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The field of computer vision has made significant strides in object detection in recent years, 
primarily because of the introduction of deep learning techniques, specifically 
Convolutional Neural Networks (CNNs). We have introduced a novel method for the multi-
object detection in multi-scene cluttered environment in the proposed work. In order to 
build multi-scale andmulti-scene object detection, in our work we have provides a multi-
scale neural network basedonthehigherresponse of FastR-CNNarchitecture. For the 
experimental work,we have considered different categories of different objects. The dataset 
is designed to facilitate the development of object detection techniques. It comprises 12,165 
object chips, each consisting of 256 pixels in both azimuth and range dimensions. This 
dataset encompasses diverse primary backgrounds and object sizes. Furthermore, well-
known cutting-edge object detectors that have been trained on real-world images are 
modified to serve as baselines, guaranteeing the availability of reliable and practical 
reference points. Experimental results indicate that these object detectors not only enhance 
various quantitative metrics but also achieve unprecedented levels of accuracy, surpassing 
the capabilities observed in prior studies. 

Keywords:Convolutional Neural Networks, Computer Vision, Object detection, Genetic 
Algorithm, Particle Swarm Optimization. 

INTRODUCTION 

Object detection represents a critical area of study within computer vision, finding applications across various 
domains such as surveillance, object recognition, event analysis, and human-computer interfaces [1, 2, 3]. While 
extensive research exists in the literature on object tracking, many current algorithms excel primarily in simple 
scenarios where the target object exhibits slow motion and minimal occlusion [1, 2]. However, in more complex 
situations characterized by factors like illumination changes, pose variations, rapid motion, partial occlusion, and 
background clutter, existing approaches may encounter tracking drifts. Hence, there is a demand for robust visual 
dynamic object detection methods to address these challenges effectively. 

Based on their mode of representation, existing object detection techniques can be divided into two main 
groups: parts-based and holistic techniques. The holistic approach relies on global visual cues to model the target's 
appearance, which is effective for detecting large objects [4-6]. However, in scenarios with occlusion, deformation, 
or other local visual changes, the holistic approach may struggle to adapt, leading to mismatches or drifting during 
tracking. Conversely, the parts-based approach captures spatial information by modeling the target's appearance 
using local patches. [7-9]. While these patches may be loosely interconnected or unconnected, allowing for some 
spatial deformation, they provide flexibility in updating the visual model, making them suitable for short-term 
tracking. These approaches excel in handling motion variations and partial occlusion but may drift in situations 
with background clutter or motion blur due to their focus solely on local cues.Both the holistic and parts-based 
approaches concentrate on either global or local visual cues, potentially resulting in drifts during tracking. 
Moreover, these approaches often overlook important contextual cues, leading to distorted localization results. 
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Consequently, existing tracking methods may struggle to effectively track target objects in more complex 
environments. 

LITERATURE 

Object detection encompasses a wide range of applications and techniques for identifying and categorizing 
objects within images [1]. This section of the study aims to thoroughly explore and compare classical and modern 
object detection methods, along with their respective applications, using publicly available real-world datasets [2-
7]. Object detection involves identifying specific items within images and assigning them to predefined categories 
based on their unique attributes [8-11]. While numerous object detection methods exist, each with its own strengths 
and weaknesses depending on factors such as application domain, implementation details, and choice of algorithm, 
this study categorizes classical techniques into two main types: region-based and classification/regression-based 
[12-16].  

Region-based approaches work in a step-by-step manner, segmenting input images into regions of interest 
before classifying them into pre-established groups. On the other hand, classification/regression-based techniques 
adopt a more holistic approach, performing image classification and object recognition simultaneously within a 
unified framework to mitigate noise and other issues [17-24]. Region-based Convolutional Neural Networks (R-
CNN), Fast Region-based Convolutional Neural Networks (Fast R-CNN), Faster Region-based Convolutional 
Neural Networks (Faster R-CNN), and Mask Region-based Convolutional Neural Networks are a few of the 
techniques that fall under these categories [25-30].  Additionally, several advancements have been made to address 
issues such as inaccurate localization. In order to explicitly penalize localization inaccuracies, [31–33] trained class-
specific CNN classifiers with a structured loss and utilized a Bayesian optimization-based search algorithm to guide 
bounding box regressions. In order to impose geometric constraints on object parts, [37] proposed a deformable 
deep CNN with a novel deformation constrained pooling layer. [34–36] also improved object detection for RGB-D 
images by incorporating semantically rich image and depth features. Proposing a way to enhance performance by 
biasing sampling to match ground truth bounding box statistics, [38–40] examined the function of proposal 
generation in CNN-based detectors. 

