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ARTICLE INFO      ABSTRACT 

The growing inclusion of renewable energy utilities into the national 

energy system grid presents an ever-increasing need for a high level 

of quality in output power injected into the grid. The need for grid 

expansion to include wind energy renewables requires accurate 

forecasts of the power quality. The country’s grid operator needs 

real-time accuracy to stabilize and monitor the grid capacity and load 

demands continuously. The industry currently uses tools to predict 

the wind energy production power curve. computational intelligence 

techniques are needed to evaluate the availability of this energy 

beforehand, due to the variable and unpredictable nature of the wind 

behaviour. The purpose of this work is to highlight the current 

research conducted and associated gaps in the field of renewable 

wind power production forecasting techniques using Machine 

Learning as a tool to predict the power quality on the national grid. 

The Preferred Reporting Items for Systemic Review and Meta-

Analysis (PRISMA 2020) protocol guides the study. The study drew 

from several literature sources, most of which focused on forecasting 

wind power output. The keywords below and Boolean operators 

were used in our search criteria in Google Scholar, Web of Science, 

and IEEE Explore. Section II details the exclusion and inclusion 

criteria employed in this work. There is more research and study that 

needs to be conducted around machine learning and deep learning 

algorithms in the wind industry-particularly around forecasting 

techniques that aim to predict the quality of power generated by wind 

power plants. The results also show that there are available public 

datasets. The restriction of this study is the English language papers, 

forecasting, variable power generation, wind energy, and renewables 

power quality applications. 
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INTRODUCTION 

 

The Global Wind Energy Council (GWEC) is forecasting that the worldwide wind-installed 

capacity is to be over 640 GW in the next five years (2023-27) [1]. This growing market will 

have a significant impact on power systems developers and maintainers. Institutions of higher 

learning and research centres are presented with the need to teach and understand this technology 

in more depth and various applications and connections [2]. The complexity of integrating 

these energy mixes onto a national grid, looking at the positive and negative effects, modern and 

cost-effective wind energy projects, and their reliability during their life cycle [2, 3]. 

Wind power and other distributed generation renewable energy sources like photovoltaic (PV) 

systems can be connected to the grid or remain unconnected to the grid (stand- alone systems) 

[4, 5,]. Wind power generation is one of the most attractive renewable power generation 

technologies [6]. To prevent power fluctuations of wind power due to their intermittent nature 

(weather conditions variations), some form of reliable additional energy or energy storage is 

generally needed [4, 5, 6, 7]. Battery bank systems for energy storage are typically used for 

this. This additional energy slightly increases the reliability and flexibility of generated power, 

to compensate for the wind power’s intermittent nature. 

The connection of a wind power plant to the grid needs to be in line with the national grid code 

of the country. The grid code specifies the power quality that is expected to be injected by the 

wind generators into the nation's system [6,8]. 

The South African grid code requires the Renewable Power Plants (RPP) to monitor and report 

on power quality using an IEC 61000-4-30 Class A power quality monitoring device. The 

parameters highlighted in line with power quality as stipulated in the code are flicker, 

harmonics, and unbalanced voltages. Voltage and current quality distortion levels emitted by 

the power plants must not exceed a set limit as determined by the Network Service Provider 

(NSP) [6,8]. The paper will review machine learning techniques and applications in the 

renewable industry. The scope of applications to be covered is limited to forecasting techniques 

employed in wind generation technology. The paper aims to identify research progress in the 

renewable energy field and highlight potential datasets that can be used for further research 

purposes. 

 

Figure 1 below illustrates a typical power-wind speed curve of a wind turbine. 

 

 

 

Figure 1. The idealized wind power curve (adapted from [4]). 
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METHODOLOGY 

 

The PRISMA 2020 guidelines, checklist, and flowchart served as the base for us on how to 

conduct this systemic review. The following subtopics are covered in this section: eligibility 

criteria, information sources, search strategy, selection procedure, data collection procedure 

and data items, bias assessment and reporting, and synthesis method. 

 

2.1 Eligibility Criteria 

We initially conducted a random selection of studies from reputable scholarly databases. To 

ensure data integrity, we imported the Research Information Systems (RIS) files of these 

studies into Zotero, and VOSviewer where we diligently checked for any potential 

duplications. Additionally, Zotero played a pivotal role in amalgamating data files sourced from 

various databases. Any files identified as duplicates were systematically eliminated from our 

dataset. 

Subsequently, we embarked on a rigorous process of identifying literature that harmonized 

with our research objectives. The initial step involved screening the abstracts of these identified 

studies. Our approach to screening was a collaborative effort involving two independent 

reviewers who meticulously assessed the literature. Any inconsistencies were subject to 

thorough discussion until a unanimous consensus was reached. 

Our inclusion or exclusion criteria were based on the following key questions: 

a) Does the study align with the specific objectives of our research? 

b) Is the study presented in the English language? 

c) Does the study primarily address ML algorithms in wind energy? 

d) Does the study delve into topics related to forecasting techniques using ML, particularly on 

wind power plants? 

e) How does the quality of the study measure up? 

      In our evaluation of the literature's quality, we posed the following critical questions: 

a) Is the study's primary aim clearly articulated? 

b) Does the presented evidence substantiate the study's findings adequately? 

c) Do the study's outcomes align with its stated objectives? 

d) How well-structured is the overall presentation of the research? 

 

To ensure the relevance and timeliness of our findings, we specifically focused on reviewing 

published studies within the timeframe of 2004 to 2023. This approach not only enhanced the 

quality of our findings but also enabled us to gauge the advancements made within the subject 

matter. Studies failing to meet the criteria outlined above were excluded from our analysis, 

while those satisfying the criteria were thoughtfully incorporated into our study. 

 

2.2 Information Sources 

We analyze in the review, the documents published for electric power forecasting contained in 

SCOPUS, Web of Sciences, Science Direct, Multidisciplinary Digital Publishing Institute 

(MDPI), and the Institute of Electrical and Electronics Engineers (IEEE), according to the 

criteria shown in Figure 2 and following the steps of the PRISMA methodology [9]. 

We sourced our literature from reputable and credible sources, including Google Scholar, Web 

of Science, and IEEE Xplore. It's important to note that due to subscription constraints, we 

were only able to access abstracts from IEEE Xplore and Google Scholar. Despite this 

limitation, we successfully identified and collected several pertinent publications from these 

sites. 
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Figure 2. Search methodology for information sources [9]. 

 

Our data collection process concluded in November 2023, representing the latest available 

information from these databases. 

 

2.3 Search Strategy 

We systematically conducted literature searches by employing a specific pattern. To identify 

relevant studies, we utilized a set of keywords and Boolean operators, including "Forecasting 

power," "Wind generation”, "Deep Learning”, "Machine Learning in Renewables," 

"Power Quality in Renewables," and "Grid code wind parameters." These search terms 

were carefully chosen to encompass a wide spectrum of related literature. 

Additionally, we applied an English language filter to ensure our focus on studies written in 

the English language, thus enhancing the relevance and accessibility of the literature. 

 

2.4 Selection Process 

Our literature search yielded 368 potential papers from the designated sources, with Google 

Scholar contributing the most (244) and MDPI the least (15). After removing duplicates (43) 

and screening abstracts (271), we retrieved 105 full-text articles for further assessment. Based 

on our defined eligibility criteria, we ultimately included 87 studies in our final dataset. Fig.3 

below details the selection process and our specific inclusion/exclusion criteria. 

 

 

Figure 3. PRISMA 2020 inclusion and exclusion flow diagram (edited). 

 

The collected data for each application and the number of data items for each application are 

illustrated in Fig.4 below 
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2.5 Data Collection Process And Data Items 

 
Figure 4. Number of reviewed papers for each application and the publicly available dataset. 

 

To ensure methodological rigor, we employed a two- reviewer screening process with 

independent literature selection followed by consensus discussions to resolve any 

discrepancies. While we primarily relied on credible databases for literature mining, 9 

abstracts were included despite limited access. We recognize that this inclusion may introduce 

potential bias and influence the generalizability of our findings. Therefore, we ultimately 

narrowed the review to 9 out of the initial 87 studies identified. 

 

2.6 Synthesis Method 

We leveraged histograms as a key tool in our qualitative examination of study objectives. By 

visually exploring the distribution of data from individual applications and publicly available 

datasets, we were able to identify patterns and trends that might have been obscured by 

traditional numerical analysis. This is illustrated below. 

 

 
Figure 5. Frequency chart illustrating the number of articles on ML and deep DL within the 

energy systems domain (adapted from [9, 10]). 
 

This trend, particularly pronounced since 2012, is fueled by the growing sophistication of DL 

techniques and their potential to tackle complex energy challenges with unprecedented 

accuracy and efficiency. As ML and DL continue to infiltrate the field, their impact on analysis, 

optimization, and ultimately, the future of energy systems, promises to be immense [10, 11]. 
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Figure 6. Number of reviewed papers and their respective year of publication. 

 

LITERATURE REVIEW 

 

3.1 An Overview of Studies Focusing on ML-Based Forecasting in Renewable Energy 

The exponential growth of ML research in energy systems, showcased in Figure 5, speaks 

volumes about its rapidly escalating significance. Figure 7, generated using VOSviewer 

software, presents a visual representation of the interconnectedness of various subfields within 

energy systems through their association with ML and DL [10]. 

The diameter of each circle corresponds to the frequency of its associated keyword, with larger 

circles indicating greater occurrence in the analyzed articles. An interesting observation 

emerges within the realm of energy-related AI research, the terms "machine learning" and 

"deep learning" appear more frequently than "artificial intelligence" itself. This may be 

attributed to the software's focus on keyword prominence within published articles, leading to 

a smaller diameter for the broader term ("artificial intelligence") compared to its more specific 

subfields ("machine learning" and "deep learning") [10]. 

It is crucial to note that VOSviewer specializes in constructing and visualizing bibliometric 

networks, providing insights into the relationships between research areas based on textual 

analysis [10]. 

 

 
Figure 7. Diverse facets of ML and DL within the domain of energy systems (adapted from 

[10].) 
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A critical review of the extant literature in this field reveals that most applications typically 

rely on a confined subset of approximately 10 well-established ML algorithms [10, 12]. 

While these algorithms have demonstrably yielded effective results, a potential deficit in terms 

of creative exploration and algorithmic innovation is apparent. This observation suggests a 

promising avenue for future research: investigating the applicability of a more diverse repertoire 

of ML and DL algorithms, including techniques such as Convolutional Neural Networks 

(CNNs) and Long Short- Term Memory (LSTM) networks [10, 12]. 

Further research should not only focus on expanding the algorithmic toolbox but also delve 

into more imaginative applications of ML and DL within energy systems. This includes 

exploring areas with seemingly indirect yet potentially impactful applications [10]. 

