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This paper proposes a novel deep-learning method to detect arrhythmias 
from the ECG data by adopting pre-trained GPT models and other 
powerful state-of-the-art DL algorithms. Most traditional ECG 
classification models face challenges in capturing complex temporal 
dependencies and handling class imbalances. To meet these challenges, 
our system leverages GPT to capture complex temporal patterns and 
contextual relationships within ECG signals, enabling us to better 
under-stand the more intricate depen-dencies in the data. Finally, the 
proposed system lever-ages data augmentation with Generative 
Adversarial Networks (GANs) to generate a wide variety ofcomplex 
samples, which help improve model capability and robustness. It also uses 
Triplet Loss, which shows it can work better on imbalanced classes and 
tiny differencesin different cardiac arrhythmias. Compared with other 
methods, our results exhibit great im-provements in classification 
performance, particularly for rare arrhythmias. Model Interpretability is 
based on SHapley Additive exPlanations(SHAP) and Gradient weighted 
Class Activation Map (Grad-CAM), which interpret the model decisions. 
Keywords: ECG Classification, GPT, GANs, Triplet Loss, Model 
Interpretability, Arrhythmia Detection 

 
1. Introduction 

Electrocardiography (ECG) is one of the core approaches in modern medicine to provide important information 
regarding the heart's electrical activity via long-term monitoring and for diagnosing different cardiac conditions [1]. 
This detection is essential for early intervention and treatment, as arrhythmias and irregular heartbeats can result 
in fatal consequences such as stroke or even worsening of local muscle function that may possibly lead to a 
worsening health condition [2]. ECG interpretation is traditionally performed by expert clinicians, which entails a 
manual visual inspection of ECG traces that has the potential for error. Therefore, the demand for automated ECG 
classification tools that develop diagnostic precision and operational effectiveness has increased [3, 4]. 

The newly developed deep learning methods have made a significant breakthrough in the upgradation of 
automatic ECG classification. For the purpose of extracting spatial features from ECG signals,Convolutional Neural 
Networks (CNNs) were used to capture temporal dependencies Recurrent Neural Networks (RNNs) [5]. While great 
strides have been made over the years with these solutions, traditional models are not without their limitations. 
While Convolutional Neural Networks (CNNs) may not capture all long-term temporal patterns, Recurrent NN 
models such as LSTMs easily suffer from poor gradients with significant burdens on computational costs [6]. 
Furthermore, the issue of class imbalance has not been completely eliminated because some types of arrhythmias 
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are found infrequently in clinical practice, and training dataset performance remains biased with low sensitivity for 
rare arrhythmia [7]. 

Initially created for Natural Language Processing (NLP), transformers have been proven to be very effective in 
sequence modeling as they keep long-term correlations and context-aware relationships [8]. While RNNs process 
sequences in order, Transformers employ self-attention mechanisms to assess the entire sequence simultaneously 
[9], compensating for certain deficiencies of RNNs. In this research, they meant a study on applying GPT to ECG 
arrhythmia classification [10]. The ability of GPT to comprehend and create contextually rele-vant sequences helps 
improve arrhythmia classification accuracy, particularly for identifying rare and subtle types [10]. 

Triplet Loss Also, the triplet loss alleviates imbalanced class problems by distinguishing intra-class variation 
and inter-class difference by focusing on relationships between examples [11]. This method enhances the 
classification performance, especially for underrepresented arrhythmia types [12]. 

Furthermore, model interpretability is crucial for clinical adoption. To facilitate understanding of the Model's 
decisions, we integrate interpretability tools using Grad- CAM [13]. These tools provide visual and quantitative 
insights into the Model's decision-making process, aiding clinicians in validating and trusting the automated 
diagnoses. This dual approach ensures the Model's accessibility in clinical settings with limited internet 
connectivity. It supports broader integration with cloud-based healthcare systems, enhancing the overall diagnostic 
capabilities available to healthcare providers. 

The contributions of the proposed system in this work are:  

• We utilize GPT's powerful temporal pattern recognition and contextual analysis capabilities within the 
proposed system to significantly enhance the classification of ECG arrhythmias, focusing on accurately 
identifying rare and complex arrhythmia types. 

• By employing Generative Adversarial Networks (GANs) [14] within the proposed system for data 
augmentation, we generate synthetic ECG samples that address class imbalance and expand the diversity of 
training data, leading to improved model robustness and generalization. 

• We incorporate Triplet Loss within the Proposed system to strategically manage class imbalances, focusing on 
optimizing the relative distances between ECG examples. This approach enhances the Model's ability to 
discriminate between various arrhythmias, particularly those that are underrepresented. 

• We integrate interpretability tools using SHAP and Grad-CAM within the Proposed system to provide detailed 
insights into the Model's decision-making process, ensuring transparency and facilitating clinical validation of 
the predictions. 

The remainder of this paper is structured as follows: Section 2 reviews the related work, including traditional 
machine learning approaches, deep learning models, transformers, and methods for addressing class imbalance in 
ECG datasets, as well as interpretability in deep learning. Section 3 provides an in-depth explanation of the 
proposed methodology. Section 4 presents the experimental setup, followed by an evaluation of the Model's 
performance in Section 5. We also benchmarked our Model against existing models and assessed the impact of 
triplet loss on class imbalance. Section 6 discusses the study's limitations and potential future work and concludes 
the paper by summarizing the key findings and contributions. 

2. Related Work 
The field of ECG arrhythmia classification has evolved significantly over the years, with various approaches 

being explored to improve accuracy, robustness, and interpretability. The present section discusses the literature 
and divides it into five different entities, which are as follows: Traditional machine learning techniques, deep 
learning solutions, Transformers & Attention mechanisms, Tackling Class Imbalance in ECG, Datasets, and 
Interpretable Deep Neural Networks. 
2.1 Traditional Machine Learning Approaches 

Machine learning models have previously been heavily utilized in ECG automated classification research, 
mainly concentrating on classical machine learning methods. These methods relied on handcrafted feature selection 
from ECG signals and classification with algorithms like Support Vector Machines (SVM) [10], K-Nearest Neighbors 
(KNN), and Random Forests. For example, different works have used SVMs to classify arrhythmia from heart rate 
variability and wavelet coefficients [15–18]. Distance metrics were computed on feature vectors extracted from ECG 
signals [19] so KNN classifiers could discern normal and abnormal heartbeats. An adaptive ensemble learning 
approach was used as Random Forests to overcome the curse of dimensionality for ECG data features. However, this 
approach has proven more effective than traditional techniques [20]. While these approaches provided some basis, 
they depended on handcrafted features, and their generalizability to other patient cohorts was limited. 

