
Available online at: https://ijcnis.org 245

Article History

Received: 18 February 2023
Revised: 04 March 2023

Accepted: 19 May 2023
Abstract
This paper focuses on the combination of the Flyweight design pattern
with the MVC structure that would boost the performance of web
applications. Thus, the given study proves the effectiveness of
performance enhancement as well as scalability through the
combination of Flyweight for minimizing storage via shared data and
MVC for compartmentalizing concerns. It is noted that the
implementation focus on the UI components and data models to
achieve evident improvement on the resource usage and response
time. Nonetheless, some issues in the implementation of Flyweight
object and applying the pattern across different contexts are discussed
to delineate the future research areas.
Key words: Flyweight Design Pattern, Model-View-
Controller (MVC), Web Application Efficiency,
Performance Optimization.

International Journal of Communication Networks and

Information Security
ISSN: 2073-607X, 2076-0930

Volume 15 Issue 01 Year 2023

INTEGRATING FLYWEIGHT DESIGN PATTERN AND
MVC IN THE DEVELOPMENT OF WEB APPLICATIONS

Prassanna Selvaraj
Independent Researcher, USA.

Ravi Kumar Singh

Independent Researcher, USA.

Harsh Vaidya
Independent Researcher, USA.

Aravind Reddy Nayani

Independent Researcher, USA.

Alok Gupta
Independent Researcher,USA.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 245

TABLE OF CONTENTS
Introduction.. 4
Literature Review ... 4

Flyweight Design Pattern ... 4
MVC Architecture ...5
Integration of Flyweight and MVC .. 6
Implementation and Gaps ... 7

Methodology ... 8
Design Strategy .. 8
Implementation Process ... 8
Data Collection and Analysis ... 8

Result & Discussion ... 9
Analysis of Performance Improvements .. 9
Comparison with Traditional Approaches ... 9
Implications for Web Development .. 9

Future Directions ..10
Conclusion ...10
Reference List .. 12

Introduction
In today’s world of web application development design patterns have greatly contributed towards
scalability, maintainability and flexibility. The Flyweight design pattern is more relevant to conserve
memory space by using same data for many objects while Model-View-Controller (MVC) architecture is
more relevant to divide three tiers, application tier, user interface tier and data tier. Flyweight is
implemented harmoniously with the use of the MVC architecture and it presents a way of developing
effective, lightweight web applications. This paper aims at emphasizing the integration of these two
paradigms especially in regards to their interrelation with resources and structures. Knowing how to put
this integration into practice will help developers enhance applications’ interactions as well as increase
the programs’ performance in circumstances where resources are limited, thereby easing the design of
better Web solutions.
Literature Review
Flyweight Design Pattern
According to Rana, 2019,dissect the gains that accrue from using the Flyweight design pattern in
increasing efficiency of software. The research work offers the real world analysis of Flyweight and Proxy
patterns, which addresses the issues of memory consumption and execution time in programs. Albeit, the
authors show that the Flyweight pattern succeeds in cases of numerous similar objects due to the
minimization of memory use through data sharing.

Figure 1: Flyweight design

(Source: Rana, 2019)

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 246

246

This is evident from their study whereby they show that object creation overhead is reduced by the
Flyweight pattern as well as efficient memory usage as intrinsic state (shared data) is different from the
extrinsic state (object-specific data). It also saves memory space and improves the efficiency of an
application according to the findings of their experiments. They corroborate this with several examples
that show how Flyweight led to drastic decrease of resource consumption in comparison with typical
object handling approaches. Obviously, the investigated reasearch illustrates to what extent the proposed
pattern helps to enhance the software performance and thus points out why it deserves the attention of
developers who plan to create applications that would have high scalability rates.
MVC Architecture
According Sarker&Apu2014, where it explain the Java based application framework for developing a
Model-View-Controller (MVC) architecture of a desktop application. In their study, they highlight how
MVC makes it easier to achieve a design that is both modulized and easy and easy to maintain and scale
up in its size.