 

Table 1 below provides a comprehensive overview of various ML and DL algorithms 

commonly utilized in power systems applications. It systematically contrasts their advantages 

and disadvantages across diverse scenarios, enabling informed selection of the most suitable 

technique for specific tasks within the power domain [13]. 

 

Table 1. ML/DL Techniques Pros & Cons Overview Table (adapted from [13]) 

Technique Pros Cons Applications 

Recurrent 

Neural 

Network 

(RNN) 

The system can 

process sequential 

data and time series 

data, and it can 

handle long-term 

dependencies. 

Prone to overfitting, 

slow training, and may 

suffer from vanishing or 

exploding gradients. 

Energy price 

forecasting (time 

series), speech 

recognition, and 

sentiment analysis 

LSTM 

The model can 

effectively manage 

long-term 

dependencies, 

making it 

particularly valuable 

for analyzing time 

series data. 

Prone to overfitting and 

may require careful 

tuning. 

Time series, speech 

recognition, natural 

language processing, 

load forecasting, and 

energy price 

forecasting (time 

series) 

Autoencoders 

Can reduce 

dimensionality and 

noise in data and it 

can be used for 

unsupervised 

learning 

Large amounts of data 

are required, and 

interpretation can be 

challenging. 

Anomaly detection, 

image, and speech 

recognition 

Extreme 

Learning 

Machine 

(ELM) 

Fast training; 

capable of handling 

large datasets. 

Models with limited 

interpretability may not 

generalize well to new 

data. 

Renewable energy 

forecasting, image 

and speech 

recognition, 

predictive analytics 

General 

Regression 

Neural 

Network 

(GRNN) 

Fast training and 

capable of handling 

noisy data. 

It is limited to regression 

tasks and may not scale 

well with large datasets. 

Renewable energy 

forecasting, time 

series prediction, and 

function 

approximation 
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Rotated Binary 

Neural 

Network 

(RBNN) 

It is effective for 

non-linear regression 

and classification 

tasks 

It requires careful tuning 

of network architecture 

and hyperparameters 

Image and speech 

recognition, anomaly 

detection 

 

Table 1 cont. ML/DL Techniques Pros & Cons Overview Table (adapted from [13]) 

Technique Pros Cons Applications 

Wavelet 

Neural 

Network 

(WNN) 

Capable of handling 

multi-resolution and 

multi-scale data 

Careful selection of 

wavelet basis 

functions is 

necessary, but this 

process can be 

computationally 

expensive. 

Image and signal 

processing, time series 

prediction 

Adaptive 

Neuro-Fuzzy 

Inference 

System 

(ANFIS) 

Capable of handling 

uncertainty and non-

linearity in data 

Careful selection 

and tuning of fuzzy 

rules and can be 

computationally 

expensive 

Control systems, fault 

diagnosis 

Deep Belief 

Network 

(DBN) 

Able to learn 

hierarchical 

representations of 

data, which is 

effective for 

unsupervised learning 

Large amounts of 

data are required 

and interpreting it 

can be challenging. 

Image and speech 

recognition, natural 

language processing 

Ensemble 

Learning 

Able to improve 

performance and 

reduce overfitting by 

combining multiple 

models 

Can be 

computationally 

expensive and may 

require careful 

tuning 

Renewable energy 

forecasting, image and 

speech recognition, and 

natural language 

processing 

Transfer 

Learning 

Capable of leveraging 

pre-trained models to 

improve performance 

and require less data 

The model may not 

perform well on 

new data and is 

limited to similar 

tasks. 

Applications in 

Forecasting, Diagnostics, 

Recognition, and NLP 

Linear 

Regression 

Easy to implement, 

quick training 

Limited to linear 

relationships 
Predictive analytics 

Logistic 

Regression 

Easily understandable 

and performs 

effectively with small 

datasets. 

Supposes linearity, 

It only applies for 

classification 

Predict power outages, 

classify extreme weather 

events, market, and 

healthcare 

Decision Trees 

Understandable, can 

handle both 

categorical and 

continuous data 

Prone to overfitting 
Predictive maintenance, 

finance 
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Table 1 cont. ML/DL Techniques Pros & Cons Overview Table (adapted from [13]) 

Technique Pros Cons Applications 

Random Forest 
High accuracy, less 

prone to overfitting 

Computationally 

expensive 

compared to DT, 

difficult to interpret 

Operation control 

strategy, image 

classification, and fraud 

detection 

Support Vector 

Machines (SVM) 

Capable of 

handling high-

dimensional data, 

can handle non-

linear relationships, 

robust to noise 

This process is 

computationally 

intensive and 

requires careful 

parameter tuning. 

Text classification, 

bioinformatics 

K-means 

clustering 

Simple and fast, 

useful for data 

exploration and 

segmentation 

Requires a pre-

determined number 

of clusters and can 

be sensitive to 

initial conditions 

Market segmentation, 

image segmentation 

Principal 

Component 

Analysis (PCA) 

Able to reduce 

dimensionality and 

noise in data, 

useful for data 

exploration and 

visualization 

The information 

may not cover 

everything and 

could be hard to 

understand. 

Image and speech 

recognition, natural 

language processing 

Reinforcement 

Learning 

Can learn through 

trial and error, 

useful for decision-

making in dynamic 

environments. 

Requires a lot of 

data and can be 

prone to overfitting 

Game playing, robotics 

Artificial Neural 

Networks (ANN) 

The system can 

understand intricate 

connections, 

process extensive 

datasets, and 

represent non-

linear relationships. 

Requires large 

amounts of data 

and can be difficult 

to interpret 

Predict energy demand 

(stationary), energy 

resource forecasting, 

image recognition, and 

speech recognition 

CNN 

Highly effective 

for image analysis, 

it can learn features 

automatically 

Needs a lot of data, 

is computationally 

expensive, not 

suitable for low 

spatial or temporal 

resolutions 

Object detection, image 

classification, and 

predicting energy 

demand based on 

satellite images of areas 

 

As the surge of renewable sources continues, precise predictions are becoming imperative for 

efficient energy management strategies. This review comprehensively surveys extant 

literature, encompassing both journal articles and conference proceedings, to provide an in-

depth understanding of the present state of machine learning-based forecasting in renewable 

energy. 
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3.2 Wind Energy Forecasting: 

Due to the inherent non-linearity and stochastic nature of wind energy, characterized by 

unpredictable fluctuations and uncontrollable behaviour, accurately predicting its output 

remains a significant challenge. This necessitates the development of efficient and robust 

forecasting models to ensure consistent power generation from wind sources [14, 15, 16, 17]. 

 

3.2.1 Categorization of Wind Power Forecasting 
Research in wind power forecasting can be broadly categorized based on the predicted 

time horizon: 

 

i. Short-term Wind Power Forecasting 

This category focuses on predicting wind power for relatively short periods, typically ranging 

from one hour to several consecutive days [18]. These techniques are crucial for operational 

tasks in power grid management, such as scheduling energy resources and maintaining a stable 

electricity supply [19, 20]. 

 

ii. Long-term Wind Power Forecasting 

This category extends the prediction scope to longer timescales, often ranging from a few days 

to a year [18, 19]. Such forecasts are vital for strategic planning in the energy sector, including 

capacity expansion, market participation, and investment decisions. 

 

3.2.2 Methodological Approaches 
Wind energy forecasting encompasses a diverse range of techniques and models, each catering 

to the specific challenges and requirements of their respective time horizons [21]. These 

methodologies can be classified into various categories, such as: 

 

i. Statistical Models 

These leverage historical wind data and relevant meteorological parameters to establish 

statistical relationships and predict future power output. Common examples include 

autoregressive models, time series analysis, and statistical learning algorithms [22, 18]. 

 

ii. Historical Data Analysis 

This approach involves a comprehensive examination of extensive historical meteorological 

datasets, encompassing wind speed, direction, atmospheric pressure, and other relevant 

variables. The primary objective is to uncover patterns, trends, and seasonal variations within 

this data that can inform future wind predictions [23, 24]. 

• Time Series Analysis: This is a commonly employed statistical technique for analyzing 

historical data series. It involves decomposing the data into components like trend, 

seasonality, and random fluctuations to understand underlying patterns and forecast future 

values [25]. 

• Regression Analysis: This technique establishes relationships between wind speed and 

other meteorological variables, such as temperature, pressure, and humidity. By identifying 

these relationships, regression models can predict wind speed based on forecasted values 

of the associated variables [26, 27]. 

• Anemometer Data Analysis: Focuses on using real-time data collected from on-site 

anemometers, which measure wind speed and direction at the specific location of a wind 

farm. This high-resolution data enables short-term wind forecasting and plays a crucial role 

in operational decision-making [28-29]. 

Advanced statistical techniques to analyze anemometer data effectively, such as techniques 

like time series analysis, machine learning algorithms (MLA), and ANN are often employed. 
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These methods can extract complex patterns and relationships within the data to generate 

accurate short-term wind forecasts [20, 23, 30, 31, 32]. 

 

3.2.3 Physical Models 

These rely on Numerical Weather Prediction (NWP) models to simulate atmospheric dynamics 

and generate forecasts of wind speed and direction. These forecasts are then translated into 

predicted power output using wind turbine power curves [30]. 

 

i. Wind Flow Models 
These models apply mathematical and physical principles to simulate the behaviour of wind 

flow across a designated geographical area.  Computational Fluid Dynamics (CFD) techniques 

are often central to this approach, offering high-steadiness simulations of the intricate 

interactions between wind, terrain features, and atmospheric conditions like turbulence and 

temperature gradients [13,33] The resulting wind resource maps assist in assessing potential 

wind farm locations, optimizing turbine layout, and minimizing environmental impacts [13]. 

 

ii. Wake Models 

These models focus on the wake effect, where the upstream turbine's flow disruption impacts 

the wind speed and power output of downstream turbines. By incorporating wake models, wind 

farm developers can accurately estimate the power production reduction in downstream 

turbines, enabling optimal turbine placement and maximizing overall energy generation [13, 

34]. 

 

3.2.4 Hybrid Models 

While individual forecasting methods have their strengths and limitations, hybrid models offer 

a promising approach. These models combine elements from statistical and physical 

approaches, effectively leveraging the strengths of each while mitigating their weaknesses. This 

harmonious approach often results in more robust and accurate forecasts, particularly for longer 

lead times [12, 35, 36, 32]. Several hybrid techniques have emerged in recent years, each 

offering unique advantages: 

 

i. Ensemble Forecasting 

This technique involves running multiple simulations with slight variations in initial 

conditions. The resulting spread of outcomes provides a valuable quantification of forecast 

uncertainty, enhancing decision-making even amidst inherent complexities [25, 37-38]. 