Despite their early success, some common shortcomings of the traditional machine learning approach limit 
them from performing well in ECG classification tasks under modern setups. This manual feature extraction is labor 
intensive and requires domain expertise, making it non-scalable for adapting to different ECG datasets. 
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Additionally, their models often underperform in ECG signal classification because they are unable to handle the 
intricate temporal dynamics of these signals. Dealing with these challenges demonstrated the requirement for 
greater automation and scale, prompting the investigation of deep learning methods. 
2.2 Deep Learning Models 

The advent of deep learning has recently transformed the task by allowing it to extract features automatically 
through raw ECG signals. CNNs have become widespread applications due to capturing the spatial hierarchies in the 
data [21-23]. Recent studies have shown that CNNs can detect complex arrhythmias better than conventional 
approaches by automatically learning discriminative features directly from data [24–26]. Methods A variety of 
machine learning algorithms and deep neural network models have been proposed for arrhythmia detection or 
classification of the ECG signals, among which RNNs, especially Long Short-Term Memory (LSTM) networks, were 
recently introduced to capture temporal dependencies originating from representations in time series data [27–29]. 
Recently, some hybrid models that combine CNNs and RNNs have been proposed to use spatial features from the 
leads (through windowing) and sequential information about these networks [30, 31], giving best-in-class results in 
different ECG classification tasks. 

For all their leaps forward in automatic ECG classification, deep learning models are not yet perfect. Some of 
these models need big annotated datasets for training that might not be easily accessible, especially in certain 
arrhythmias. Second, deep learning is more likely to overfit small or imbalanced datasets.These models have a 
certain level of complexity, making them computationally expensive to train and deploy. Therefore, it is necessary to 
develop more scalable models that can generalize across multiple datasets and are class-balanced agnostic, which 
has led to the surge in research with Transformers and attention mechanisms. 
2.3 Transformers and Attention Mechanisms 

Transformers have historically been created for Natural Language Processing (NLP). However, due to the self-
attention mechanism that allows the modeling of long-range dependencies, it has recently gained acceptance in ECG 
classification tasks [32]. This level of parallelism contrasts with RNNs, which process data sequentially and make 
them significantly more efficient in large datasets[33]. Attention mechanisms facilitate the identification of its 
highly informative parts in ECG signals and, therefore, help CNNs capture subtle patterns linking with each type of 
arrhythmia when used as feature extractors [34]. Recent research has confirmed the applicability of pretrained 
Transformers, such as BERT and GPT, for ECG [35-37]. 

Challenges Remained: Even the Transformers showed promising results in ECG classification with attention 
mechanisms. However, these models are often too resource-hungry and hence cannot be deployed in a viable 
manner to the general/mobile/edge computing devices. Furthermore, despite the increased interpretability of 
attention mechanisms, these models are often black boxes to many clinicians, and their trust in predictions can be 
low. This underscores the interest in lightweight interpretable models that could fit various clinical settings. 
2.4 Addressing Class Imbalance in ECG Datasets 

ECG datasets often have very few samples of certain arrhythmia classes, with models trained on these data 
being biased towards the majority class and resulting in poor performance for minority classes, also known as an 
imbalanced dataset. One of the challenges has been dealing with it, and we saw several different strategies emerge. 
Data-level approaches such as SMOTE [38] and its variants balance the dataset to generate synthetic samples of 
minority classes. Moreover, Generative GANs have been used to model realistic synthetic ECG signals to enhance 
the models with under-represented courses [39, 40]. At an algorithmic level, cost-sensitive learning assigns 
different misclassification costs to each class to discourage the prediction of minority classes more frequently [41]. A 
modification of cross-entropy loss, adapted to focus the learning algorithm on difficult examples (often those 
associated with minority classes), has also been used by focal loss [42]. 

Despite various techniques for addressing class imbalance, challenges remain. Synthetic data generation 
methods like SMOTE and GANs can produce unrealistic or noisy samples, potentially degrading model 
performance. Cost-sensitive learning and Focal Loss are effective but require careful hyperparameter tuning, which 
can be challenging. These methods enhance performance for minority classes but may not ensure overall model 
robustness across all classes. This highlights the need for an integrated approach that combines data-level and 
algorithmic techniques with advanced modeling strategies, such as Transformers, to achieve balanced and reliable 
ECG classification. 
2.5 Interpretability and Explainability in Deep Learning 

As deep learning models become increasingly complex, their interpretability has become a critical concern, 
especially in healthcare applications where trust and transparency are paramount [43]. Various methods have been 
developed to make these models more interpretable. Techniques such as SHAP provide a unified approach to 
interpreting model predictions by attributing importance scores to each feature in the input data [44].Grad-CAM 
provides visual explanations showing what parts of the input ECG most affectthe Model's predictions [45]. In ECG 
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classification, layer-wise relevance propa-gation (LRP) [46] and other saliency map techniques for the 
interpretability of deep neural networks have also been attempted to understand the decision-making process. 

While interpretability methods have significantly improved in the past few years in explaining decisions made 
by deep learning models, they come with some limitations. Most of these techniques are in their infancy, and results 
may not be clear take-home messages for everyday clinical practice. There is also a trade-off between model 
accuracy and interpretability (simpler models tend to be more interpretable but less accurate, and vice versa). This 
suggests the continuing development of more sophisticated interpretabil-ity methods that enable a mixture of 
informative insights alongside good model performance but also point to what work has yet to be done. Due to this 
motivation, an ECG classification framework must be developed with a trade-off between accuracy and 
interpretability for practical deployment in clinical settings. 
2.6 Motivation for the Proposed Framework 

The drawbacks of the current ECG arrhyth-mia classifica-tion techniques urgently need a more complete and 
systematic approach. This paper proposes a framework to fill these gaps using pretrained Transformers, advanced 
attention mechanisms, and methods for classimbalance. The proposed framework tries to alleviate all these issues 
by integrating these different parts, which aims for a more reliable and comprehensive solution of ECG arrhythmia 
classification, increasing the accuracy, robustness, and usability of these models in clinical scenarios. 

3. Proposed Methodology 
3.1 Overview 

Design a system for ECG classification and arrhythmia detection using deep learning. This section contains the 
general idea of our proposed methodology for classifying different types of cardiac arrhythmia, as shown above.It 
discusses how to use Deep Learning model instances to address limitations inherent with classical models that use 
traditional algorithms for ECG (Electrocardiography) classifications. To deal with these challenges, our method 
leverages pretrained GPT models[10, 47], data augmentation usingGANs, andsupervisedContrastive Loss that 
facilitates pushing apart samples from different classes while pulling together those belonging to the same class. We 
specifically use interpretability tools such as SHAP and Grad-CAM to give some idea of how the Model makes 
decisions. 

