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ARTICLE INFO      ABSTRACT 

The integrity and maintenance of road infrastructure are critical for 

ensuring safe and efficient transportation. Timely and accurate 

detection of road cracks is essential to prevent accidents, reduce 

maintenance costs, and ensure the longevity of road networks. 

Traditional manual methods for road surface inspections are 

labour-intensive, prone to human error, and inconsistent. Recent 

advancements in machine learning and computer vision techniques 

have facilitated automated approaches for road crack detection, 

significantly improving accuracy and efficiency. This paper 

proposes a novel methodology for road crack detection by 

combining Histogram of Oriented Gradients (HOG), Grey Level 

Co-occurrence Matrix (GLCM), and Local Binary Pattern (LBP) 

for feature extraction. A combined feature set is then subjected to 

Neighborhood Component Analysis (NCA) for feature selection, 

ensuring only the most relevant features are retained for 

classification. The final classification is performed using a 

Bayesian Optimized Support Vector Machine (SVM) classifier, 

enhancing the model's predictive accuracy and robustness. The 

proposed method was tested on a comprehensive road crack dataset 

and achieved a remarkable accuracy of 98.94%, surpassing 

traditional models.  

 

Keywords: Bayesian Optimization, Histogram of Oriented 

Gradients, Grey Level Co-Occurrence Matrix, Local Binary 
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INTRODUCTION 

 

Roads are crucial infrastructures that play a fundamental role in the development of societies, 

significantly influencing economic growth and the mobility of people. As a result, roads 
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experience heavy vehicle usage daily, leading to continuous wear and degradation of road 

surfaces. These surface degradations are critical indicators of the condition and evolution of 

road networks, which, if not addressed promptly, can lead to more severe problems and 

costlier repairs [1]. Therefore, assessing road quality has become an essential task in many 

countries. To effectively manage road infrastructure, it is necessary to maintain an accurate 

inventory of the road surface conditions. 

Initially, road inspections were conducted manually, with agents physically observing and 

noting the degradations. However, this approach is expensive, risky—especially on roads 

with high traffic volume—and prone to human error and inconsistency. To overcome the 

limitations of subjective visual assessments, recent years have seen a surge in research aimed 

at developing automatic pavement surface inspection systems. These systems typically 

consist of two key components: image acquisition and the subsequent analysis of those 

images to interpret the data. While various acquisition systems are available to capture high-

quality images of road surfaces at high speeds, the analysis of these images still often relies 

on manual examination by laboratory operators [2]. 

Ensuring the integrity and safety of road infrastructure is a critical concern for modern 

society. Among the various challenges roadways face, the occurrence of cracks presents a 

significant threat to both vehicular traffic and the stability of the infrastructure. Early and 

accurate detection of road cracks is essential to prevent accidents, reduce maintenance costs, 

and ensure the seamless flow of transportation networks. In recent years, advancements in 

machine learning techniques have paved the way for more robust and efficient road crack 

detection methodologies [3]. 

This paper delves into the domain of automated road crack detection, presenting a 

comprehensive approach that harnesses machine learning to address this critical issue. The 

proposed methodology focuses on enhancing accuracy and reliability through a three-stage 

process involving feature extraction, feature selection, and classification. Specifically, the 

method utilizes Histogram of Oriented Gradients (HOG), Gray Level Co-occurrence Matrix 

(GLCM), and Local Binary Patterns (LBP) for feature extraction. These techniques, when 

combined, aim to capture both the local texture details and global characteristics inherent to 

road crack images. 

The next stage involves feature selection using Neighborhood Component Analysis (NCA), a 

powerful technique for selecting the most relevant features from the combined set while 

minimizing redundancy. This step ensures that only the most informative features are passed 

to the classification stage, improving both the interpretability and efficiency of the model.  