 

ii. Machine Learning Approaches 
MLAs hold significant promise for unlocking hidden patterns and relationships within wind 

data. Some prominent examples include: 

ANNs: These algorithms, inspired by the human brain, excel at learning complex non-linear 

relationships between input features (meteorological variables) and wind power output. ANNs 

can effectively capture intricate dependencies and capture hidden patterns within data, leading 

to robust predictions [39, 40]. 

SVMs: leverage powerful algorithms to classify and predict wind speed or power production 

based on historical data. They are particularly adept at handling high-dimensional data and can 

deliver accurate forecasts, especially in situations with complex influencing factors [40]. 

Random Forests and Ensemble Methods: These techniques combine predictions from 

multiple decision trees, resulting in improved overall accuracy and robustness. This approach 

is particularly beneficial in the presence of uncertainties and complex data structures, further 

enhancing the reliability of wind energy forecasts [41,42]. 
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3.2.5 Integration of Remote Sensing Technologies: 

The incorporation of data from remote sensing technologies like Lidar (Light Detection and 

Ranging) and Sodar (Sonic Detection and Ranging) systems adds another layer of valuable 

information to wind forecasting models. These systems measure wind characteristics at various 

altitudes, providing an enhanced understanding of wind dynamics and improving the accuracy 

of predictions, especially for longer lead times [43, 44]. 

By embracing hybrid models and integrating diverse data sources, wind energy forecasting 

continues to evolve toward greater accuracy and reliability. This advancement contributes 

significantly to optimizing renewable energy integration, enhancing grid stability, and paving 

the way for a sustainable energy future [31, 45, 46]. 

 

3.2.6 Further Development 

Forecasting wind energy remains a dynamic field of research, marked by sustained endeavours 

to enhance the accuracy, reliability, and lead time of prediction models. This ongoing research 

bears substantial implications for optimizing the integration of renewable energy, fortifying 

grid stability, and fostering a sustainable energy future. Wind energy forecasting often embraces 

a blended approach involving various methods, acknowledging that a multifaceted strategy 

can enhance the precision and reliability of predictions. The choice of a specific method 

depends on factors such as the forecasting scope, data availability, and the unique 

characteristics of the wind farm [13, 47]. 

 

3.3 Studies that Employ MLAs for a Distinct Set of Wind Energy Forecasts 

ML and DL have significantly propelled the field of renewable energy forecasting, but 

challenges remain for further advancement. These challenges pertain to crucial factors 

influencing model accuracy, such as the choice of ML/DL algorithms, the selection of 

appropriate input data, and the effective handling of missing data [13]. 

Additionally, the development of robust and interpretable models is crucial for providing 

valuable insights into the intricate factors that impact renewable energy generation, ultimately 

fostering deeper understanding and improved forecasting capabilities. 

ML techniques extend their capabilities beyond forecasting to optimizing the management of 

renewable energy systems. By predicting generation patterns, these techniques enable 

enhanced efficiency and effectiveness in these systems [13]. 

Recognizing the diverse strengths and weaknesses of different MLAs, researchers categorize 

them into three primary groups: supervised learning, unsupervised learning, and reinforcement 

learning [13, 45]. 

 

3.3.1 Supervised Machine Learning: Guiding Models with Labeled Data 

Within the realm of ML, supervised learning stands as a fundamental approach that empowers 

algorithms to learn from meticulously labeled data. In this paradigm, the training dataset 

consists of carefully curated input-output pairs, where the input represents the data the model 

will learn from, and the output signifies the desired outcome or target value [13, 48].   

This structured approach enables the model to discern patterns and relationships within the 

data, subsequently applying these insights to make predictions or classifications on new, unseen 

data.  Supervised learning encompasses two primary subcategories, each with distinct 

purposes: 

 

i. Regression 

Algorithms within this category excel at predicting continuous numerical values.  Examples 

include forecasting wind power generation levels, estimating energy consumption patterns, or 

predicting the degradation rate of solar panels [25,27]. 
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ii. Classification 

Algorithms in this domain focus on predicting discrete categories or classes. Applications in 

renewable energy might involve classifying the operational status of wind turbines (active 

or idle), identifying anomalies in energy consumption data, or detecting faults within solar 

panel systems [49, 50]. 

These subcategories are illustrated in the figure below. 

 

 
Figure 8. MLAs, their Categories, and Types (adapted from [13]). 

 

iii. Forecasting Based on ANN and Least Squares (LS) -SVM: 

 SVM for Fault Identification in Power Transformers: Effective Fault Classification: 

SVMs demonstrate significant potential for accurately identifying various faults in power 

transformers, including energy discharge, partial discharge, and thermal faults, based on 

Dissolved Gas Analysis (DGA) data [40,51]. 

 Superior Performance: SVMs have outperformed other classification techniques, such as 

Genetic Algorithms (GAs), Fuzzy Logic (FL), and Back Propagation (BP) algorithms, 

highlighting their efficacy in this domain [40]. 

 Kernel Optimization: Employing kernel function estimation and radial basis function 

computation enhances the classification accuracy of SVMs, contributing to their overall 

effectiveness [38, 40]. 

 LS-SVM with Wavelet Decomposition (WD) for Wind Power Prediction:  Complex 

Terrain Performance: An example would be a comparative study evaluating the 

performance of LS-SVMs combined with WD for predicting power production in a wind 

farm located in complex terrain [52]. 

 Time Horizon Analysis: The study assessed the performance of LS-SVM with WD across 

different time horizons to gain insights into its accuracy and suitability for short-term, 

medium-term, and long-term predictions [40]. 

 Comparison with ANN Methods: The results of LS-SVM with WD were compared with 

hybrid ANN-based methods to determine the most effective approach for wind power 

prediction in challenging terrain scenarios [40]. 

 

iv. Wavelet-Based Forecasting for Improved Wind Power Prediction 

 Data Decomposition: WD techniques effectively separate time series data (wind speed, 

temperature, pressure) into distinct frequency bands, unveiling daily, seasonal, and long-

term patterns [40, 53]. 

 Discrete Wavelet Transform (DWT) Algorithm: This algorithm, developed by Mallat 

[40], employs decomposition and reconstruction techniques, along with low-pass and high-
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pass filters, to extract approximations (low-frequency representations) and details (high-

frequency components) from the original signal. 

 Model Performance Enhancement: Incorporating WD into forecasting models often 

leads to improved accuracy and captures nuanced patterns within complex time series data 

[40, 51]. 

 

v. k-Nearest Neighbors (kNN) Algorithm 

kNN): A Popular Supervised Learning Tool for Power Systems.  In the realm of machine 

learning for power systems, kNN algorithm reigns as a widely utilized supervised learning 

technique. It excels at data classification by leveraging distance computations to identify the k 

closest data points to a new, unlabeled observation. 

This nearest neighbour concept forms the basis for assigning the new data point to the most 

prevalent class among its k closest neighbours [54]. The strength of kNN is in the simplicity 

of its implementation. kNN frequently delivers robust and reliable classification performance, 

particularly for well-defined data spaces with clear class distinctions. 

Limitations of kNN are computational burden with large datasets. The versatility of kNN 

extends to multiple facets of power system analysis and management:  This algorithm often 

forms an integral part of fault recognition systems for power transformers. By analyzing sensor 

data and comparing it to known faulty states represented by k-nearest neighbours, the algorithm 

can effectively identify potential equipment malfunctions.  kNN plays a crucial role in 

understanding the operational behaviour of power transformers. It achieves this by classifying 

historical data under various operating conditions. Crucial understandings can be gathered into 

performance trends and potential optimization strategies.  Within the domain of asset 

management for power systems, kNN frequently finds itself compared to other prominent ML 

models such as SVMs, ensemble methods, and decision trees [55, 56] 

 

vi. Convolutional Neural Networks 

CNNS are widely used in wind power forecasting for their capacity to capture complex 

relationships within data. They are capable of regressing intricate non-linear relationships with 

commendable accuracy [18]. 

 

vii. Restricted Boltzmann Machines (RBMs) 

RBMs are supervised neural networks that learn complex probability distributions over input 

data. They consist of two layers with binary nodes, offering feature extraction capabilities. 

Largely used as a pre-processing step to enhance forecasting models like neural networks [13]. 

 

 
Figure 9. RBM forecasting architecture (adapted from [13]). 
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3.3.2 Unsupervised Learning for Wind Power Forecasting: 

i. Auto Encoder for Renewable Energy Forecasting: 

While supervised learning algorithms dominate wind power forecasting, unsupervised learning 

techniques like autoencoders offer valuable insights by extracting hidden patterns and features 

from vast datasets.  

Built on deep neural networks, autoencoders excel at feature extraction and dimensionality 

reduction, making them ideal for preparing data for subsequent forecasting models [13, 57]. 

 

 
Figure 10. The autoencoder’s basic design (adapted from [13]). 

 

In the context of wind power forecasting, autoencoders can be employed in several ways:   

 Feature Extraction from Diverse Data: Autoencoders can process a variety of data 

relevant to wind power generation, including weather data (wind speed, direction, 

temperature), historical energy production records, and geographical information. By 

analyzing these diverse inputs, the autoencoder learns to identify hidden patterns and 

relationships, extracting meaningful features that capture the underlying dynamics of wind 

energy production [13, 58]. 

 Enhanced Supervised Learning Models: The extracted features generated by the 

autoencoder can then be used to train supervised learning models, such as SVMs or ANNs. 

These enriched feature sets provide the forecasting models with a more exact understanding 

of the influencing factors, leading to improved prediction accuracy and reduced error rates 

[59]. 

 Dimensionality Reduction for Efficiency: Autoencoders excel at reducing the 

dimensionality of complex datasets, which is particularly advantageous in wind power 

forecasting due to the abundance of high-dimensional data. This dimensionality reduction 

can significantly improve computational efficiency while still preserving the essential 

information needed for accurate forecasting [10, 13]. 

 Conclusion: Autoencoders offer a promising avenue for unsupervised learning in wind 

power forecasting. Their ability to extract meaningful features, reduce data complexity, and 

enhance supervised models makes them valuable tools for improving forecasting accuracy 

and efficiency. As research in this area continues, we can expect even more advanced 

applications of autoencoders to emerge, further optimizing the management and integration 

of renewable energy sources into the grid. 

 

ii. K-means Clustering 

This algorithm identifies groups (clusters) of similar data points within wind power datasets, 

revealing underlying patterns and enabling the development of specialized forecasting models 

for each cluster [13]. 

 PCA: By projecting high-dimensional wind power data onto a lower-dimensional space, 
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PCA identifies the most relevant features while reducing computational complexity. This 

allows for improved interpretability and model efficiency [13]. 