The Framework of ECG Classification in Figure 1 for Arrhythmia upon existing solutions, the framework in 
Figure 2 is implemented with some technology components devoted to improving accuracy, robustness and 
interpretability. 
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We incorporate several sophisticated modules into the ECG classification framework to further improve the 
accuracy and interpretability. Along with the raw ECG signal input, a pretrained GPT model is taken as an 
embedding layer for transforming signs to continuous vectors and self-attention layers through which temporal and 
context relationships are understood in relevance to that view of previously available data at each attendance. Lastly 
it converts its output using asynthetic generating concise representation. DIGA uses GAN-based data augmentation 
to synthetize ECG, and thereby fix class imbalances while also helping generalization. During training, Triplet Loss 
is used with anchor, positive and negative samples through which the Model learns how to separate arrhythmias of 
different classes. We also include interpretability tools like SHAP for quantifying feature contributions and Grad-
CAM to highlight what parts of the ECG signals are influential in its decision-making process. These components are 
integrated into the framework in an end-to-end fashion for input to classification and provide a comprehensive 
technique that represents a significant step forward in automated medical diagnosis. 

3.2 Pretrained GPT Models 
Our proposed methodology is rooted in the notion to benefit from Pretrained GPT models for a better 

understanding of ECG signals, which enables the fine grained temporal pat-terns and contextual relationships 
captured within them. Figure 2 illustrates how the GPT model can read sequential ECG data and effectively capture 
rich temporal features needed for accurate arrhythmia classification. This element is beneficial for learning intricate 
dependencies in ECG signals that standard models would not capture. Taking advantage of the pretrained property 
in GPT, our approach allows effective knowledge transfer from generic domains to the target ECG classification task 
despite unreliable intra-domain so that better performance is obtained. 

A Diagram of the Application of Pretrained GPT Models to ECG signal input is shown in Figure 2. It is the 
beginning of data entry from ECG signal to this system. These signals are then processed through an embedding 
layer, transforming the ECG signals into vector form for further analysis. This is followed by Self-Attention Layers, 
which enable the Model to attend over time to capture crucial temporal dependencies and contextual interactions. 
After that, the data goes through a Feed Forward Layer, which helps to learn higher-level features from the 

 
Fig. 1:Proposedsystem for ECG arrhythmia classification. 
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extracted information. The processed data finally passes to the Output Layer, in which a high-level feature 
representation of ECG signals is prepared for further classification process.  

The GPT model works by encoding the input ECG signals into a high-dimensional space, where time 
information and relation-based features are embedded. Let 𝑋 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛] denote the sequence of ECG signal 
inputs, where each 𝑥𝑖represents a time step in the ECG signal.  

 
Fig. 2:The architecture of the pretrained GPT component for ECG arrhythmia classification. 

Diagram of the ECG Signal Workflow: Going from the Input to Embedding Layer for signal feature mapping 
into a vector space representation; Self Attention Layers that capture temporal information; and Feed Forward 
layers that refine this data. A feature-rich representation in the Output Layer ensures that dataflow is 
stable,providing a process's normalization and residual connections. It first embeds the input sequence to a 
continuous vector space using embeddings function 𝐸(𝑥), which can be mathematically defined as: 𝐸(𝑥) = [𝐸(𝑥1), 𝐸(𝑥2), . . . , 𝐸(𝑥𝑛)]                                                       (1) 

From there, these embedded vectors go through a stack of self-attention layers to help the Model attend to 
different parts of this sequence when making predictions. The self-attention mechanism can be described by the 
following equation: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇√𝑑𝑘) 𝑉                                                  (2) 

Here, 𝑄 is queries, 𝐾 is keys, and 𝑉is values are all calculated using a linear transformation from the same 
sequence of input embedding as in equation1, 𝑑𝑘is a key dimension. The self-attention mechanism defined in 
equation 2 allows to learn how much different steps in a sequence contribute, effectively capturing temporal 
dependencies. Bypassing the self-attention layers output through as a feed-forward layer, we achieve a final 
representation of each token 𝑍in the original input sequence: 𝑍 =  𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉))                                                 (3) 

This result 𝑍will carry useful temporal features exploited by the rest of the components in the framework to 
detect arrhythmia. It learns the representation between raw ECG data and its feature space, where temporal 
behaviors are better captured for downstream classification tasks. In our approach, the Pretrained GPT model 
comprises several layers that cooperate to make sense of sequences within input ECGs. Each layer in the GPT model 
can be decomposed into: 
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The essential layers and mechanisms of the GPT ECG classification model, The Embedding Layer, transform the 
input ECG sequence in a continuous vector space and add position encoding to maintain order over time. Next, you 
have Self-Attention Layers that computes the attention scores over a sequence, allowing the Model to selectively 
attend to relevant parts of data for each time step. The processed data then goes through the feed-forward layers 
that apply nonlinear transformations to fine-tune further feature representation learned from the self-attention 
mechanism. Normalization and Residual Connections are used after each layer in order to improve the 
generalization abilities of the network, making training stable with positive gradient flow. The output layer then 
outputs the final representation encapsulating all temporal and contextual information of the input ECG sequence 
for further classification. This architecture in Fig. 2 demonstrates how these components extract local and global 
temporal patterns within ECG data. 

3.3 Data Augmentation with GANs 
The Pretrained GPT Models outputs additional informed features of the more complex temporal dynamics and 

contextual relations within ECG signals. Although such output is essential to decipher complex dependencies in the 
ECG data, exposure toa wider variety of arrhythmia patterns can further strengthen the robustness ofthe 
classification model specifically from classes appearing sparsely within origi-nal dataset. We do so by utilizing 
Generative Adversarial Networks (GANs) to expand the dataset with synthetic ECG samples that represent real-
world variabilities. This extra synthetic data in combination with the full-featured output of GPT models leads to a 
more complete training set and, hence, improved generalization of the Model. 

Our GAN architecture includes the Generator and Discriminator, as shown in Figure 3; both are neural 
networks. The Generator (G) takes as input a random noise vector 𝑧 sampled from a prior distribution 𝑏𝑧(z)and 
generates synthetic ECG data. The Discriminator (𝐷) then receives both real ECG data x and synthetic data 𝐺(𝑧), 
and its task is to distinguish between the real and synthetic samples. 