For classification, the study employs a Bayesian Optimized Support Vector Machine (SVM) 

classifier. The Bayesian optimization technique enhances the SVM by fine-tuning its hyper 

parameters, ensuring optimal performance on complex datasets. The classifier is trained on 

the selected features, enabling accurate categorization of road crack images and facilitating 

the detection and localization of cracks on road surfaces. 

In essence, this research aims to advance the field of automated road crack detection by 

leveraging the strengths of feature extraction techniques like HOG, GLCM, and LBP, 

refining the feature set with NCA, and employing a robust classifier through Bayesian 

Optimized SVM. By developing a holistic and effective solution, this study seeks to 

contribute to safer and more reliable road infrastructure. 

The study begins with a comprehensive literature review in Section 2, highlighting relevant 

research in the field. Section 3 elaborates on the proposed methodology. Section 4 presents 

the results obtained from the MATLAB-based simulations and a detailed analysis. Finally, 

Section 5 summarizes the findings and presents the concluding remarks. 
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LITERATURE REVIEW 

 

Road infrastructure is vital to the functioning of modern society, providing the foundation for 

safe and efficient transportation of people and goods. However, road surfaces deteriorate over 

time due to factors such as weather, traffic loads, and aging, resulting in defects, with road 

cracks being a significant issue. Detecting these cracks early and managing them effectively 

is essential to safeguard road users and avoid expensive repairs. Current approaches to crack  

detection primarily fall into two categories: traditional image processing techniques and 

machine learning methods leveraging surface learning features. 

Traditional image processing techniques, often categorized into construction methods, 

thresholding methods, spectrum methods, and model-based methods [4], utilize basic 

characteristics representing local anomalies to identify surface defects. Construction 

techniques include boundary operations [5], structural methods [6], template matching [7], 

and morphology [8]. Thresholding techniques such as contrast adjustment [9], the Otsu 

method [10], and watershed transformation [12] are widely used to enhance image contrast 

and detect faults. Spectrum methods such as wavelet transforms [13], Gabor wavelets [14], 

and Fourier transforms [15] are employed to analyze frequency content. Additionally, model-

based methods, such as low-rank matrix models [16] and Gaussian mixture entropy models 

[17], have been used to model surface defects. 

In contrast, machine learning approaches for defect detection typically follow a two-step 

process: feature extraction and model classification. Features are extracted to represent defect 

characteristics from input images, and these features are then used in a pre-trained 

classification model to determine whether the image contains a defect. Commonly used 

features in these methods include the gray level co-occurrence matrix (GLCM) [18], local 

binary patterns (LBP) [19], and histogram of oriented gradients (HOG) [20]. While these 

techniques have yielded satisfactory results in certain surface defect analyses, they struggle to 

generalize to different surfaces. Moreover, traditional image processing approaches often 

require multiple thresholds to address the limitations of algorithms that are sensitive to 

lighting conditions and background noise. These thresholds must be adjusted as new 

challenges arise, and sometimes the algorithms themselves require modification. The 

handcrafted features extracted in machine learning models may also fail to sufficiently 

capture the complexities of the surface cracks, leading to less robust solutions. 

Several studies have explored advanced methods to overcome these limitations. For instance, 

[22] introduced an automatic road crack detection system based on a structured random forest 

model. Meanwhile, [23] utilized Gabor filters with the AdaBoost algorithm to detect cracks. 

In [24], the authors proposed a bridge crack detection system combining an active contour 

model with a support vector machine (SVM) optimized through a greedy search algorithm. 

Another approach, based on the percolation model and length criterion for crack 

identification, was proposed by [25]. Although these methods improved the accuracy of crack 

detection [26], various enhancements were introduced to further increase precision, such as 

global transformation adaptation [27-29], crack-specific filters [30], and combining local and 

global detectors [31-32]. These methods often rely on manually selected features, which can 

introduce subjectivity and affect the results. 