Figure 2: Architecture framework

(Source: Sarker&Apu 2014)

The authors present a comprehensive discussion on the MVC architecture, outlining its core components:
Model (controls the data and the business logic), View (controls the presentation or the user interface),
and Controller (controls the inputs and changes in the Model). Through using MVC with their Java
framework they show more of the separation between the different layers / concerns, which results in
more coherent and easier debuggable code. The analysis made by authors on several Web 2.0 applications
show that MVC architecture helps developers on the application development and testing, due to isolate
the different parts and aspects of the application, which unequivocally facilitates the implementation of
more manageable and scalable software. It also give real-usable tips about implementation of their MVC
framework proving the effectiveness of the approach. They also conformed that such approach as MVC
pattern proved to be useful in development of well-organized and highly adaptive soft, thus evidencing its
utility in both, desktop, and potentially web-based, software creation.
Integration of Flyweight and MVC
According to Ali et al., 2014, investigates the application of the Flyweight design pattern in
improving multimedia mobile applications with the use of MVC. The authors extend to examining how
integration of these design patterns solves particular issues arising from the management of resources
and application performances in multimedia applications.
The paper explains the implementation of Flyweight in the context of the MVC architecture to handle
optimally shared objects and in a special reference to models with a huge number of similar multimedia
parts. The study clearly shows how Flyweight helps in revising the contents of memory through the use of
shared data contents which goes well in multimedia application that requires high capacity graphics and
data.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 247

246

Figure 3: Android view groups

(Source: Ali et al., 2014)

It show specific cases in which Flyweight is used to increase efficiency in the process of working with
similar multimedia objects that include images and audio files while MVC ensures the clear division of the
application logic, graphic interface, and system input data. This integration leads to enhanced
effectiveness of the application as well as utility and usage of the likely available resources. Thus,
revealing, the efficiency of the utilization Flyweight pattern together with MVC pattern when designing
complex multimedia applications, the work offers useful recommendations to developers who work on
such projects.
Implementation and Gaps
In applying the Flyweight in the context of MVC within Silverlight, it has been so in the optimization of
the reused components of the UI, and the models, where the goal was to minimize on memory
consumption due to repetitive use. Nevertheless, some issues are still open concerning the Flyweight
usage across a large set of application domains. Some of them are related to Flyweight objects’ lifecycle, its
interaction with different MVC implementations. Also, more detailed information about execution of the
Flyweight pattern for achieving maximal effect, avoiding potential over complication in real projects is
required as well as the maximal compliance with the principles of MVC architecture. It is for this reason
that more research will have to be conducted in the future to provide an answer to these shortcomings and
to make the integration process more efficient.
Methodology
Design Strategy
In using the Flyweight design pattern in the MVC design approach, the issue was looked at from the
perspective of minimizing on usage of memory and improvement of performance in a web application.
The MVC framework was chosen because of its modularity which make it easier to implement the
Flyweight pattern. Especially, the Flyweight pattern was adopted in order to minimize the memory
consumption by minimizing the sharing of repetitive elements and data throughout the application. For
instance, the design strategy consisted of specifying the areas of the application that involved a high
degree of object duplication, mainly the UI components and the data models, and apply the Flyweight
pattern there.
Implementation Process
The implementation process started from the creation of the web application of the MVC-based structure
using PHP framework like Laravel. The Model layer was used to manage the data interactions while the
View layer was used to display the interface to the user and finally the Controller was used to control the
Model-View connection. Then the Flyweight pattern was used for the Model and View layers. Static
content, which includes UI, and content generic to all Flyweights were stored as the intrinsic data of the
objects as shown while the specific data to a particular command resided in the extrinsic data controlled
by the Controller.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 248

248

Data Collection and Analysis
To assess the effectiveness of the present integration of Flyweight-MVC, samples of performance
measurement were taken before and after using the Flyweight-MVC implementation. These were such
parameters like how much memory was used, the time it took for the server to respond and how long it
took to render the user interface. The information has been evaluated to identify the effects of the
integration in the area of the application’s expandability and resource utilisation. Information gathered
from the results section were compared with the initial performance of the algorithms to determine
improvements or lack of it and probable options for optimization.
Result & Discussion
Analysis of Performance Improvements
The incorporation of the Flyweight design pattern into the management of the MVC based web
application architecture resulted in considerable performance improvements in the benchmark test case
application. Specifically, the principle of Flyweight was applied to the UI components and the data models
and as a result memory consumption was improved. This reduction is in agreement with the result shows
that Flyweight reduces the memory by having a common data area for similar objects (Griffith, 2021).
Similarly, the case study saw significant improvements in the application’s response time as well as
decrease in latency.
Comparison with Traditional Approaches
Therefore, the implementation of Flyweight and the integration of the features in our proposed
architecture demonstrated better efficiency than a conventional MVC implementation. This is because
traditional MVC can be expensive in terms of memory since multiple copies of similar objects may be
created which may go well of resource constraint environments. The issues mentioned above are resolved
in the Flyweight-enhanced MVC architecture because it uses shared data and corresponds with learning
system (Dewang& Rao, 2021). This integration not only enhanced utilization of resources but also
preserved the modularity and scalability of MVC which are hardly seen in some of the conventional
procedures in which memory overhead turns into a disadvantage.
Implications for Web Development
It basics on the fact that, Flyweight when used in conjunction with MVC provides lasting gains in web
application development especially for those applications that need to leverage resources. This approach
helps enhance scalability since it decreases the use of memory while helping to operate much faster,
especially when dealing with large loads or environments that are constrained by memory. But there are
some potential drawbacks such as a growth of the difficulty of the Flyweight objects management and,
therefore, growing the potential for their incorrect usage that may need more skillful definite developers
(Sermeno, &Secugal, 2021). Nevertheless, the approach exhibits a high potential as for the optimization of
web applications, which indicates the further direction of the development and researches of the scale and
effective web solutions.
Future Directions