Figure 3 was designed to highlight the sequential nature of how each component interacts and flows in a game 
with respect, but not limited only to ECG processing.The process begins with the Generatorcomponent, which takes 
a random noise vector (𝑧) as input and generates synthetic ECG data. This synthetic data is designed to mimic real 
ECG patterns. The generated ECG data, along with actual real ECG data (𝑥), is then passed to the Dis-
criminatorcomponent. The Discriminator's task is to distinguish between real and synthetic ECG data. As the GAN 
is trained, the Generator continuously improves its synthetic data generation to better fool the Discriminator, while 
the Discriminator gets better at identifying whether the data is real or generated. This adversarial process helps the 
GAN refine its ability to create realistic ECG data, which can be used to enhance training datasets for improved 
model performance in ECG arrhythmia classification. 
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Fig. 3:Simplified diagram illustrating the process of Data Augmentation with GANs for ECG arrhythmia 

classification. 
Here, the Pretrained GPT Model has a robust output feature of ECG which is transmitted to the GANs module 

as illustrated above. This module contains a generator that generates synthetic ECGs and a discriminator 
responsible for distinguishing real data from fake data. These artificially created 'fake' data points are then fused 
with the actual (real) samples to construct an augmented training dataset, strengthening the Model against 
vulnerability and boosting its generalization tasks. 

The diagram uses arrows to show how data and feed-back flow between the Generator and Discriminator. This 
helps simplify the operations of a GAN. min𝐺 max𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑥~𝑃𝑧(𝑧)[log (1 − 𝐷(𝐺(𝑧)))]                        (4) 

Here 𝑝𝑑𝑎𝑡𝑎(𝑥)is the distribution of the real ECG data and 𝑝𝑧(𝑧)is fed into the Generator before noise. The Generator 𝐺in the GAN is responsible for mapping the input noise z to the synthetic data space, producing samples that 
resemble real ECG signals. Here is the mapping function: 𝐺(𝑧; 𝜃𝑔) = 𝑥′                                                                  (5) 

where 𝑥′is the set of ECGs and 𝜃𝑔indicates all parameters of G. The Discriminator, meanwhile, produces a higher 

output probability 𝐷(𝑥)of the input𝑥 it sees as reals over synthetic ones. The output of the Discriminator is: 𝐷(𝑥; 𝜃𝑑) = 𝑃(𝑟𝑒𝑎𝑙|𝑥)                                                         (6) 
In the figure where 𝜃𝑑denotes parameters of the Discriminator. In the training process, D and G are purposely 

updated iteratively to become better against each other. As its name suggests, the Generator learns to generate real 
data with time; whereas the Discriminator becomes more accurate in identifying fake generated images. Optimally, 
we perform adversarial training to reach a point where the Discriminator cannot distinguish real data from 
synthetic data,umeaning 𝐷(𝑥)  =  0.5 for both real and generated samples.This is particularly useful because 
synthetic data from the GAN helps to extend a greater range of arrhythmia patterns into the training set, which are 
not accurately reflected in an unbalanced source dataset. These augmentations aim to introduce the Model with 
some noise and other types of images so that our classification task fine-to-the-least maintains its robustness when 
class imbalances occur aggressively, or there will be unseen data. Adding this variability helps the model to 
discriminate more easily between different arrhythmias. First, besides being exposed with incomplete samples 
(especially for rare arrhythmias) in Machine Learning models) we also extend the sample set by adding augmented 
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data from GAN to avoid overfitting and exploit the full capacity of the classification pipeline with an enriched 
training dataset. 

3.4 Triplet Loss for Class Imbalance 
We integrate Triplet Loss into our training framework to effectively address class imbalances, particularly for 

underrepresented classes like rare arrhythmias.Triplet Loss is used to pull ECG samples from the same class closer 
together in feature space while pushing those of different classes farther apart. Once the Pretrained GPT Model and 
Data Augmentation process ECG signals using GANs, they undergo a classification layer with Triplet Loss. Image 
SourceThe Model takes in 3 outputs simultaneously: an anchor sample, a positive sample from the similar class and 
a negative sample from different classes. We want to close the anchor and positive samples while making them far 
from the negative ones. This can be observed in Figure 4, where Triplet Loss reduces the intra-class distances 
between ECG representations while increasing inter-class distance, allowing the Model to learn better feature 
separators for common and rare arrhythmias. The Triplet Loss function is mathematically defined as: ℒ𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(0, ||𝑓(𝑥𝑎)||2 + 𝛼)                                                   (7) 

 
Fig. 4: A simple diagram illustrating the basic steps of how Triplet Loss works. 

The relationship of an Anchor sample (A) with a Positive sample (P) of the same class and Negative samples (N) 
from different classes, for example, as shown in this diagram below. Our aim is to reduce the distance between 
Anchor and Positive samples while increasing that of Anchor with Negative ones which ultimately results in a better 
classification accuracy due to more discriminative feature space. 

 
Where 𝑓(𝑥)in equation(7) denotes the embedding function of our Model that maps an input ECG sampleto a 

high-dimensional feature space Here,𝑥𝑎, 𝑥𝑝, and 𝑥𝑛 are the anchor, positive and negative samples, respectively. The 

margin 𝛼is just a threshold determining how far should the negative sample be compared to the positive against the 
anchor, where∥· ||2is the squared Euclidean distance between feature vectors. Triplet loss is designed so that the 
distance between the anchor and positive sample is minimized while at least a margin α away from negative 
samples. If the difference between them is more significant than this margin, the loss will be 0, meaning we have a 
well-separated triplet. In contrast to conventional loss functions such as cross-entropy, which consider all classes at 
par and do not work well with the minority set of examples, Triplet Loss results in a more discriminative feature 
space. This optimizes the Model to separate similar and dissimilar samples in their respective inter-sample 
distances, an advantage when handling class imbalances within ECG arrhythmia classification. The algorithm 
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generates a feature space in which samples from the same class are gathered together, and different classes of 
objects stay separately so it can perform better classification tasks such as detecting rare arrhythmia. 

3.5 Model Interpretability with SHAP and Grad-CAM 
To make our models more transparent and easier to understand, we use two powerful interpretability tools: 

SHAP and Grad-CAM. These tools are essential to prove the model's predictions and evaluate whether a 
classification mechanism matches clinical intuition. 

3.5.1 SHAP  
This is a game-theoretic approach to explain the output of any machine learning model. SHAP then computes 

for every input ECG signal it is fed to the Model how much each feature (e.g., heart rate variability, specific 
components of an ECG waveform) plays a role in ultimately obtaining that classification. The sum of these 
contributions is the difference between what was output by the Model and what an overall average production 
would be. This means that with SHAP you can see why the Model made a specific decision and what feature(s) were 
driving it. SHAP value is calculated as: 𝑆𝐻𝐴𝑃 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 = ∑ |𝑆|!(|𝐹|−|𝑆|−1)!|𝐹|!  [𝑓(𝑆 ∪ {𝑖} − 𝑓(𝑆)]𝑆⊆𝐹{𝑖}                         (8) 

Where𝐹 is the set of all features, 𝑆 is a subset of 𝐹not including feature 𝑖 in it, and 𝑓(𝑆)is the model output when 
only featuresin subset 𝑆are active. This equation represents the change in model prediction when a new feature is 
added to that taken over all other possible subsets of features. 