 Gaussian Mixture Models (GMMs): GMM models the probability distribution of wind 

speed, enabling probabilistic forecasting. This provides not just a single prediction but a 

range of possible outcomes with their respective probabilities, catering to the inherent 

variability of wind power [13, 60]. 

 Self-Organizing Maps (SOMs): SOMs visualize wind power data on a grid, automatically 

clustering similar data points. This visual representation aids in identifying anomalies and 

hidden patterns, facilitating proactive maintenance and enhanced system reliability [56, 

60]. 

 

3.3.3 Deep Reinforcement Learning for Asset Management 

Deep reinforcement learning (DRL) offers promising avenues for improving asset management 

in renewable energy systems.  Key aspects of DRL in this context include:  

i. Contextual Information Analysis: Extracting meaningful insights from data under 

noisy conditions, such as fluctuating energy production. 

ii. Price-Action Estimation: Learning optimal pricing strategies and scheduling decisions 

based on real-time market dynamics. 

iii. Time-Dependent Data Analysis: Adapting to changing environmental and market 

conditions through dynamic decision-making. 

 

Several studies demonstrate the potential of DRL for asset management: 

  DRL for power quality control in electric grids, highlighting reduced design complexity 

and enhanced decision-making [61]. 

 Hybrid DRL-ANN model for optimal electricity trading, solving linear cost function 

problems in power flow optimization [62]. 

 Reference [63]. Adaptive DRL for improved power storage efficiency in hybrid systems, 

utilizing generation, storage, load, and controllable asset indicators. 

 DRL-ANN integration for power grid maintenance, enhancing system reliability [64]. 

 Machine learning solutions for smart grid challenges, focusing on asset maintenance, power 

generation, load management, and safety data analysis [65]. 

 

3.3.4 DBNs for Forecasting 

DBNs are deep neural networks composed of stacked RBMs. Like RBMs, DBNs are 

unsupervised learning models trained to extract features and representations from input data, 

particularly relevant for renewable energy forecasting. DBNs employ a layer-wise 

unsupervised learning approach, where each layer independently extracts features from data, 

leading to a rich and informative representation suitable for forecasting tasks [10,13]. 

 

 
Figure 11. The basic architecture of DBN (adapted from [84]). 
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DBNs are powerful tools for renewable energy forecasting due to their ability to extract 

complex features. DBNs can learn from unlabeled data, which is abundant in renewable energy 

applications [13]. 

i. ANFIS: This hybrid model combines the strengths of ANNs for learning from data and 

fuzzy logic for handling uncertainty. W i t h  t h e  Capability of modelling complex 

relationships between inputs and outputs, making it suitable for forecasting tasks [13, 66]. 

Its structure consists of five interconnected layers: 

 Input Layer: Accepts input data. 

 Fuzzification Layer: Converts crisp input values into fuzzy membership degrees. 

 Rule Layer: Specifies fuzzy rules that relate inputs to outputs. 

 Normalization Layer: Normalizes rule firing strengths. 

 Output Layer: Defuzzifies output values and generates a final crisp output. 

Widely used in renewable energy forecasting due to its ability to capture both linear and 

nonlinear patterns in data. ANFIS demonstrated superior performance with trapezoidal 

membership functions for wind speed and temperature prediction, achieving a mean square 

error of 7.2989 m/s for wind speed and 3.8364 °C for temperature [23, 66]. 

Additional Insights: 

 Parameter Optimization: ANFIS employs hybrid learning algorithms to refine both 

premise and consequent parameters, enhancing model accuracy. 

 Interpretability: The fuzzy rules within ANFIS can provide insights into the model's 

reasoning process, making it more understandable than purely black-box models. 

 Adaptability: ANFIS can adapt to changing conditions and learn new patterns over time, 

making it suitable for dynamic environments like renewable energy systems [13]. 

 

ii. RBNNs: Possess a distinct structure and activation functions for specialized tasks. It excels 

at capturing nonlinear relationships and temporal dependencies in data. Its structure 

consists of three layers: 

 Input Layer: Accepts input data. 

 Hidden Layer: Contains radial basis function neurons that compute distances between 

input vectors and their centers. 

 Output Layer: Produces the network's output based on weighted combinations of hidden 

layer activations. 

Frequently used in renewable energy forecasting due to their ability to model complex patterns 

in wind speed, temperature, and energy generation data [13, 67]. 

 

iii. GRNNs: Excel at predicting continuous quantities, making them invaluable for forecasting 

tasks in renewable energy. Their architecture comprises four distinct layers [13, 68]: 

 Input Layer: This layer accepts the input data, which may be a single vector or a collection 

of vectors. 

 Pattern Layer: Here, the network meticulously compares the input data to a set of stored 

prototypes, calculating the similarity between them. These prototypes act as reference 

points for prediction. 

 Summation Layer: This layer aggregates the weighted outputs from the pattern layer, 

using the similarity values determined in the previous step. 

 Output Layer: The final layer generates a continuous prediction based on the processed 

information. 

GRNNs are trained through a process known as radial basis function (RBF) learning, 

effectively handling nonlinear relationships and noisy data. Capabilities: GRNNs can 

effectively model complex nonlinear relationships, which are often inherent in wind speed, solar 

irradiance, and energy demand patterns [13, 50]. 
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Figure 12. The schematic representation of GRNN (adapted from [13]). 

 

Conclusion: Generalized regression neural networks provide a valuable tool for renewable 

energy forecasting, particularly when dealing with uncertain and complex data. Their 

robustness to noise, nonlinear modelling capabilities, and fast training make them well-suited 

for various forecasting tasks in this domain. However, it's essential to consider prototype 

selection and interpretability challenges when employing GRNNs [13]. 

 

iv. ELMs 
Their structure and training models consist of: 

 Single hidden layer of neurons 

 Input and output layer connections are determined analytically using matrix inversion. 

 Eliminates iterative gradient-based training, leading to computational efficiency. 

Applications in Renewable Energy include Wind power prediction and Solar power 

forecasting [13,69]. 

Conclusion: ELMs offer a promising approach to renewable energy forecasting due to their 

computational efficiency, ease of implementation, and good generalization performance. Their 

fast training makes them particularly suitable for real-time forecasting applications. However, 

researchers and practitioners should carefully consider hyperparameter tuning and the choice 

of the number of hidden neurons to achieve optimal performance [13, 50]. 

 

v. Ensemble Learning (EL): Leverages the combined strengths of multiple individual 

machine-learning models to generate more accurate and robust predictions than any single 

model could achieve [13, 70]. This strategy is particularly beneficial when dealing with 

complex, noisy, or highly variable data, like those encountered in renewable energy 

forecasting. 

The benefits are improved accuracy and reduced variance. EL mitigates the impact of 

individual model bias and variance, yielding more stable and reliable predictions [13]. 

Conclusion: EL offers a powerful and versatile approach to tackling the challenges of 

renewable energy forecasting. Its ability to leverage the strengths of multiple models, improve 

accuracy and robustness, and provide valuable insights makes it a valuable tool for ensuring 

efficient and reliable renewable energy integration into the power grid. 

 

vi. Transfer Learning (TL): Leverages pre-trained models from related tasks to enhance 

forecasting accuracy and efficiency. Addresses challenges of data scarcity and 

computational resources. Applied in wind power prediction: The models are trained on 

weather patterns or other wind farms. With solar power forecasting, the models are pre-

trained on cloud cover images or solar irradiance data. In energy demand forecasting, the 

models are pre-trained on historical consumption patterns [13,71]. 
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Conclusion: TL holds significant promise for addressing challenges and enhancing renewable 

energy forecasting accuracy and efficiency. By effectively harnessing knowledge from pre-

trained models, it can contribute to more reliable and cost-effective integration of renewable 

energy sources into power grids. 

 

vii. Hybrid Models (HMs): Combine multiple machine-learning techniques within a single 

framework to enhance the accuracy and robustness of renewable energy forecasts. This 

approach leverages the strengths of individual models while compensating for their 

limitations, leading to superior performance compared to single-model approaches. 

 

Applications in renewable energy forecasting include short- term forecasting: In this area, HMs 

have proven effective in forecasting renewable energy sources like solar power and wind speed 

within short timeframes (e.g., one day) [13,72]. 

Conclusion: HMs offer a powerful and versatile approach to tackle the challenges of renewable 

energy forecasting. By combining the strengths of multiple MLTs, they can significantly 

improve prediction accuracy, robustness, and flexibility. Careful consideration of model 

selection, integration, and interpretability is crucial for unlocking the full potential of HMs in 

advancing the field of renewable energy forecasting and its integration into efficient and 

reliable power grids. 

 

3.4 MLTs to Forecast Specific Power Quality Parameters in Wind Energy 

Predicting specific power quality parameters in wind energy plays a crucial role in maintaining 

grid stability, minimizing downtime, and optimizing wind farm operations [73]. Traditional 

fault analysis methods can be time-consuming and require significant expertise. ML offers 

promising alternatives for faster and more efficient prediction of power quality parameters, 

leading to improved wind farm performance and reliability [74]. 

Wind turbine systems consist of both mechanical and electrical components, making fault 

diagnosis complex. Additionally, wind power generation is highly variable due to fluctuating 

wind speeds and environmental conditions. These factors pose challenges for ML models in 

accurately predicting power quality parameters [75]. 

 

3.4.1 Several ML Techniques t h a t  H a v e  S h o wn  Potential for Power Quality 

Parameter Forecasting in Wind Energy: 

i. SVMs: SVMs are effective in identifying non-linear relationships between wind farm data 

and power quality parameters [40]. 

ii. ANNs: Anns can learn complex patterns from large datasets, enabling robust prediction of 

various parameters [40]. 

iii. DL: DL employs techniques like CNNs and RNNs that excel at handling temporal and 

spatial dependencies in wind turbine data [25,76]. 

iv. Random Forests: These are ensemble models that combine multiple decision trees, 

offering high accuracy and robustness against noise [77]. 

v. Application Examples: 
 

 Voltage sag and swell prediction: Utilizing SVM or ANN models to anticipate voltage 

deviations caused by grid disturbances or sudden changes in wind speed. 

 Harmonic distortion forecasting: Employing CNNs or RNNs to predict the occurrence 

and severity of harmonic distortions generated by wind turbine converters. 

 Mechanical fault detection: Leveraging random forests or anomaly detection algorithms 

to analyze sensor data and identify potential mechanical issues in wind turbine components 

[10]. 
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3.4.2 Here are some specific ML techniques that can be used to forecast power quality 

parameters in wind energy: 

i. Time Series Forecasting 
 Autoregressive Integrated Moving Average (ARIMA): This classic time series model 

can capture temporal dependencies in power quality data, making it suitable for predicting 

short-term fluctuations in parameters like voltage, current, and harmonics [16, 78-79]. 