PROPOSED METHODOLOGY 

The initial convolutional layers play a crucial role in identifying small objects within input images. In addition to 
improving performance by offering semantic understanding, this integration of deep and initial convolutional 
layers also maintains the spatial structure of low-resolution images. After that, bounding boxes and objects from 
various classes are used to interpret the Single Shot Detector's (SSD) outputs. Multiple feature maps with varying 
scales are used for accuracy evaluations and confidence prediction. Illustrated in Figure 3.1 is the classical 
architecture of the Single Shot Detector. 

In contrast to traditional sliding window methods, the majority of SSD approaches use a grid structure, where 
each grid cell is tasked with identifying objects in different areas of the input image. This region-based technique 
facilitates straightforward object detection within each grid, followed by classification into predefined classes or 
labels for detected objects. Grids without detected objects are designated as background images, while grids 
containing multiple objects may utilize techniques such as anchor box and receptive field. Each anchor or box is 
assigned to one grid, ensuring predefined allocation. 

We propose an architecture with five max-pooling layers and twenty-two convolution layers. As seen in Figure 
3.2, the first 16 convolution layers take features from the input image, and the last 6 convolution layers are used for 
object detection. Training is conducted on images sized 608 × 608, predominantly utilizing 3 × 3 and 1 × 1 filters, 
with filter numbers doubling after each pooling step. 

The performance of end-to-end detection techniques is heavily influenced by anchor box quality. Anchor boxes 
based only on fixed sizes might not sufficiently cover the range of object sizes found in the dataset, even though they 
can be generated with fixed sizes and scales. Our approach introduces a multi-scale anchor box methodology to 
enhance detection accuracy, employing a grid size of 19 × 19 for detecting small objects. The final convolution layer 
generates 675 output tensors based on class presence probabilities and bounding box coordinates. Subsequently, 
anchor boxes are selected, and regression is applied to predict object classes along with bounding box coordinates. 
Next, among overlapping bounding boxes, the bounding box with the highest probability is chosen using a non-max 
suppression technique with IoU = 0.5. 

During the prediction phase, feature maps serve to identify objects within predefined anchor boxes. However, 
not all anchor boxes may yield sufficient information for effective object detection, resulting in increased processing 
time. To mitigate this issue, our research introduces an efficient method for leveraging anchor boxes during 
prediction. This method involves sorting anchor boxes in descending order of size and applying prediction 
exclusively to boxes containing relevant information, thereby reducing computational and memory overhead. We 
validate this approach through an optimized multi-scale anchor box technique, which utilizes the canny edge 
detector algorithm to assess information presence within anchor boxes. Moreover, arranging anchor boxes in 
descending order further streamlines the detection process by prioritizing larger-scale boxes. These strategies are 
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succinctly outlined in our work, elucidating both the training and detection phases of the proposed model (Figure 1 
and 2). 

 

Figure 1. Flow process of the data processing 

 

Figure 2. Processing of the Input image for Bounding Box 

The feature maps utilized for predicting objects within predefined anchor boxes may not uniformly contain 
sufficient information for object detection. Despite this, prediction scores are computed for all anchor boxes, 
leading to increased execution time during both training and testing phases of object detection. Consequently, real-
time object detection becomes time-intensive and diminishes the Frames Per Second (FPS) rate. To address this 
challenge, our research introduces an effective method for leveraging anchor boxes in prediction tasks. Specifically, 
rather than applying prediction to all anchor boxes indiscriminately; we employ a selective approach to account for 
the potential absence of information in certain anchor boxes. To validate this approach, anchor boxes are sorted in 
descending order based on their sizes. If a large-sized anchor box contains no information, exploration of smaller 
anchor boxes within the same grid is deemed unnecessary. This methodology is implemented within the final layer 
convolution block, resulting in significant savings in computational resources and memory usage.This approach is 
delineated in two key components:The following is how an efficient multi-scale anchor box determination 
procedure evaluates the presence of information: 

The canny edge detector algorithm [23] is applied exclusively to the anchor box section. This algorithm 
necessitates minimum and maximum threshold values to distinguish between weak and strong edges. To 
streamline this procedure, we employ the Otsu binary threshold [24], which provides the min Value and max Value 
thresholds automatically. 

Subsequently, the resulting output image undergoes black and white pixel frequency calculation. If the 
frequency of white pixels falls below 30, it indicates absence of information; otherwise, information is deemed 
present. Iterative experimentation is used to determine the threshold value of 30, which is a hyper-parameter that 
is customized for the Pascal VOC-2007 dataset. 