More recently, deep learning has shown promise in crack detection. The authors of [33] 

introduced a road crack detection method based on convolutional neural networks (CNNs), 

which automatically extract distinguishing features from road crack images. This approach, 

trained on a large dataset, achieved high detection accuracy. However, deep learning models 

often require vast amounts of labeled data for training, which can be labour-intensive and 

time-consuming to acquire. 
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In another innovative study, [34] proposed using Generative Adversarial Networks (GANs) 

in combination with transfer learning for road crack detection. GANs were used to generate 

synthetic crack images, augmenting the training dataset, while transfer learning adapted a 

pre-trained CNN for crack detection. Though this approach enhanced performance, 

particularly with limited labeled data, the generation of unrealistic synthetic images posed a 

potential risk to model performance. 

Furthermore, [35] introduced a multiscale feature fusion technique for road crack detection 

that merged features extracted at different scales. By combining local and global crack 

characteristics, the method achieved improved detection accuracy using a CNN-based 

architecture. However, feature fusion can sometimes introduce noise, requiring careful 

parameter tuning. Another study by [36] applied edge computing and Internet of Things (IoT) 

devices for real-time crack detection. Wireless sensors installed on roads captured real-time 

images, which were processed locally on edge devices, reducing latency. However, the 

computational limits of edge devices may constrain the complexity of algorithms, affecting 

detection accuracy. 

A multimodal approach integrating visual and thermal imaging for road crack detection was 

proposed by [37]. The fusion of visual and thermal data provided additional insights, 

improving detection under difficult lighting conditions. However, ensuring precise alignment 

between visual and thermal sensors presents challenges, and discrepancies between sensors 

can introduce noise. Lastly, [38] explored road crack detection using aerial imagery and 

semantic segmentation with deep learning. Although this approach offered the potential for 

large-scale monitoring, the dependence on high-resolution imagery can be costly and may 

limit its practical application. 

Research Gap: While various machine learning and deep learning techniques have been 

employed for road crack detection, many of these methods either rely heavily on manually 

crafted features or require large datasets for effective training, which can limit their 

applicability. Moreover, issues such as sensitivity to lighting conditions, noise, and 

redundancy in feature extraction remain challenges. To address these gaps, this research 

proposes a novel methodology that combines Histogram of Oriented Gradients (HOG), Gray 

Level Co-occurrence Matrix (GLCM), and Local Binary Patterns (LBP) for robust feature 

extraction, followed by feature selection using Neighborhood Component Analysis (NCA) to 

reduce redundancy and improve feature relevance. Finally, a Bayesian Optimized Support 

Vector Machine (SVM) is employed to ensure high classification accuracy, providing a more 

efficient and scalable solution for road crack detection. This approach aims to enhance 

performance in diverse environmental conditions while minimizing the need for extensive 

labeled datasets. 

 

PROPOSED METHODOLOGY 

 

Road crack defect detection is essential for ensuring safe transportation and efficient 

maintenance. This section outlines the proposed approach using a feature-based 

methodology. The process begins with acquiring road surface images and converting them 

into grayscale format. Feature extraction is performed using HOG, GLCM, and LBP. These 

techniques capture essential texture and structural information from the images. 

The extracted features are combined into a unified feature set, which is then refined using 

NCA for feature selection. NCA reduces the dimensionality of the feature set by selecting the 

most relevant features for classification. The refined features are then used to train a Bayesian 

Optimized SVM classifier, which predicts the presence or absence of cracks on the road 

surface. The output is a binary result indicating whether cracks are detected. 
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The proposed system for road crack detection is illustrated in Figure 1, showing the steps of 

preprocessing, feature extraction, feature selection, and classification. 

 

 
Figure 1: Flow diagram for proposed road crack defect detection 

 

3.1 Image Pre-processing 

Color filters arranged in small mosaics are integrated into the capture sensors of each pixel in 

order to generate a digital image. These filters aid in the color definition process.  