 LSTM networks: These powerful recurrent neural networks excel at capturing long-term 

dependencies and complex nonlinearities in time series data, making them well-suited for 

predicting wind power output, voltage sags, and other dynamic parameters [16, 78-79]. 

 Prophet: This open-source forecasting library from Facebook combines multiple statistical 

and machine learning techniques, including ARIMA and LSTMs, to offer flexible and 

accurate forecasting for various power quality parameters [16, 78-79]. 

 

ii. Anomaly Detection: 

 One-Class Support Vector Machines (OCSVMs): These models can learn the normal 

operating range of power quality parameters and identify any deviations as potential  

anomalies, indicating potential faults [10,12]. 

 Isolation Forests: These tree-based models isolate anomalies by randomly partitioning the 

data, making them efficient for identifying outliers and abnormal behaviour in power 

quality data [16, 78-79]. 

 Autoencoders: These neural networks can learn compressed representations of normal 

data and flag deviations as anomalies, offering flexibility for handling diverse types of power 

quality parameters [40]. 

 

iii. Regression Models: 

 Support Vector Regression (SVR): This robust regression technique can model the 

relationships between operating conditions and power quality parameters, allowing for the 

prediction of specific values based on sensor data [26- 27]. 

 Random Forest Regression: This ensemble method combines multiple decision trees to 

predict continuous power quality parameters, offering good generalizability and robustness 

to outliers [23]. 

 Neural Regression Networks: Multilayer perceptron and other neural network 

architectures can be trained to directly map sensor data to specific power quality 

parameters, providing flexible modelling capabilities [24,41]. 

Studies have shown that ML models applied to wind energy fault detection can achieve a 20% 

reduction in false alarms, while also providing valuable data for identifying the root cause of 

faults within 50% less time [40]. 

Early detection of faults in wind turbines is crucial for minimizing downtime and maximizing 

energy production. ML models are proving adept at this task, with some studies showing the 

ability to identify potential problems up to 24 hours before they occur [10]. 

 

3.5 ML Applications for a Particular Power Quality Prediction 

3.5.1 Power Quality Disturbances and their Impact: Power quality disturbances (PQDs) 

disrupt the typical voltage, current, and frequency levels in the power system. These sudden 

deviations are often caused by: 

 Non-linear loads: Devices like switching machines, rectifiers, and inverters draw uneven 

power, causing fluctuations. 

 Renewable energy sources (RES): Integration of wind and solar can introduce new 

types of disturbances. 
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Reference [37, 80] explain, that frequent PQDs pose risk to equipment at all stages of the power 

system: 

 Generation: Machinery at power plants can malfunction or suffer reduced lifespan. 

 Transmission: Instability in the grid can lead to transmission losses and outages. 

 Consumption: Appliances and electronics may experience errors, shorten their lifespan, or 

even fail. 

 

Different disturbances manifest in various ways: 

 Voltage sag: Sudden voltage drop, affecting equipment performance. 

 Harmonic distortion: Unwanted frequencies superimposed on the main signal, causing 

overheating and malfunction. 

 Notch: Brief spike or dip in voltage or current. 

 Flicker: Variation in voltage at a rapid rate impacts lighting and sensitive equipment. 

 Spikes: Short, sharp increase in voltage or current, damaging electronics. 

 

Table 2 below presents a snapshot of recent studies employing MLTs for PQD event detection 

and classification. The table details the feature extraction methods, optimization/feature 

selection techniques, and specific ML algorithms utilized by each author. Examining Table 2 

reveals the substantial success of MLT approaches in PQD analysis. Notably, SVMs have 

emerged as the most frequently adopted tool due to their high accuracy and computational 

efficiency. Furthermore, the table suggests that integrating optimization techniques can 

demonstrably enhance classification performance [81]. 

 

Table 2. Recent MLT in PQD Classification Review (adapted from [80]). 

Feature 

extraction 

technique 

ML 

Algorithm 

Selection 

Technique 

Accuracy 

achieved 

Summary of working 

methodology 

variational 

Mode 

Decomposition 

(VMD) + 

Spatial 

Transcription 

(ST) 

SVM 
SBS/SFS/ 

GSO 
99.66% 

Large feature vector 

involving 9 classes of 

events. Three 

decomposition modes were 

used, with few tuning 

parameters for VMD and 

ST. SBS yielded the best 

accuracy. The algorithm is 

robust and provides good 

results in noisy 

environments. 

DWT + 

Multiresolution 

Analysis (MRA) 

SVM - 94% 

Used a small dataset and 

applied a Gaussian kernel 

support vector machine 

(SVM) for feature mapping 

and classification. Used the 

DB4 wavelet at an 8-level 

decomposition and 

extracted features such as 

energy, entropy, and 

standard deviation. The 

feature set consisted of 27 

dimensions. It's important 
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to note that the algorithm 

was not tested on a large-

scale dataset, and it may 

not produce accurate results 

when applied to large data. 

 

Table 2 cont. Recent MLT in PQD Classification Review (adapted from [80]). 

Feature 

extraction 

technique 

ML 

Algorithm 

Selection 

Technique 

Accuracy 

achieved 

Summary of working 

methodology 

WT SVM PSO 95.83% 

Using the DB4 wavelet as the 

mother wavelet, 8 feature 

vectors as the classifier input, 

PSO is used to optimize the 

SVM classifier parameter. 

The RBF kernel is used to 

classify the wavelet energy 

difference. The RBF kernel 

function performed better 

compared to a single kernel 

function. 

WT PNN ABC 99.875% 

Used ABC for optimization 

because it converges rapidly 

and has good memory. PNN 

was used to select dominant 

features and spread constants, 

and the selected features were 

evaluated using RBF and 

MLPNN. One limitation is 

that some aspects of PQD, 

such as inter-harmonic 

disturbances, were not 

considered in the study. 

Continuous 

Testing (CT) 
CNN SSA 99.52% 

The wrapping method was 

used for extraction. The lag-

covariance matrix of the 

PQD waveform was 

constructed using the 

trajectory matrix algorithm. 

CT and MSSA were utilized 

for waveform decomposition 

into six different levels. Six 

frequency bands were used 

as features. The dropout 

technique was used to avoid 

overfitting, and ReLU was 

used for CNN activation. 

The robust algorithm 

produced excellent results 

even in noisy conditions. 
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Table 2 cont. Recent MLT in PQD Classification Review (adapted from [80]). 

Feature 

extraction 

technique 

ML 

Algorithm 

Selection 

Technique 

Accuracy 

achieved 

Summary of working 

methodology 

WT ELM PSO 97.60% 

Extraction is performed 

using the wrapping method 

based on PSO with the 

wavelet energy criterion. 

DB4 is utilized, and the 

sampled signals are 

decomposed with a 13-

level MRA. 

WT 
ECOC -

SVM 
SFS 98.69% 

Generated data from voltage 

disturbances was used. 

Wavelet transform was used 

to decompose at 6 levels, 

and 8 statistical methods 

were used to extract features. 

A total of 200 instances were 

used for training and testing 

the SVM-ECOC classifier. 

The algorithm is robust in 

both noisy and noiseless 

conditions. 

Wavelet Packet 

Transform 

(WPT) 

SVM GA 98.33% 

WPT used to decompose at 

4 levels. GA and SA were 

used to select dominant 

features out of 128 features 

for the RBF kernel SVM. 

10-Fold validation was 

used during evaluation. 

Wavelet 

Multiresolution 

Analysis 

(WMRA) 

SVM - 99.71% 

ATP/EMTP was used to 

generate PQ events, while 

WMRA was utilized to 

extract features of a 3-phase 

voltage waveform using 

DB4. Data preprocessing 

involving normalization was 

applied, and 1-fold cross-

validation of SVM for kernel 

and penalty parameter was 

performed during 

classification. 
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Table 2 cont. Recent MLT in PQD Classification Review (adapted from [80]). 

Feature 

extraction 

technique 

ML 

Algorithm 

Selection 

Technique 

Accuracy 

achieved 

Summary of working 

methodology 

Hilbert-Huang 

Transform 

(HHT) 

RBFNN - 94% 

Feature extraction using HT 

and statistical methods 

separated data into real and 

imaginary parts. K-Means 

clustered features for training, 

excelling in noise-free 

settings. 

Empirical 

Mode 

Decomposition 

(EMD) + 

Hilbert 

Transform 

(HT) 

BNT - 97.90% 

EMD separated signal patterns 

into TMFs and sifted them. 

HT extracted features from 

IMF for amplitude and 

frequency, while SD and 

entropy were used for BNT 

classification. 

WT RBFNN PSO 97.85% 

20 types of PQD events were 

analyzed using D84 and 

symlet. A 4-level 

decomposition was used, and 

classification was done using 

a Gaussian function. The 

classification results were 

compared with FFML, LVQ, 

GRNN, and PNN. 

EMD + HT RBFNN PSO 97.85% 

EMD was utilized to separate 

features into IMF. HT was 

applied to the first 3 IMFs to 

obtain amplitude and phase 

for constructing the feature 

vector. PNN was used for 

mapping and classification. 

WT RBFNN PSO 97.85% 

D84 and symlet analyzed 20 

PQD types, applying 4-level 

decomposition and Gaussian 

classification, with results 

benchmarked against FFML, 

LVQ, GRNN, and PNN. 

EMD + HT RBFNN PSO 97.85% 

EMD was used to decompose 

features into IMF. HT was 

applied to the first 3 IMF to 

obtain the amplitude and 

phase used for constructing 

the feature vector. PNN was 

employed for mapping and 

classification. 
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Understanding the impact and types of PQDs is crucial for implementing effective mitigation 

strategies. This could involve: 

i. Filtering technologies: Removing unwanted harmonics from the system. 

ii. Power conditioning equipment: Stabilizing voltage and current levels. 

iii. Grid-level management: Optimizing power flow and addressing the integration of RES. 

 

Existing PQ monitoring in power grids and wind farms suffers from data latency and limited 

real-time effectiveness [80]. Table 3 below displays how the PQ analysis approach has been 

mainly focused on historical data or immediate response measures, leaving a gap in real-time 

prediction and proactive decision support. 

 

Table 3. PQ decision support base (adapted from [80]). 

PQ Type Quality Analysis 

Voltage deviation Thyristor Voltage Regulator (TVR) 

Harmonic Power Filter/ Active Power Filter (APF) 

Flicker Thyristor Controlled Reactor (TCR) 

Unbalance Static Capacitor 

Sag Dynamic Voltage Restorer (DVR) 

 

By recognizing the challenges and employing suitable solutions, we can ensure a stable and 

reliable power supply for both generators and consumers [15-16, 80]. 