To optimize small object detection, anchor boxes are arranged in descending order, starting with larger-scale 
boxes before progressing to smaller ones. This hierarchical arrangement obviates the need to process smaller-scale 
anchor boxes if information is absent from larger-scale counterparts. This streamlined approach reduces the 
computational overhead associated with predicting the presence of information within anchor boxes, thereby 



    368                                                                                                                                                                                Kritika Vaid/IJCNIS, 16(4), 365-372                                

 

 
enhancing efficiency.  

EXPERIMENTAL RESULTS 
The result section highlights the outcomes of training various object detection models, focusing on comparing 

multiple algorithms such as R-CNN, Faster R-CNN, YOLO, and SSD. These models are designed to detect objects in 
images in a single pass and are suitable for deployment on mobile devices. Among these, Faster R-CNN stands out 
for its superior accuracy, particularly in multi-stage object detection scenarios. 

The comparative analysis involved training Faster R-CNN, YOLO, and SSD algorithms using the Custom 
Dataset. The training was conducted on Google Collaborators Notebooks using the Tensor Flow Object Detection 
API and Robo flow. To visualize the training and evaluation metrics, Tensor board, an interactive tool by Tensor 
Flow, was employed. The graphical representation of the results was crafted using MATLAB 2020a and Python. 

For the execution of the experiments, a Windows 11-based system with 16 GB RAM and a GTX GPU was utilized, 
ensuring sufficient computational resources for training and evaluation tasks. These specifications contribute to the 
reliability and efficiency of the experimentation process, facilitating meaningful comparisons between the different 
object detection algorithms (Table 1). 

Table1: Comparative Analysis of the Mathematical results 

 
 

Here, the table 2 represents the mathematical parameters processing of the Convolutional Neural Network 
architecture’s different layers when the image process through the model.  Here the First column represents the 
Input stages and the processing stages. In our work, we have proposed the 5 Convolutional layers and 2 pooling 
layers for the down samples of the features.  RoI Align represents the Region of interest to draw the bounding box 
on the target area. We have used 3 fully connected layers represented by FC6, FC7 and FC8.  Kernel Size simply is 
the filter which is a small matrix that slides over the input image during the convolution operation.  Its size 
determines the receptive field: how much of the input it “sees” at once. Common kernel sizes include 1x1, 3x3, 5x5, 
or 7x7. But here for the optimization we have proposed 3x3 filter size in our work since larger kernels capture more 
complex features, but they also increase computational cost and smaller kernels are computationally efficient but 
may miss fine details. Padding is the process of adding extra pixels around the input image before applying 
convolution. It helps preserve spatial dimensions and prevents the output feature map from shrinking. Stride 
determines how much the kernel moves (slides) across the input image. A stride of 1 means the kernel moves one 
pixel at a time. In our work, we have used a mixture of 1 and 2 stride for better information retain. The output size 
represents the Image pixel at each stage.  As a raw image, when we input the image which is having a large number 
of pixels needs to be down sampled after every stage processing provided the information should be retained and 
finally after the fully connected layers which combine all the neurons from the different processing stages to get the 
final output (Figure 3 and 4). 

Table2: Processing of the Convolutional layers 
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Figure 3. Output of the Detected Objects 
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Figure 4. Graphical Representation of the Results 

A predicted bounding box's accuracy is evaluated according to how closely its Intersection over Union (IoU) 
overlaps with the ground truth bounding box. This is done in accordance with the ILSVRC, which is the accepted 
method for measuring detection results. Other methods characterized by hand-designed features, exhibits 
decreased precision and recall compared to the other two methods due to its sensitivity to the contrast between 
ships and the background. Conversely, YOLOv2, leveraging Convolutional Neural Networks (CNNs) for object 
detection in complex environments, surpasses technique [14] in detecting adjacent targets. In contrast, our method 
excels in both recall and precision metrics. Furthermore, we compute the other mathematic parameters also for 
each approach, considering only accurately predicted bounding boxes in the calculation. 

CONCLUSION 

Intoday’sworld,advancementintechnologylikemachinelearning,artificiallearning, and deep learning is becoming 
a solution to the real problems. Convolutional neural networks (CNNs) with deep learning are one of these 
technologies that has greatly advanced the field of object detection and classification problems.This paper is all 
about how are objects detection problems is getting resolved withbetter accuracy in no time using CNN model that 
too with increased accuracy.We have studied various literatures and then we have projected our own algorithm 
which is inspired by Convolutional neuralnetwork. The hybrid proposed model promises the better results in terms 
of various mathematical as well as qualitative manner.  In the proposed work, we have bounding box the cluttered 
data taken from various different sources based on real time and performed various algorithm, the mathematical 
tables shows the various results obtained from the different algorithm. The proposed model shows the better 
accuracy in terms of enhancement of other parameters also.  To improve the work in the future the optimization 
algorithm may be implemented to address the problem of early convergence. 
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