1. Enhanced Integration Techniques: Research how to further enhance performance of Flyweight
and its integration with MVC concerning resources utilized. In so doing, it could entail identifying
other algorithms or frameworks that can complement these design patterns in a more integrated
manner.

2. Broader Application Scope: Future work should further explore the integration of Flyweight and
MVC patterns with different kinds of Web applications based on various types of data and various
types of interactions between the user and the application with the purpose of evaluating the
applicability of the proposed patterns in practice.

3. Adaptation with Other Design Patterns: Explore the possible interactions and synergies of the
Flyweight with other patterns: Singleton or Observer effective to solve various architectural issues
and increase the efficiency of the system.

4. Performance Benchmarking: It is necessary to perform extensive empirical evaluation of
performance variations under diverse conditions and scenarios for defining the effectiveness of
Flyweight-MVC integration and discovering further enhancement opportunities.

5. User Experience Impact: Assess where integration takes place and how that impacts user
experience, especially how fast a user interacts with a web page, from a user experience
perspective to determine what areas in the user journey the improvement in performance is likely
to be appreciated / required from the user side.

https://ijcnis.org/

International Journal of Communication Networks and Information Security

Available online at: https://ijcnis.org 249

248

6. Automated Tools: Write scripts or templates which would be helpful for implementation of

Flyweight with MVC thus reducing the weight of efforts from the developer side.
Conclusion

This paper embraces the Flyweight design pattern, and shows how its combination with the Model-View-
Controller (MVC) architecture is a sound solution by providing an efficient solution of performance and
resource utilization in web applications. UI utilization and shared data can benefit from the Flyweight
pattern while responsiveness and proper division of work can be enhanced with the help of the MVC
pattern that results in memory optimization, stresses that it works best in resource-scarce environments
and in interactive Web applications. Possible difficulties in manipulation of Flyweight objects may be
present; however, the advantages namely are the simplicity of creating extensions and the ability to
expand the application’s functionality without drastically affecting change, all outweigh these difficulties.
Except for the importance of resources management the usage of approach also helps to create the
maintainable and scalable web applications. According to the development of web applications, the
integration with Flyweight-MVC is seen as a prospect for making optimization, and can be regarded as a
consideration for the next generation of web applications development.

Reference List
Journals
Rana, M.E., Ab Rahman, W.N.W., Murad, M.A.A. and Atan, R.B., 2019. The Impact of Flyweight and
Proxy Design Patterns on Software Efficiency: An Empirical Evaluation. International Journal of
Advanced Computer Science and Applications, 10(7).
Sarker, I.H. and Apu, K., 2014. Mvc architecture driven design and implementation of java framework for
developing desktop application. International Journal of Hybrid Information Technology, 7(5), pp.317-
322.
Ali, M.M., Elsharkawi, A.F., El Said, M.G. and Zaki, M., 2014. Design Pattern for Multimedia Mobile
Application. Journal of Computer Science And Software Application, 1(2).
Tabunshchyk, G., Petrova, O., Kapliienko, T. and Arras, P., 2021. Architectural Characteristics of
Biomedical Software Applications. Teaching and subjects on bio-medical engineering, p.98.
Griffith, I.D., 2021. Design pattern decay: a study of design pattern grime and its impact on quality and
technical debt.
Bösiger, F., 2021. Flyweight ASTs: A Study in Applied Laziness.
Sermeno, J.P. and Secugal, K.A.S., 2021, December. Class Scheduling Framework Using Decorator and
Façade Design Pattern. In 2021 Second International Conference on Innovative Technology Convergence
(CITC) (pp. 38-45). IEEE.
Dewangan, S. and Rao, R.S., 2021, December. Design pattern detection by using cosine similarity
technique. In 2021 IEEE 6th International Conference on Computing, Communication and Automation
(ICCCA) (pp. 171-175). IEEE.

https://ijcnis.org/