3.5.2 Grad-CAM  
In contrast, Grad-CAM (2) is oriented in a more visual perspective generating Heatmaps that indicate which 

regions of ECG signal are the most important for model decision. More precisely, Grad-CAM exploits gradients of 
the Model's output concerning the final convolutional layer to produce a localization map overlaid on input ECG 
signals. The map shows which areas of the ECG were most important in determining if a patient had an arrhythmia, 
giving clinicians insight into what aspects of trace data led to the Model predicting any one specific irregular 
rhythm. 

Grad-CAM starts by calculating the gradient of a score for class c concerning feature maps last convolutional 
layer. Then, these gradients are aggregated to obtain the importance weights of each feature map. Once the weights 
have been determined, you take a weighted sum of these weights with their associated feature maps. After that, we 
apply the ReLU function to get the Heatmap. The resulting Heatmap overlaps the ECG signal, highlighting portions 
of the ECG that the Model finds most important when making a prediction. 

3.5.3 Integration and Impact 
Sequential steps of using SHAP and Grad-CAM for model interpretability in ECG arrhythmia classificationare 

shown in Figure 5. For the process, ECG ones come under input, in which raw data of ECG is given. Next, in Step 2, 
the Model takes this input and provides a model witha prediction as output — predicting perhaps what kind of 
arrhyth-mia is present. Moving to Step 3, the SHAP Explanation explains details of this model prediction — it tells 
us how much each feature has contributed towards changing the average output from one value to another and gives 
significant insights regarding how a particular feature affects your predicted outcome. Grad-CAM Visu-alization 
overlays a heatmap on the ECG waveform to identify parts with the highest impact upon which it bases its decision, 
thus completing Step 4. This elaborate method guarantees that the predictions of our model are not only precise but 
also interpretable, which helps clinicians understand and believe the results. 
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Fig. 5: Diagram illustrating the use of SHAP and Grad-CAM for model interpretability in ECG arrhythmia 

classification. 
The process starts with ECG Input, which is processed in the Model to predict something. SHAP elucidates the 

prediction by detailing the contribution of each feature, and Grad-CAM offers a visual heatmap to accentuate 
regions in an ECG that most impacted the model decision. Combined, they help validate the Model's predictions to 
meet clinical expectations. 

Such interpretability tools are crucial to bridge the gap between complex machine learning models and their 
real-world clinical applications. The added value of SHAP and Grad-CAM lies in providing insights into the 
decision-making process of a given model, empowering clini-cians to understand and validate those decisions by 
making predictions more transparent while aligning them with clinical expectations during reading/interpretation 
workflow for classification outcomes. 

We have evaluated the performance of our proposed methodology on extensive experiments over multiple real-
world ECG-arrhythmia datasets. Our primary goal with these experiments was to assess the efficacy of our end-to-
end approach consisting of pretrained GPT models, data augmentation via GANs,and Triplet Loss classification 
regardingoverall accuracy and robustness, especially when identifying rare arrhythmias. 

4. Experiment Setup 
4.1.1 Datasets 

Null To evaluate the performance of our proposed system, we performed experiments on two popular ECG 
arrhythmia datasets, namely MIT-BIH Arrhythmia Database [48] and PTB Diagnostic ECG Database [49]. The 
diversity in the arrhythmia types of these datasets and their wide application within the research community 
characterize them as ideal for assessing our method's robustness and generalization [31]. 

4.1.2 MIT-BIH Arrhythmia Database 
The MIT-BIH Arrhythmia Database [44],a landmark in the field of arrhythmias detection research) has 48 half-

hour ECG recordings from 47 subjects. These recordings of more than 110,000 annotated beats are organized in 16 
arrhythmia classes, including standard ECG patterns and select examples of premature ventricular contractions 
(PVCs)and atrial fibrillation (AF). This dataset has a sampling rate of 360 Hz. Itis digitized in an amplitude range of 
11-bit resolutionwhere ECG features are well represented to be used both for training or validation purposes on ECG 
classification systems. Our study particularly aimed at the specific arrhythmia categories such as Normal Sinus 
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Rhythm (N), Supraventricular Pre-mature or Ectopic Beat (S), Ventricular Premature or Ectopic Beat (V), Fusion of 
Ventricular, Narmal beat, and Unknown Beats(Q) [31]. 

4.1.3 PTB Diagnostic ECG Database 
PTB has one of the most popular ECG databases [49], which is the PTB Diagnostic ECG Database collected at 

University Hospital Bonn, Ger-many contains 5,388 recordings from 549 patients. All were recorded with a 12-lead 
ECG system at a sampling rate of 1,000 Hz and included myocardial infarction and various forms of cardiac 
hypertrophy. Each recording is associated with diagnostic labels provided by cardiology experts. For the purpose of 
this study, we focused on two primary classes: Normal (N) and Myocardial Infarction (M). Table1Offers a detailed 
overview of the sample counts for each class within both datasets. 
 

Table 1:Comprehensive Overview of the Utilized Datasets 
Database MIT-BIH Arrhythmia PTB Diagnostic ECG 

Classes N S V F Q Total N M Total 

Training 72,471 2,223 5,788 641 6,431 87,554 3,236 8,400 11,636 

Testing 18,118 556 1,448 162 1,608 21,892 809 2,100 2,909 

 
4.1.4 Datasets Preprocessing: 

Preprocessing of ECG signals is crucial, as these signals form the primary input for our system. To optimize the 
effectiveness of our approach, we implemented the following preprocessing steps for ECG signals and the 
subsequent extraction of cardiac beats, as outlined in [50]. The procedure includes: 

1. ECG Signal  Partitioning : The continuous ECG signal is first divided into 10-second segments, with a 
particular 10-second segment selected for subsequent processing. 

2. Amplitude Scaling : The amplitude within the selected segment is rescaled to lie between zero and one, 
ensuring a consistent representation of the ECG signal. 

3. Detection of Local  Peaks : Local peaks are identified by analyzing where the first derivative of the signal 
crosses zero. 

4. R-Peak Identification : A crucial part of the process is the identification of R-peak candidates, which is 
done by setting a threshold of 0.9 on the normalized local peak values. 