 

3.2.1 RGB2YCBCR Conversion 

RGB2YCbCr conversion [39] is a widely used technique in digital image processing to 

convert an image from the RGB (Red, Green, and Blue) color space to the YCbCr 

(Luminance, Chrominance Blue, Chrominance Red) color space. 

The RGB color space is based on the additive combination of red, green, and blue light. In 

contrast, the YCbCr color space separates the color information into two components: 

luminance (𝑌) and chrominance (𝐶𝑏 and 𝐶𝑟). The 𝑌 component represents the brightness or 

intensity of the image, while the 𝐶𝑏 and 𝐶𝑟 components represent the color information. 

The main reason for using the YCbCr color space is that it can achieve better compression of 

image and video data than RGB. The human eye is more sensitive to changes in brightness 

(luminance) than to changes in color (chrominance). By separating the luminance and 

chrominance information, it is possible to apply different compression techniques to each 

component that take advantage of this difference in sensitivity. 

The conversion process from RGB to YCbCr involves the following steps: 

 Normalize the RGB values of each pixel in the image to the range [0,1]. 

 Convert the normalized RGB values to YCbCr values using the following formulas: 

𝑌 =  0.299𝑅 +  0.587𝐺 +  0.114𝐵          (1) 

𝐶𝑏 = −0.1687𝑅 −  0.3313𝐺 +  0.5𝐵 +  128   (2) 

𝐶𝑟 =  0.5𝑅 −  0.4187𝐺 −  0.0813𝐵 +  128   (3) 

Where,𝑅, 𝐺, and 𝐵 are the red, green, and blue color channels, and 𝑌, 𝐶𝑏, and 𝐶𝑟 are 

the resulting YCbCr channels. 

 Quantize the resulting YCbCr values to reduce the number of bits required to represent 

each pixel. This is done using a quantization matrix, which scales the values in each 

channel based on their importance in human perception. 
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In image processing, the YCbCr color space is used in a variety of applications, including 

image and video compression, image enhancement, and image analysis. For example, in 

image compression, the chrominance channels (𝐶𝑏 and 𝐶𝑟) can be subsampled to reduce the 

amount of data needed to represent the image, while still preserving the visual quality of the 

image. In image analysis, the YCbCr color space can be used to segment an image into 

different regions based on the color information in the chrominance channels. 

RGB2YCbCr conversion is an important technique in image processing that enables efficient 

compression and transmission of visual data while preserving image quality. 

 

3.2 Feature Extraction 

The extraction of meaningful and significant information from digital images, known as 

feature extraction, is a crucial step in image processing. It aims to transform raw image data 

into a set of features that can be used for classification or further analysis. This study 

proposes a hybrid approach that combines the HOG, GLCM, and LBP techniques. A brief 

summary of the methods used to identify digital image falsification in the proposed approach 

is provided below. 

 

3.2.1 HOG Features 

Histogram of Oriented Gradients (HOG) is a feature descriptor used to capture the structure 

and gradient information from the image. The method works by calculating the gradient 

orientation in local regions of the image, which is effective for identifying the shape and 

patterns of cracks. 

Mathematically, the gradient in the 𝑥-direction 𝐺𝑥 and the 𝑦-direction 𝐺𝑦 are computed as: 

𝐺𝑥 = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦) 

(4) 

𝐺𝑦 = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1) 

(5) 

Where 𝐼(𝑥, 𝑦)represents the intensity of the pixel at position(𝑥, 𝑦). 

The magnitude 𝑀 and orientation 𝜃 of the gradient at each pixel are then given by: 

𝑀 = √𝐺𝑥
2 + 𝐺𝑦

2 

(6) 

𝜃 = arctan (
𝐺𝑦

𝐺𝑥
) 

(7) 

These orientations are then binned into histograms, which represent the distribution of 

gradients in local image regions. The resulting feature descriptor captures the structural 

information that is essential for detecting cracks in the image. 