Various ML models can effectively forecast power quality parameters. Model selection and 

performance depend on specific Power Quality Parameters (PQP) and data characteristics. 

Decision trees have demonstrated promising results in PQP forecasting [56]. 

i. Simulating PQDs for Research: Generating realistic data: Researchers use software like 

MATLAB to simulate PQDs based on IEEE standards. This creates large datasets with single 

or multiple classes of features, enabling the study of PQDs in controlled environments [82]. 

ii. Extracting PQD Features: Signal processing techniques: Various methods are used to 

extract the most important characteristics of PQD waveforms, crucial for machine learning-

based analysis: 

 Time domain techniques: EMD effectively decomposes complex signals into simpler 

components, aiding feature extraction. 

 Frequency domain techniques: Fourier Transform (FT) analyzes signals in the frequency 

domain, revealing frequency-related features essential for PQD characterization. 

Key takeaway: Signal processing techniques, both in time and frequency domains, play a vital 

role in extracting meaningful features from PQD waveforms, enabling effective machine 

learning-based studies for comprehensive PQD analysis and classification [73,80]. 

 

iii. ML Models: The following figure illustrates the application of machine learning models 

for (PQD management in renewable energy systems. 

The Model Structure (Figure 13) Inputs: 

 Solar irradiance (SI) 

 Wind speed (WS) 

 Air pressure (PR) 

 Air temperature (TEM) 

 Power load (PL) Outputs: 

 Frequency 

 Voltage 

 Total harmonic distortion of voltage (THDu) 

 Total harmonic distortion of current (THDi) [73]. 
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Figure 13. Typical ML model for Power Quality Parameter Disturbances (adapted from 

[73]). 
 

ML Models Evaluated: 

 ANN 

 Linear regression (LR) 

 Interaction linear regression (ILR) 

 Quadratic linear regression (QLR) 

 Pure quadratic linear regression (PQLR) 

 Bagging decision tree (DT) 

 Boosting decision tree (DT) Power Quality Parameters (PQPs) Studied: 

 Power voltage 

 Power frequency 

 Total harmonic distortion of voltage 

 Total harmonic distortion of current Additional Studies: 

Decision tree for forecasting five PQPs: power frequency, power voltage, voltage and 

current total harmonic distortion, and short-term flicker severity [56,73,81]. 

 

3.5.2 Voltage Fluctuations and ML Solutions 

Voltage fluctuations, including dips and flicker, can negatively impact wind power quality and 

equipment lifetime. The IEC 61000-3-7 standard sets guidelines for controlling emissions from 

variable loads in power systems [4, 6, 83, 84]. 

Existing approaches like fuzzy logic with particle swarm optimization face challenges with 

conventional monitoring reach areas.  Research in [46,56,80] proposes two methods: 

i. Fuzzy logic with particle swarm optimization: Improves bus monitoring capability and 

achieves optimal voltage sag allocation. 

ii. Voltage sag state estimation with genetic algorithm:  Offers comprehensive observation 

of voltage sags across the network. 

iii. Machine Learning for Voltage Dip Analysis: ANNs, SVMs, LRs, and PCA show promise 

in characterizing and classifying voltage dips [46,56,80]. Deep learning techniques may 

outperform conventional methods for handling large datasets related to voltage fluctuations 

[56]. 

Key Takeaways: Voltage fluctuations in wind power systems require effective monitoring 

and analysis to ensure grid stability and equipment longevity.  Machine learning techniques 

offer promising solutions for voltage dip characterization, classification, and potentially, 

real-time monitoring.  Further research is needed to optimize and validate these techniques 

for different operating conditions and data sets [46, 56]. 

 

3.5.3 Harmonics and ML Solutions 

Wind turbines can contribute to power quality issues like harmonics, affecting grid stability 

and equipment [46, 56, 80]. Research in [36, 85, 86, 87] explores intelligent ANN approaches 

for harmonic detection and mitigation. The proposed ANN in [64,86] employs a three-layer 
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structure with backpropagation learning to identify harmonics according to IEC and IEEE 

standards.  This method demonstrates promise with a low harmonic distortion index of 0.0757. 

Another study [64] utilizes AI within a parallel APF to address harmonics in two-wire power 

distribution systems. A novel Adaptive Notch Filtering (ANF) technique presented in [10] 

tackles several power quality issues, including harmonics, voltage regulation, and frequency 

deviations, using a reference voltage signal (according to IEC standards). 

 

Key Takeaways:  AI and ML show potential in identifying and mitigating harmonics caused 

by wind energy integration.  Different techniques, like ANNs, APFs, and ANFs, offer diverse 

solutions for specific harmonics-related challenges. Further research and validation are needed 

to optimize these methods and enhance their effectiveness in various scenarios [46]. 

 

RESULTS AND DISCUSSION 

 

4.1 Results 

This systematic literature review delves into the application of machine ML for forecasting PQ 

in the growing wind energy sector. Analyzing a collection of 87 research articles published 

between 2004 and 2023, the review offers a comprehensive overview of the global development 

of ML-based forecasting models for electric power over the past 19 years. This wider 

perspective serves two key purposes: 

 

4.1.1 Comprehensive Understanding: By examining a broad range of studies across various 

subfields, encompassing 38 articles on forecasting, 22 on machine learning, 5 on renewable 

technology, 7 on power systems, and 3 on management and control, the review provides a 

holistic understanding of the current landscape of ML applications for PQ forecasting in 

wind energy. This comprehensive analysis allows us to draw valuable insights and identify 

best practices applicable to the National grid connection/ interconnection context. 

4.1.2 Contextualizing South African Specificities: Within the broader scope of global 

research, the review also focuses on a subset of 12 studies specifically addressing PQ 

forecasting using ML in the domain of renewable energy. This targeted analysis helps us 

identify MLTs that resonate with the unique challenges and opportunities of South Africa's 

wind energy sector, characterized by its recent grid integration and evolving regulatory 

landscape. 

It is important to note that this review deliberately refrains from a comparative evaluation of 

individual ML model performance. Instead, it focuses on identifying and categorizing the 

diverse array of 12 ML tools, techniques, and applications employed for PQ forecasting in wind 

energy globally. By doing so, the review establishes the feasibility and potential of various ML 

approaches for ensuring PQ compliance in South African wind farms, as stipulated by the 

National Service Provider's requirements within the national grid code. 

Furthermore, the review reveals a notable increase in research activity on ML-based PQ 

forecasting in recent years, with at least 46 articles published between 2020 and 2023 compared 

to 22 in the preceding four years (2016-2019). This trend underscores the growing recognition 

of ML's potential for enhancing grid stability and efficiency in the context of renewable energy 

integration. 

 

4.2 Discussion and Summary 

It is observed that the capabilities of ML and DL models hold immense promise for PQ 

forecasting in renewable energy sources like wind. Their ability to process vast amounts of data 

and uncover complex patterns, often undetectable by humans, translates to: 

i. Enhanced prediction accuracy: Compared to traditional methods, ML and DL models 
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offer more accurate PQ predictions, leading to improved grid stability and decision-making. 

ii. Real-time adaptability: These models can dynamically adapt to changing weather 

conditions through real-time forecasting, further bolstering grid stability. 

iii. Optimized renewable energy operations: Accurate PQ predictions contribute to 

maintaining the quality of supply within the national grid, minimizing instability, and 

boosting overall grid performance. 

However, careful consideration must be given to data quality, model complexity, and validation 

to fully unlock the potential of ML and DL models for optimizing renewable energy operations 

and grid stability. 

Hybrid Models and Challenges: Hybrid models, combining traditional time-series analysis 

with ML and DL algorithms, have also emerged as promising tools for renewable energy 

forecasting challenges. 

Despite progress in applying ML and DL models for PQ forecasting, several challenges such 

as data scarcity, and transparency remain still. 

 

ACKNOWLEDGMENT 

 

Wholeheartedly we would like to thank the Central University of Technology (CUT), 

Department of Electrical, Electronic and Computer Engineering, for affording us the resources 

and funding for the conducted study. 

 

REFERENCES 

 

[1] EGWEC. “Global Wind Report 2023”. Accessed May 26, 2024. 

https://gwec.net/globalwindreport2023/#:~:text=Globally%2C%2077.6%20GW%20of

%20new,USA. 

[2] R. C. Bansal., Renewable Energy EGH 732 Study Guide, University of Pretoria, Pretoria, 

2018. 

[3] T Ackermann, Wind Power in Power Systems, John Wiley & Sons, 2005. 

[4] A. F. Zobaa and R. C. Bansal. Handbook of Renewable Technology. World Scientific, 

2011. 

[5] Grid Connection Code for Renewable Power Plants (Rpps) Connected to The Electricity 

Transmission System (Ts) Or The Distribution System (Ds) In South Africa. Version 3.1 

(January 2022). 

[6] J. G. Priolkar and A Gupta, Management & Control of Hybrid Power System, IEEE 

Sponsored 2nd International Conference on Innovations in Information Embedded and 

Communication Systems ICIIECS, 2015. 

[7] M. Jrishman, M. S. RamKumar and M. Sownthara, Power Management of Hybrid 

Renewable Energy System by Frequency Deviation Control, International Journal of 

Innovative Research in Science, Engineering and Technology, India, vol. 3, pp. 763-769, 

March 2014. 

[8] Aliyu, A.K., Modu, B. and Tan, C.W., 2018. Areview of renewable energy development 

in Africa: A focus in South Africa, Egypt, and Nigeria. Renewable and Sustainable 

Energy Reviews, 81, pp.2502-2518. 

[9] E.Vivas., H.Allende-C. and R.Salas. A Systematic Review of Statistical and Machine 

Learning Methods for Electrical Power Forecasting with Reported MAPE Score. 

www.mdpi.com/journal/entropy. Entropy 2020, 22,1412; doi:10.3390/e22121412 

[10] Dash, P.; Prasad, E.N.; Jalli, R.K.; Mishra, S. Multiple power quality disturbances 

analysis in photovoltaic integrated direct current microgrid using adaptive morphological 

filter with deep learning algorithm. Appl. Energy 2022, 309,118454. 

https://gwec.net/globalwindreport2023/#:~:text=Globally%2C%2077.6%20GW%20of%20new,USA
https://gwec.net/globalwindreport2023/#:~:text=Globally%2C%2077.6%20GW%20of%20new,USA
http://www.mdpi.com/journal/entropy


1312                                           Mbuyiselwa Cindi et al. / IJCNIS, 16(S1), 1284-1316 
 

[11] Al-Janabi, S., Alkaim, A.F. and Adel, Z.An Innovative synthesis of deep learning 

techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind 

energy. 2020.Soft Computing, 24(14), pp.10943-10962. 