5. Estimation of Typical Heartbeat Period : The median value of the R-R intervals is calculated to 
estimate the typical heartbeat period within the selected 10-second segment. 

6. Selection of  Signal  Segments:  For each identified R-peak, a segment of the signal, measuring 1.2 times the 
estimated heartbeat period (1.2T), is selected. 

7. Zero Padding : Each chosen signal segment is padded with zeros to achieve a uniform and predetermined 
length. 

4.2 Implementation Details 
Our proposed system employs several advanced techniques with specific configurations to optimize ECG 

classification performance. It utilizes a fine-tuned GPT-2 model with 12 transformer layers, 768 hidden units, and 12 
attention heads, processing sequences up to 1024 tokens. Training is conducted with a learning rate 5e-5, the 
AdamW optimizer with 0.01 weight decay, and a batch size 16 over 3 epochs, effectively capturing complex temporal 
patterns. For data augmentation, a GAN architecture with a generator and Discriminator, each featuring 4 
convolutional layers with LeakyReLU activation functions, is used to address class imbalance by generating diverse 
synthetic ECG samples. The GAN is trained for 200 epochs with a latent vector size of 100 and a batch size of 64. 
Triplet Loss, configured with a margin of 0.2, uses semi-hard negative mining to optimize the feature space by 
clustering similar ECG patterns and distancing dissimilar ones. This approach, with an embedding dimension of 
256, is trained over 50 epochs using an Adam optimizer (learning rate 1e-4) and a batch size of 32. To enhance 
model transparency, SHAP calculates feature importance with 100 background examples and 1000 samples, while 
Grad-CAM generates Heatmaps (224x224 resolution, 0.5 opacity) to visualize influential regions of ECG signals. 
The training procedure involves partitioning the dataset into 80% for training and 20% for testing, with 20% of the 
training data reserved for validation, and conducting training over 60 epochs with the Adam optimizer (learning 
rate 1e-3, weight decay 1e-4) and a batch size of 128, ensuring model convergence and stability. 
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4.3 Evaluation Metrics 
To rigorously evaluate our Model's performance, we utilized a set of key metrics: 
• Accuracy (ACC): Measures the proportion of correctly classified instances out of the total number of cases. The 
accuracy is given by: 𝐀𝐂𝐂 = 𝑻𝑷+𝑻𝑵𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵                                                                 (9) 

Macro Average F1-Score (MF1): Provides a balance between precision and Recall, particularly valuable for 
imbalanced datasets. The Macro Average F1-Score is calculated as the mean of 𝐹1-scores for each class: 𝑀𝐹1 = 1𝑛 ∑ 𝐹1𝑖𝑛𝑖=1                                                                    (10) 

where 𝑛is the number of classes and 𝐹1𝑖is the F1-score of the 𝑖 − 𝑡ℎ class. 
• Precision: Reflects the accuracy of positive predictions made by the Model. It is defined as: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃                                                                   (11) 

Recall: Indicates the Model's ability to identify all relevant instances. The Recall is calculated as: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                                          (12) 

5. Results and Analysis 
In the results section, we showcase the findings from multiple experiments that evaluate our Model's performance 
across various configurations. 
5.1 Performance Analysis: In-depth Examination 

The proposed system achieved high classification performance on the typical class of ECG arrhythmias, 
especially for those handling the most prevalent and well-defined classes. The Model obtains almost perfect 
precision-recall and F1scores on Normal Sinus Rhythm and Unknown Beat (Table 2), scoring more than 99% in 
these metrics. The specificity and sensitivity values of the proposed Model show that it can differentiate normal 
from abnormal heart rhythms with very few errors, which means this Model is exceptionally robust for clinical 
applications. The ability of GPT to generate data and fine-grain control over what can be generated from inference 
through training on similar but more limited synthetic datasets expands the dataset space and speculatively allows 
for more efficient memorization. The high macro-averaged preci-sion of 96.16% and Recall of 93.62 support the 
discrimina-tory ability for various arrhythmia types with good consistency across different classes. 

Additionally, the proposed system demonstrates its power even in challenging scenarios such as class 
imbalances and subtlearrhythmia variations. When Triplet Loss is included, the Model focuses on relative 
differences between classes, leading to significant class imbalance improvement for underrepresented arrhythmias. 
While the performance for more complex classes like Supraventricular Premature Beat (𝑆) and Fusion of 
Ventricular and Normal Beat (F) is slightly lower, the Model still maintains strong 𝐹𝑙-scores, as indicated in Table2, 
demonstrating its capability to handle complex classification tasks. The overall robustness of the proposed system, 
combined with its high interpretability through tools like SHAP and Grad-CAM, makes it a powerful tool for 
accurate and transparent ECG arrhythmia detection in both clinical and research settings. 

 
Table 2: Performance metric evaluation across different classes in the MIT-BIH dataset using the proposed system. 

Metric 
 

N S V F Q 
Macro- 
Avg 

Precision 
99.48% ± 
0.08 

92.45% ± 
1.95 

96.32% ± 
1.35 

92.12% ± 
5.10 

99.41% ± 
0.24 

96.16% ± 
1.45 

Recall 
99.54% ± 
0.23 

87.75% ± 
2.20 

98.12% ± 
0.15 

83.45% ± 
3.62 

99.22% ± 
0.03 

93.62% ± 
1.05 

F1-Score 
99.51% ± 
0.07 

90.03% ± 
0.20 

97.40% ± 
0.68 

87.65% ± 
1.15 

99.30% ± 
0.13 

94.78% ± 
0.26 

 
The evaluation of the proposed system on the PTB Diagnostic ECG dataset, as shown in Table 3, highlights its 

exceptional capability in distinguishing between different classes of ECG signals.It attains excellent precision scores 
of 99.10% for Normal (N) and an even higher score larger than 99.82% in the case of Myocardial Infarction, so the 
Model makes very few mistakes on predictions here. The high precision of the model also highlights its ability to 
detect true positives with few false positives, which is a vital component for clinical use as this directly determines 
patient outcomes. Macro-averaged precision 99.46% also suggested the performance froth of this Model that 
pushed average recognition to over between classes; however,it's another fact shows how well it is going with all 
other classes data, so calling final micro F1-score would be very difficult as both sounds equally good0 
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As the Model is trained on each feature of ECG and in terms of Recall, it does very well, with 99.43% for Normal 
and 99.67% for Myocardial Infarction. The extremely high recall values mean that almost all authentic cases of other 
conditions are contracted by the Model, and very few actual patients who are positive for one condition are wrongly 
predicted as having another. 

