e-3 
DLR-L1 0.923 28.44 0.0632 1.291e-3 
DLC 0.932 29.99 0.0611 1.124e-3 
Quantitative Metrics for T2 weighted images under Gaussian noise 
CS 0.939 29.22 0.0623 1.239e-3 
DLR-L2 0.962 30.98 0.0512 6.731e-4 
DLR-L1 0.968 30.12 0.0542 7.931e-4 
DLC 0.974 31.92 0.0482 6.222e-4 

 
Figure 4. Reconstruction results for T1 and T2 weighted images with added Gaussian noise, 

comparing Zero-Filled (ZF), Compressed Sensing (CS), DL-Regression with L2 loss (DLR-L2), DL-
Regression with L1 loss (DLR-L1), and DL-Classification (DLC) methods. 

 
These results highlight the effectiveness of the deep learning classification (DLC) method for 
reconstructing high-resolution medical images, particularly in the presence of noise. The DLC 
method, which outputs a probability distribution for each pixel rather than a direct pixel value, 
demonstrates significant advantages over traditional reconstruction methods like zero-filled (ZF) and 
compressed sensing (CS), as well as deep learning regression approaches with both L1 (DLR-L1) and 
L2 (DLR-L2) loss functions. The comparison of the five reconstruction methods—ZF, CS, DLR-L2, 
DLR-L1, and DLC-L2 revealed several key insights into the performance and limitations of each 
technique. The ZF method, while computationally simple, results in the lowest quality reconstructions 
due to its inability to effectively handle missing k-space data, leading to severe aliasing artifacts. The 
CS method, which applies regularization techniques like total variation and wavelet transforms, 
improves upon ZF but still suffers from a loss of resolution and blurring of edges. This outcome is 
consistent with the known limitations of CS in scenarios with high acceleration factors, where the 
regularization may overly smooth the image, leading to the suppression of fine details. The deep 
learning regression methods (DLR-L2 and DLR-L1) offer a marked improvement over ZF and CS by 
learning the mapping from undersampled k-space to fully sampled images. However, the choice of 
loss function significantly impacts the quality of the reconstructed images. The DLR-L2 method, 
which minimizes the mean squared error, tends to blur low-contrast features and edges, likely due to 
the inherent bias of the L2 loss function towards minimizing large errors, which can lead to overly 
smooth reconstructions. On the other hand, the DLR-L1 method, which minimizes the mean absolute 
error, performs better in preserving edges but still struggles with low-contrast areas. This is likely 
because the L1 loss, while less sensitive to outliers, can still lead to artifacts in regions where subtle 
intensity variations are crucial. In contrast, the DLC method excels in reconstructing images with high 
resolution and sharp edges, as evidenced by the superior delineation of white and gray matter. The 
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probabilistic nature of DLC allows it to more effectively capture the full range of pixel intensities, 
reducing quantization errors and preserving finer image details. This is particularly important in 
medical imaging, where the accurate depiction of subtle tissue differences is critical for diagnosis and 
treatment planning. The quantitative metrics further support the superiority of DLC, with higher 
structural similarity (SSI) indices and peak signal-to-noise ratios (PSNR), and lower relative errors 
and mean squared errors (MSE). These results underscore the potential of DLC for high-quality image 
reconstructions, even in challenging scenarios with high acceleration factors.  
The robustness of the reconstruction methods in the presence of Gaussian noise was also examined, 
particularly relevant for low-field strength imaging where the signal-to-noise ratio (SNR) is inherently 
lower. The addition of noise significantly degraded the performance of the ZF and CS methods, with 
CS particularly affected, resulting in excessive blurring and patch-like artifacts. The DLR methods also 
showed a decline in performance, with a notable loss of low-contrast features, which are critical in 
medical imaging for distinguishing between different tissue types. Remarkably, the DLC method 
maintained its high performance even under noisy conditions. The probabilistic approach of DLC, 
combined with its robust network architecture, allowed it to effectively filter out the noise while 
preserving important image features. This is evidenced by the relatively small decrease in SSI scores 
for DLC compared to the other methods, particularly in T1-weighted images. The DLC's ability to 
reconstruct sharper images with reduced noise impact suggests it is particularly well-suited for low-
SNR environments, such as low-field MRI or fast imaging protocols where noise is more pronounced.  
This study also addresses the challenges associated with high bit-depth imaging, which is becoming 
increasingly important as imaging technologies evolve to provide greater detail and dynamic range. 
The proposed divide-and-conquer strategy, which decomposes the problem into smaller sub-problems 
by splitting an n-bit number into two n/2-bit numbers, proves effective in managing the memory and 
computational demands of reconstructing high bit-depth images. This approach enables the DLC 
method to handle 16-bit images without a prohibitive increase in the number of network parameters, 
making it a practical solution for high-resolution medical imaging. The success of the DLC method in 
both high bit-depth imaging and noise robustness suggests that it could be a valuable tool for a wide 
range of medical imaging applications, from routine diagnostic imaging to more specialized scenarios 
where high image quality is paramount. The ability to accurately reconstruct images with minimal 
artifacts and noise, while also handling the demands of high bit-depth, positions the DLC method as a 
leading candidate for next-generation medical image reconstruction. 

Conclusion 
In summary, the deep learning classification method demonstrates clear advantages over traditional 
and deep learning regression methods in reconstructing high-quality medical images, particularly in 
challenging scenarios involving high acceleration factors, low SNR, and high bit-depths. The 
probabilistic nature of DLC, combined with innovative strategies to manage computational 
complexity, enables it to deliver superior image quality with sharp edges, preserved low-contrast 
features, and robustness to noise. These findings highlight the potential of DLC as a powerful tool for 
advancing medical imaging technologies, providing clinicians with more accurate and reliable images 
for diagnosis and treatment planning. 
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