[12] Yılmaz, A.; Küçüker, A.; Bayrak, G. Automated classification of power quality 

disturbances in a SOFC&PV-based distributed generator using a hybrid machine learning 

method with high noise immunity. Int. J. Hydrog. Energy 2022. 

[13] Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with 

Machine Learning and Deep Learning: Current Advances and Future Prospects. 

Sustainability 2023,15, 7087.https:// doi.org/10.3390/su15097087. 

[14] Mujeeb, S., Alghamdi, T.A., Ullah, S., Fatima, A., Javaid, N. and Saba, T., 2019. 

Exploiting deep learning for wind power forecasting based on big data analytics. Applied 

Sciences, 9(20), p.4417. 

[15] Liu, Y., Qin, H., Zhang, Z., Pei, S., Jiang, Z., Feng, Z. and Zhou, J., 2020. Probabilistic 

spatiotemporal wind speed forecasting based on a variational Bayesian deep learning 

model. Applied Energy, 260, p.114259. 

[16] Yildirim, O., Eristi, B., Eristi, H., Unal, S., Erol, Y. and Demir, Y., 2018. FPGA-based 

online power quality monitoring system for electrical distribution network. Measurement, 

121, pp.109-121. 

[17] Afrasiabi, M., Mohammadi, M., Rastegar, M. and Afrasiabi, S., 2020. Advanced deep 

learning approach for probabilistic wind speed forecasting. IEEE Transactions on 

Industrial Informatics, 17(1), pp.720-727. 

[18] E.Bijolin Edwin1, Darren Bert Lyngdoh2, M.Roshni Thanka3. Wind power plant 

forecasting and power prediction methods using Machine Learning Algorithms. 

https://doi.org/10.30534/ijatcse/2021/321022021.  

[19] Ahmad, T., Zhang, H. and Yan, B., 2020. A review on renewable energy and electricity 

requirement forecasting models for smart grid and buildings. Sustainable Cities and 

Society, 55, p.102052. 

[20] Y. -L. Li, Z. -A. Zhu, Y. -K. Chang and C. -K. Chiang, Short-Term Wind Power 

Forecasting by Advanced Machine Learning Models, 2020 International Symposium on 

Computer, Consumer and Control (IS3C), Taichung City, Taiwan, 2020, pp. 412-415, 

doi: 10.1109/IS3C50286.2020.00112. 

[21] Foley, A.M., Leahy, P.G., Marvuglia, A. and McKeogh, E.J., 2012. Current methods and 

advances in the forecasting of wind power generation. Renewable energy, 37(1), pp.1-8. 

[22] Østergaard, P.A., Duic, N., Noorollahi, Y. and Kalogirou, S.A., 2021. Recent advances 

in renewable energy technology for the energy transition. Renewable Energy, 179, 

pp.877-884. 

[23] Wind Speed Forecasting. Energies 2020, 13, 5488. [CrossRef] nShi, K.; Qiao, Y.; Zhao, 

W.; Wang, Q.; Liu, M.; Lu, Z. An improved random forest model of short-term wind-

power forecasting to enhance accuracy, efficiency, and robustness. Wind. Energy 2018, 

21, 1383–1394. 

[24] Jamii, J.; Mansouri, M.; Trabelsi, M. Effective artificial neural network-based wind 

power generation and load demand forecasting for optimum energy management. Front. 

Energy Res. 2022, 10, 898413. 

[25] F. M. Al Hadi, H. H. Aly, and T. Little, Harmonics Forecasting of Wind and Solar Hybrid 

Model Based on Deep Machine Learning, in IEEE Access.2023. 

[26] Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & 

Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. Non-linear regression model for wind 

turbine power curve. Renewable Energy, Elsevier, vol. 113(C). 

[27] Yuan, D.-D.; Li, M.; Li, H.-Y.; Lin, C.-J.; Ji, B.-X. Wind Power Prediction Method: 

Support Vector Regression Optimized by Improved Jellyfish Search Algorithm. Energies 

https://doi.org/10.30534/ijatcse/2021/321022021


1313                                           Mbuyiselwa Cindi et al. / IJCNIS, 16(S1), 1284-1316 
 

2022, 15, 6404. 

[28] Li, Y.;Wang, R.; Yang, Z. Optimal Scheduling of Isolated Microgrids Using Automated 

Reinforcement Learning-Based Multi- Period Forecasting. IEEE Trans. Sustain. Energy 

2022, 13, 159–169. 

[29] S.L. Gbadamosi, N. I. Nwulu. Optimal microgrid Sizing incorporating Machine Learning 

Forecasting. Proceedings of the International Conference on Industrial Engineering and 

Operations Management Toronto, Canada, October 23-25, 2019 

[30] Xu, Q.; He, D.; Zhang, N.; Kang, C.; Xia, Q.; Bai, J.; Huang, J. A Short-Term Wind 

Power Forecasting Approach with Adjustment of Numerical Weather Prediction Input by 

Data Mining. IEEE Trans. Sustain. Energy 2015, 6, 1283–1291 

[31] Cebekhulu, E.; O n u m a n y i , A.J.; I s a a c , S.J. Performance Analysis of Machine 

Learning Algorithms for Energy Demand–Supply Prediction in Smart Grids.” 

Sustainability 2022, 14, 2546. https://doi.org/10.3390/su14052546. 

[32] Eseye, A. T., Zhang, Y., & Zheng, Y. (2018). Hybrid Model for Short-Term Photovoltaic 

Power Forecasting. Applied Energy, 228, 192-204. doi: 10.1016/j.apenergy.2018.06.097. 

[33] Manojlovi´c, V.; Kamberovi´c, Ž.; Kora´c, M.; Dotli´c, M. Machine learning analysis of 

electric arc furnace process for the evaluation of energy efficiency parameters. Appl. 

Energy 2022, 307,118209. 

[34] Zilong Ti, Xiao Wei Deng, Hongxing Yang. Wake Modeling of Wind Turbines Using 

Machine Learning. Applied Energy 257 (2020). 

[35] Anwar, M.B.; El Moursi, M.S.; Xiao, W. Novel power smoothing and generation 

scheduling strategies for a hybrid wind and marine current turbine system. IEEE Trans. 

Power Syst. 2016, 32, 1315–1326. 

[36] Ilakkia, T.; Vijayagowri, G. Hybrid PV/Wind System for Reduction Of Harmonics Using 

Artificial Intelligence Technique. In Proceedings of the IEEE-International Conference 

on Advances In Engineering, Science And Management (ICAESM- 2012), Nagapattinam, 

India, 30–31 March 2012; pp. 303–308. 

[37] Wang, Y., Zou, R., Liu, F., Zhang, L. and Liu, Q., 2021. A review of wind speed and 

wind power forecasting with deep neural networks. Applied Energy, 304, p.117766. 

[38] B. Khorramdel, M. Azizi, N. Safari, C. Y. Chung, and S. M. Mazhari, A Hybrid 

Probabilistic Wind Power Prediction Based on An Improved Decomposition Technique 

and Kernel Density Estimation, 2018 IEEE Power & Energy Society General Meeting 

(PESGM), Portland, OR, USA, 2018. 

[39] Chen, Q.; Folly, K. Effect of Input Features on the Performance of the ANN-based Wind 

Power Forecasting. In Proceedings of the Southern African Universities Power 

Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of 

South Africa (SAUPEC/RobMech/PRASA), Bloemfontein, South Africa, 28–30 January 

2019; pp. 673–678. 

[40] Maria Grazia De Giorgi, Stefano Campilongo, Antonio Ficarella, and Paolo Maria 

Congedo. Comparison Between Wind Power Prediction Models Based on Wavelet 

Decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial 

Neural Network (ANN). Energies 2014, 7, 5251-5272; doi:10.3390/en7085251. 

[41] Kisvari, A.; Lin, Z.; Liu, X. Wind power forecasting—A data-driven method along with 

gated recurrent neural network. Renew. Energy 2021, 163, 1895–1909.  

[42] Zhao, Q.; Bao, K.;Wei, Z.; Han, Y.;Wang, J. An Abnormal Data Processing Method 

Based on An Ensemble Algorithm for Early Warning of Wind Turbine Failure. IEEE 

Access 2021, 9, 69044–69060. 

[43] Gonzalez-Abreu AD, Osornio-Rios RA, Elvira- Ortiz DA, Jaen-Cuellar AY, Delgado-

Prieto M, Antonino-Daviu JA. Power Disturbance Monitoring through Techniques for 

Novelty Detection on Wind Power and Photovoltaic Generation. Sensors (Basel). 2023 

https://doi.org/10.3390/su14052546


1314                                           Mbuyiselwa Cindi et al. / IJCNIS, 16(S1), 1284-1316 
 

Mar 7;23(6):2908.  doi:  10.3390/s23062908.  PMID: 36991619; PMCID: 

PMC10058131. 

[44] Elasha, F.; Shanbr, S.; Li, X.; Mba, D. Prognosis of a Wind Turbine Gearbox Bearing 

Using Supervised Machine Learning. Sensors 2019, 19, 3092. 

[45] Hajjaji, I.; Alami, H.E.; El-Fenni, M.R.; Dahmouni, H. Evaluation of Artificial 

Intelligence Algorithms for Predicting Power Consumption in University Campus 

Microgrid. In Proceedings of the 2021 International Wireless Communications and 

Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021; pp. 2121–2126. 

[46] Behara, R.K.; Saha, A.K. Artificial Intelligence Control System Applied in Smart Grid 

Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review. Energies 

2022, 15, 6488. https://doi.org/10.3390/en15176488. 

[47] Wang, H., Lei, Z., Zhang, X., Zhou, B. and Peng, J., 2019. A review of deep learning for 

renewable energy forecasting. Energy Conversion and Management, 198, p.111799. 

[48] Roy-Aikins, J. Challenges in Meeting the Electricity Needs of South Africa. In 

Proceedings of the ASME 2016 Power Conference, Charlotte, NC, USA, 26–30 June 

2016.  

[49] Pérez-Ortiz, M., Jiménez-Fernández, S., Gutiérrez, P.A., Alexandre, E., Hervás-

Martínez, C. and Salcedo-Sanz, S., 2016. A review of classification problems and 

algorithms in renewable energy applications. Energies, 9(8), p.607. 

[50] A. Muzumdar, C. N. Modi, G. M. Madhu, and C. Vyjayanthi, Analyzing the Feasibility 

of Different Machine Learning Techniques for Energy Imbalance Classification in Smart 

Grid, 2019 10th International Conference on Computing, Communication and 

Networking Technologies (ICCCNT), Kanpur, India, 2019. 

[51] M. A. Muñoz, J. M. Morales and S. Pineda, Feature-Driven Improvement of Renewable 

Energy Forecasting and Trading, in IEEE Transactions on Power Systems, vol. 35, no. 5, 

pp. 3753-3763, Sept. 2020. 