The high F1-scores of 99.27% for Normal and 99.74% for Myocardial Infarction, with a macro, averaged F1-
score of 99.51%, balances both precision and recall appropriately, thus covering every type in the positive class. This 
trade-off is crucial for diagnostic medicine, where detecting true positives and minimizing false negatives are equally 
important. The results shown in Table 3 show that this system can classify ECG signals with better performance 
than state-of-the-art models, especially for classes related to critical conditions such as myocardial infarction. It 
might be an interesting tool capable of safely deploying in the clinical environment. 
 

Table 3: Performance metric evaluation across different classes in the PTB Diagnostic ECG dataset using the 
proposed system 

Metric N M Macro-Avg 
Precision 99.10% ± 0.07 99.82% ± 0.05 99.46% ± 0.03 

Recall 99.43% ± 0.15 99.67% ± 0.02 99.55% ± 0.07 
F1-Score 99.27% ± 0.07 99.74% ± 0.02 99.51% ± 0.04 

 

5.2 Comparative Study: Benchmarking Against Established Baseline Models 
The comparison of different methods on the MIT-BIH dataset, as presented in Table4, highlights the superior 

performance of theproposed system, which integrates GPT, GANs, and Triplet Loss, demonstrates the highest 
accuracy (ACC) and macro-average Fl-score (MF1) among all evaluated methods. Specifically, the proposed system 
achieves an ACC of 99.50% and an MF1 of 95.10%, outperforming the previously best-performing method, 
ECGTransForm, which achieved 99.35% ACC and 94.26% MF1. 

This minimal yet prominent increase in those performance metrics highlights the potential of our Model for 
solving real-world arrhythmia detection tasks, given the complexity and diversity of MIT-BIH data. 

GPT can be flexibly applied to better capture the intricate temporal dependencies and contextual relation-ships 
within ECG signals, leading to performance improvements as those obtained by our Proposed system. Due to the 
limitations of traditional methods such as ResNet or biLSTM regarding long-range dependencies and rich 
contextual cue parsing, GPTs transformer structure can handle sequenced data relatively well. This ability gives the 
proposed system an edge over other models when it comes to the exact classification of not just those common 
arrhythmias but some obscure and lesser-common ones that usually go amiss. Table 4 shows that incorporating 
GPT improves F1scores with better accuracy and broadens its range in comprehending ECGplots. 

Another important reason is the synergetic effect of GAN-based data augmentation and Triplet Loss in the 
proposed system. Alleviation of class imbalance: GANs generate realistic synthetic ECG samples so the machine 
learning model can train well across various arrhythmias. At the same time, Triplet Loss is responsible for cleaning 
up our feature space so that similar ECG patterns are tightly grouped while dissimilar ones lie far apart. The method 
increases the discrimina-tive ability of our Model, particularly in separating classes that are close to each other, and 
yields a record high MF1 for the comparison. The proposed system,combined with these advanced tech-niques, 
provides a robust and efficient solution for ECG classifica­tion, as summarized in Table 4. 

 
Table 4: Comparison of our proposed framework against baseline methods on the MIT-BIH dataset 

Existing Models Method ACC (%) MF1 (%) 
[23] ResNet + LSTM + GA 98.00 89.70 
[25] AE + DNN 99.34 91.44 
[26] ResNet + SE block + biLSTM 99.20 91.69 
[28] Seq2Seq + CRNN 97.60 89.00 
[29] DLA + CLSTM 88.76 80.54 
[30] AE + Transformer 97.66 N/A 
[31] MSC + CRM + BiTrans + CAL 99.35 94.26 
Proposed System GPT + GAN + Triplet Loss 99.50 95.10 

 
5.3 Component Analysis: Ablation Study and Comprehensive Insights 

Consequently, Figure 6 shows our improvement relative to the Macro F1-score (MF1) concerning each key 
compo-nent integration called GPT, GANs, and Triplet Loss. The simplest CNN model, which results in an accuracy 



872                                                                                                                                   Sultan faiz alqurashi/IJCNIS, 16(4),858-877 

 

 

of 87.00%, is named the baseline performance, and it establishes a floor on how many improvements we could get 
by going beyond this machine learning or deep learning techniques. 

The most significant increase (compared to other types of improvements) comes in when GPT is integrated into 
the Model, bumping up the MF1 score from 87.00% →90.50%. The improvement, a 3.5% boost, is based on the 
success of GPT in cap-tur-ing and mod-el-ing com-plex tem-po-ral depen-den-cies and contextual rela-tionships 
embedded inside ECG data. Given that ECG signals, especially those corresponding to...arrhythmias, involve 
complex timing patterns that are not discernible from the waveforms, GPT helps in learning these subtle differences 
by functioning as an improved sequence processor for ulterior tasks. 

The final significant improvement, which takes advantage of Generative Adversarial Networks (GANs), pushes 
the MF1 score up even more to 93.20%. GANs help generate artificial ECG samples, which is specifically handy 
when dealing with the class imbalance that most medical datasets face. The result is that the training set now 
contains even more synthetic data, increasing its variance and enabling ML algorithms to recognize other 
arrhythmias that are not adequately represented. We note that a 2.7% gain in the MF1 score is substantial and 
reflects the importance of data augmentation for robustness and adaptability, which are required properties of such 
a system before being deployed into practice. 

The MF1 score reaches 94.30% from the extended formulation proposed before due to additional fine-tuning of 
the feature space using it. Triplet Loss is very good at optimizing distances between distributions of our data points, 
thus enabling better generalization in discerning various arrhythmias. This 1.1% improvement emphasizes the need 
for feature space management, especially in scenarios with imbalanced classes since accurate classification between 
arrhythmias that are tough to distinguish from one another is critical. 

With all components integrated, the final proposed systemachieves an impressive MF1 score of 95.10%. This 
cumulative improvement reflects the synergistic effect of combining GPT's deep temporal understanding, GANs' 
data augmentation, and Triplet Loss's feature space optimization. Each component plays a distinct role in enhancing 
the Model's performance. This results in a highly effective and robust ECG arrhythmia classification system that 
outperforms the baseline and demonstrates substantial improvements with each added component. Figure 6 
showcases the stepwise gains in performance, validating the proposed system design's effectiveness and each 
component's contributions. 

 
Fig. 6:Performance Improvement of the proposed system. The bar chart illustrates the MF1 scores (%) achieved 

after adding each component, highlighting the incremental benefits of GPT, GANs, and Triplet Loss. 
5.4 Addressing Class Imbalance: Evaluating Triplet Loss 

In the radar chart provided in Figure7, some classes, such as F (Fusion of Ventricular and Normal Beat) and S 
(Supraventricular Premature Beat), exhibit relatively lower performance across all imbalance handling techniques, 
including the Triplet Loss. The challenges associated with class F stem from its ambiguous nature, as it represents a 
mix of normal and abnormal beats. This overlap in features between normal and ventricular beats makes it difficult 
for the Model to distinguish it from other classes, leading to confusion during classification. Consequently, even 
with advanced techniques like Triplet Loss, the Model struggles to create distinct boundaries in the feature space, 
resulting in decreased classification accuracy for this class. 
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Fig. 7:Comparison of Imbalance Handling Techniques, including Triplet Loss, CAL, Oversampling, 

Balanced Sampler, Weighted CE, and Focal Loss across various ECG classes. 
Class S shows lower performance due to its limited representation in the dataset, which results in fewer training 

examples and exacerbates the class imbalance problem. This scarcity makes it challenging for the Model to learn 
enough patterns to classify these rare and subtle arrhythmias accurately.While the introduction of Triplet Loss did 
increase model performance by addressing class imbalances, discrimination between rare arrhythmias such as S is 
still more challenging relative to more common classes like N (Normal Sinus Rhythm). These challenges reveal the 
intricate nature of ECG classification and hint at a requirement for customized loss functions to improve model 
efficacy. Otherwise, Triplet Loss proved to be the most successful in multi-class and maintained class balance 
performance (even if not excellent), thus showing how it can enhance classification accuracy, especially on 
imbalanced datasets. 

5.5 Interpretability and Clinical Relevance 
In order to have a confident model that predicts accurately and can interpret the reason behind it, we integrated 

two tools, SHAP & Grad-CAM. SHAP values provide a way to evaluate the impact of each feature on model 
predictions and render feature importance from a global perspective. This is understandable, as shown in Fig. 8, as 
the QRS complex coupled with RR Interval and Heart Rate Variability are the essential features that agree with a 
prior clinical understanding of meaningful arrhythmia indices. As shown in Figure 9, Grad-CAM generates 
Heatmaps to localize the representative areas from ECG signals, which impact model decisions. Brighter colors on 
the Heatmap represent regions more prone to denoting a relevant factor such as this P-wave, QRS complex,or T-
wave. When we overlay the Heatmap on top of our original ECG signal, it is evident that these further include 
clinically relevant features — such as the QRS complex in ventricular arrhythmias — which make them especially 
effective for feature attribution. Combining SHAP and Grad-CAM yields a complete interpretable framework where 
SHAP provides quantitative feature importance, while Grd-CAM shows visual salient signal regions. This dualism 
facilitates model interpretability and trust, thus increasing clinical alignment of the model's predictions and 
downstream integration in healthcare pipelines. 

6. Discussion 
In this section, we discuss the outcomes of our findings, which point towards performance analysis of the 

proposed system and its close relevance to state-of-the-art ECG arrhythmia classification. The proposed system 
combines GPT models and GANs for data augmentation and triplet loss to tackle class imbalances. Such 
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combination has resulted in a substantial increase in classification accuracy, especially in recognizing rare and very 
complex arrhythmias, as evidenced by the performance metrics. 
 

 
Fig. 8:SHAP Value Distribution for ECG Features This bar chart represents the mean effect of top vital features 

related to our Model's decision on Eg1-QRS, and the RR interval shows the highest impact. 
The performance improvement model for integrating GPT in the proposed system is evident. Therefore, it 

demonstrates its valuable ability for more accurate arrhythmia pattern classifications, where traditional models 
struggle to capture the intricate temporal dependencies and contextual relationships manifesting on ECG signals. 
The GPT's capability to model long-range dependencies has led to noticeable improvements in performance, as 
shown in the comparison with baseline methods (Table 4). Additionally, using GANs for data augmentation has 
been instrumental in addressing class imbalance by generating synthetic ECG samples, which exposes the Model to 
a broader variety of arrhythmia patterns and improves its generalization and robustness, as indicated by 
improvements in Fl-score and MF1 metrics. The integration of Triplet Loss further refines the feature space, 
clustering similar ECG patterns together and distancing dissimilar ones, which enhances the Model's ability to 
differentiate between arrhythmias, particularly those that are underrepresented. The superior performance of the 
proposed system with Triplet Loss is evident from the radar chart (Figure 7), highlighting its effectiveness compared 
to other loss functions. 

 
Fig. 9: Grad-CAM Heatmap Overlay on ECG Signal: The Heatmap highlights the regions of the ECG signal that the 

proposed system identified as most influential in its classification decisions. Warmer colors indicate higher 
importance. 

Using SHAP and Grad-CAM values, we also improved the model interpretations. These tools offer insight into 
our model's decision, ensure transparency, and help with clinical validation. 
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6.1 Limitations and Future Work 
Though the classification further increases the efficiency in ECG arrhythmia classification, there are still 

drawbacks. How well the Model works relies on how good and representative your training datasets are, which can 
arouse concerns about generalizing ability to other populations that may have utterly unseen arrhythmia types. In 
the future, we will continue working on more complex datasets and introduce real noise to improve robustness. 

Using components such as GPT adds a part of this computational complexity. GANs and Triplet Loss are 
beneficial for their level of accuracy but may restrict these models from being deployed in real-time due to resource 
limitations. This work can be extended in the future by exploring optimization techniques and hardware 
acceleration to balance high accuracy with high efficiency. While SHAP and Grad-CAM help understand the model 
decisions, interpretability is still vital for clinical trust. Improving these tools to derive a more natural approach by 
embracing the feedback from their user base will be crucial for adoption in clinical practices. 

While the Model improves the detection of rare arrhythmias, challenges remain in distinguishing similar classes 
and detecting infrequent conditions. Future efforts should include advanced data augmentation, transfer learning, 
and the integration of domain-specific knowledge to address these challenges and further enhance the Model's 
capabilities. 

7. Conclusion 
This paper presentsthe proposed system, a cutting-edge deep learning framework for ECG arrhythmia 

classification that integrates GPT, GANs, and Triplet Loss. The proposed system significantly enhances classification 
accuracy by harnessing GPT's ability to capture intricate temporal dependencies, GANs' data augmentation to tackle 
class imbalances, and Triplet Loss to refine feature space, particularly for rare and complex arrhythmias. Our 
extensive evaluations of the MIT-BIH and PTB Diagnostic ECG datasets demonstrate that the proposed system 
outperforms existing state-of-the-art methods, achieving superior accuracy and macro-FI scores. Furthermore, 
integrating interpretability tools like SHAP and Grad-CAM ensures transparency in model predictions, making the 
proposed system highly effective and reliable for clinical applications. This work underscores the potential of 
combining advanced AI techniques to improve healthcare diagnostic accuracy and sets the stage for future research 
in extending these methods to other biomedical signal classification tasks. 
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