[52] Y. Maryasin and A. Plohotnyuk, Day-Ahead Power Forecasting of Renewable Energy 

Sources Using Neural Networks and Machine Learning, 2023 International Conference 

on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russian 

Federation, 2023, pp. 130-135, doi: 10.1109/ICIEAM57311.2023.10139134. 

[53] Aly, H. (2020). Hybrid wind speed forecasting models using wavelet neural network and 

recurrent Kalman filter. Sustainable Energy Technologies and Assessments, 39, 100631. 

doi: 10.1016/j.seta.2020.100631. 

[54] Cervantes, J.; Garcia-Lamont, F.; Rodríguez- Mazahua, L.; Lopez, A. A Comprehensive 

Survey on Support Vector Machine Classification: Applications, Challenges, And 

Trends. Neurocomputing 2020, 408, 189–215. 

[55] I. Jahan, F. Mohamed, V. Blazek, L. Prokop, S. Misak, and V. Snasel, Power Quality 

Parameters Forecasting Based on SOM Maps with KNN Algorithm and Decision Tree, 

2023 23rd International Scientific Conference on Electric Power Engineering (EPE), 

Brno, Czech Republic, 2023. 

[56] I. Jahan, F. Mohamed, V. Blazek, L. Prokop, S. Misak, V. Snasel. Power Quality 

Parameters Forecasting Based on SOM Maps with KNN Algorithm and Decision Tree. 

Conference: 2023 23rd International Scientific Conference on Electric Power Engineering 

DOI:10.1109/EPE58302.2023.10149269. 

[57] Da Silva, R.G.; Ribeiro, M.H.D.M.; Moreno, S.R.; Mariani, V.C.; Coelho, L.D.S. A novel 

decomposition-ensemble learning framework for multi-step ahead wind energy 

forecasting. Energy 2021, 216, 119174. 

[58] Forootan, M.M.; Larki, I.; Zahedi, R.; Ahmadi, A. Machine Learning and Deep Learning 

in Energy Systems: A Review.  Sustainability 2022, 14,4832. https:// 

doi.org/10.3390/su14084832. 

https://doi.org/10.3390/en15176488
http://dx.doi.org/10.1109/EPE58302.2023.10149269


1315                                           Mbuyiselwa Cindi et al. / IJCNIS, 16(S1), 1284-1316 
 

[59] Hong, Y.Y. and Rioflorido, C.L.P.P., 2019. A hybrid deep learning-based neural network 

for 24-h ahead wind power forecasting. Applied Energy, 250, pp.530-539. 

[60] Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; 

Varkonyi- Koczy, A.R. State of the art of machine learning models in energy systems, a 

systematic review. Energies 2019, 12, 1301. 

[61] Bbb J. Bai, W. Gu, X. Yuan, Q. Li, F. Xue, and X. Wang. Power Quality Prediction, 

Early Warning, and Control for Points of Common Coupling with Wind Farms. 

www.mdpi.com/journal/energies. 2015, 8, 9365-9382; doi:10.3390/en8099365. 

[62] Bouddou, Riyadh & Benhamida, Farid. (2022). Profit Optimization in A Competitive 

Electricity Market (solving the dynamic economic dispatch and optimal power flow based 

on LMP pricing problems in the electricity market with renewable energies integration). 

10.13140/RG.2.2.21694.15684. 

[63] A. Kumar and S. Singh, Hybrid Renewable Energy Storage Systems for Power Quality 

Improvement Using Mayfly Optimization Technique, 2023 International Conference on 

Distributed Computing and Electrical Circuits and Electronics (ICDCECE), Ballar, India, 

2023. 

[64] Sabo, A.; AbdulWahab, N.I.; Mohd Radzi, M.A.; Mailah, N.F. A modified artificial 

neural network (ANN) algorithm to control shunt active power filter (SAPF) for current 

harmonics reduction. In Proceedings of the 2013 IEEE Conference on Clean Energy and 

Technology (CEAT), Langkawi, Malaysia, 18–20 November 2013; pp. 348–352. 

[65] Ibrahim, M. Sohail & Dong, Wei & Yang, Qiang. (2020). Machine learning driven smart 

electric power systems: Current trends and new perspectives. Applied Energy. 272. 

115237. 10.1016/j.apenergy.2020.115237. 

[66] K. V. Shihabudheen and G. N. Pillai, Wind Speed and Solar Irradiance Prediction Using 

Advanced Neuro-Fuzzy Inference System, 2018 International Joint Conference on Neural 

Networks (IJCNN), Rio de Janeiro, Brazil, 2018. 

[67] L. Qiao et al., Wind Power Generation Forecasting and Data Quality Improvement Based 

On Big Data With Multiple Temporal-Spatial Scale, 2019 IEEE International Conference 

on Energy Internet (ICEI), Nanjing, China, 2019. 

[68] Lei, Ma, Shiyan, Luan, Chuanwen, Jiang, Hongling, Liu and Yan, Zhang, (2009), A 

review on the forecasting of wind speed and generated power, Renewable and 

Sustainable Energy Reviews, 13, issue 4, p. 915-920, 

https://EconPapers.repec.org/RePEc:eee:rensus:v:1 3: y:2009: i:4:p:915-920. 

[69] Perera, A.T.D. and Kamalaruban, P., 2021. Applications of reinforcement learning in 

energy systems. Renewable and Sustainable Energy Reviews, 137, p.110618. 

[70] Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable 

energy forecasting. Energy Convers. Manag. 2019, 198, 111799. 

[71] Y. Maryasin and A. Plohotnyuk, Day-Ahead Power Forecasting of Renewable Energy 

Sources Using Neural Networks and Machine Learning, 2023 International Conference 

on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russian 

Federation, 2023, pp. 130-135, doi: 10.1109/ICIEAM57311.2023.10139134. 

[72] Y. Maryasin and A. Plohotnyuk, Day-Ahead Power Forecasting of Renewable Energy 

Sources Using Neural Networks and Machine Learning, 2023 International Conference 

on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russian 

Federation, 2023, pp. 130-135, doi: 10.1109/ICIEAM57311.2023.10139134. 

[73] Kadir, Kazi & Howlader, Md & Iqbal, Mirza & Alam, Md & Mahmood, Md & Rahaman, 

Dewan. (2023). Integration Of Cloud Computing: A New Transition for Bangladesh 

Power Grid Empowerment From Reliability To Grid Resiliency. Energy Systems. 1-28. 

10.1007/s12667-023-00632-w. 

[74] Jahan, I.S; Blazek, V.; Misak, S.; Snasel, V.; Prokop, L. Forecasting of Power Quality 

http://www.mdpi.com/journal/energies


1316                                           Mbuyiselwa Cindi et al. / IJCNIS, 16(S1), 1284-1316 
 

Parameters Based on Meteorological Data in Small- Scale Household Off-Grid Systems. 

Energies 2022,15,5251.https://doi.org/10.3390/en15145251. 

[75] Flores, J.J.; Garcia-Nava, J.L.; Cedeno Gonzalez, J.R.; Tellez, V.M.; Calderon, F.; 

Medrano, A. A Machine-Learning Pipeline for Large-Scale Power- Quality Forecasting 

in the Mexican Distribution Grid. Appl. Sci. 2022,12,8423.https://doi.org/10.3390/ 

app12178423. 

[76] T. Sogabe et al., Optimization of Decentralized Renewable Energy System By Weather 

Forecasting And Deep Machine Learning Techniques, 2016 IEEE Innovative Smart Grid 

Technologies - Asia (ISGT- Asia), Melbourne, VIC, Australia, 2016. 

[77] Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with 

Machine Learning and Deep Learning: Current Advances and Future Prospects. 

Sustainability 2023,15,7087. https:// doi.org/10.3390/su15097087. 

[78] Zeng, Z., Yang, H., Zhao, R. and Cheng, C., 2013. Topologies and control strategies of 

multi- functional grid-connected inverters for power quality enhancement: A 

comprehensive review. Renewable and Sustainable Energy Reviews, 24, pp.223-270. 

[79] M. N. Uddin and Y. H. Tabrizi, Artificial Intelligence Based Control Strategy of a Three- 

Phase Neutral-Point Clamped Back-to-Back Power Converter with Ensured Power 

Quality for WECS, 2022 IEEE Industry Applications Society Annual Meeting (IAS), 

Detroit, MI, USA, 2022. 

[80] O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, A Review of Machine Learning 

Approaches to Power System Security and Stability. June 30, 2020., DigitalObject 

Identifier 10.1109/ACCESS.2020.3003568. 

[81] M. A. Syed and M. Khalid, A Feedforward Neural Network Hydrogen Electrolyzer 

Output Regulator for Wind Power Control with Battery Storage, 2021 IEEE PES 

Innovative Smart Grid Technologies - Asia (ISGT Asia), Brisbane, Australia, 2021, pp. 

1-5, doi: 10.1109/ISGTAsia49270.2021.9715687. 

[82] I. Stoyanov, V. Ivanov and S. Kosunalp, Applying a Problem-based Learning in the Topic 

of Modelling of the Power and Improvement the Voltage Stability of Wind Turbines, 

2023 18thConference on Electrical Machines, Drives and Power Systems (ELMA), 

Varna, Bulgaria, 2023. 

[83] A. Islam, A. Merabet, R. Beguenane and H. Ibrahim. Power Management Strategy for 

Solar- Wind-Diesel Stand-alone Hybrid Energy System, World Academy of Science, 

Engineering and Technology, International Journal of Energy and Power Engineering, 

vol. 8, no. 6, 2014. 

[84] G. M. Masters. Renewable and Efficient Electric Power Systems, Wiley-InterScience, 

2004. 

[85] Zouidi, A.; Fnaiech, F.; Al-Haddad, K.; Rahmani, S. Artificial neural networks as 

harmonic detectors. In Proceedings of the IECON 2006— 32nd Annual Conference on 

IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 2889–2892. 

[86] Soliman, H.; Davari, P.; Wang, H.; Member, I.; Blaabjerg, F.; Fellow, I. Capacitance 

Estimation Algorithm based on DC-Link Voltage Harmonics Using Artificial Neural 

Network in Three-Phase Motor Drive Systems. In Proceedings of the 2017 IEEE Energy 

Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; 

pp. 5795–5802. 

[87] Michalec, Ł.; Jasi ´ nski, M.;Sikorski, T.; Leonowicz, Z.; Jasi nski, Ł.; Suresh, V. Impact 

of Harmonic Currents of Nonlinear Loads on Power Quality of a Low Voltage Network–

Review and Case Study. Energies 2021, 14, 3665. https:// doi.org/10.3390/en14123665. 

 

https://doi.org/10.3390/en15145251
https://doi.org/10.3390/