 

3.2.2 GLCM Features 

Gray Level Co-occurrence Matrix (GLCM) is a statistical method used to examine the texture 

of an image by analyzing the spatial relationships between pixels. GLCM is computed by 

determining how often pairs of pixels with specific values occur in a specified spatial 

relationship. 

For an image𝐼, the GLCM 𝑃(𝑖, 𝑗|𝑑, 𝜃) for pixel values 𝑖 and 𝑗, at distance 𝑑 and angle 𝜃, is 

defined as: 

𝑃(𝑖, 𝑗|𝑑, 𝜃) = ∑ {
1 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥,𝑦

 

(8) 
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Where 𝑑𝑥 and 𝑑𝑦 are determined by the angle𝜃. 

Common texture features derived from the GLCM include: 

 Contrast: ∑ (𝑖 − 𝑗)2𝑃(𝑖, 𝑗)𝑖,𝑗  

 Energy: ∑ 𝑃(𝑖, 𝑗)2
𝑖,𝑗  

 Homogeneity: ∑
𝑃(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗  

 Correlation: Measures how correlated pixel pairs are. 

These features help capture the texture information of cracks, which often present distinct 

patterns from the surrounding surface. 

 

3.2.3 LBP Features 

Local Binary Patterns (LBP) is a simple yet powerful texture descriptor that operates by 

comparing each pixel with its surrounding neighbors. LBP assigns a binary code to each pixel 

based on whether its intensity is greater than or less than the surrounding pixels. 

The LBP at a pixel (𝑥, 𝑦) with 8 neighbors is computed as: 

𝐿𝐵𝑃(𝑥, 𝑦) = ∑ 2𝑛 ⋅ 𝑠(𝐼𝑛 − 𝐼(𝑥, 𝑦))

7

𝑛=0

 

(9) 

Where 𝐼(𝑥, 𝑦)the intensity of the center pixel is, 𝐼𝑛 is the intensity of its neighbors, and 𝑠(𝑥) 

is a step function: 

𝑠(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

      (10) 

The resulting binary pattern encodes the texture information of the local region around each 

pixel. LBP is particularly effective in capturing fine details of crack textures. 

 

3.2.4 Combined Feature Set 

After extracting features using HOG, GLCM, and LBP, these feature vectors are 

concatenated into a combined feature set. This process ensures that both structural and texture 

information are preserved, leading to a comprehensive representation of the road surface. The 

combined feature set is defined as: 

𝐹 = [𝐹𝐻𝑂𝐺, 𝐹𝐺𝐿𝐶𝑀, 𝐹𝐿𝐵𝑃] 
(11) 

Where 𝐹𝐻𝑂𝐺, 𝐹𝐺𝐿𝐶𝑀,and 𝐹𝐿𝐵𝑃, FLBPFLBP represent the feature vectors extracted by the 

respective methods. This combined set forms the input for the feature selection process. 

 

3.3 Feature Selection Using NCA 

Neighborhood Component Analysis (NCA) is a feature selection technique that identifies the 

most relevant features for classification by optimizing a distance-based objective function. 

NCA aims to maximize the performance of a nearest neighbor classifier by selecting features 

that contribute the most to accurate predictions. 

Given a dataset (𝑋, 𝑌), where 𝑋 ∈ ℝ𝑛×𝑑 is the feature matrix and 𝑌 ∈ ℝ𝑛 are the labels, 

NCA learns a transformation matrix 𝐴 that projects the data into a lower-dimensional space: 

𝑋′ = 𝑋𝐴     (12) 

The objective function is to minimize the classification error in this transformed space by 

maximizing the weighted sum of correct predictions. The feature weights learned through 

NCA highlight the most important features, which are retained for the classification stage. 
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3.4 Classification Using Bayesian Optimized SVM 

The final step involves classifying the selected features using a Bayesian Optimized Support 

Vector Machine (SVM). SVM is a powerful classification method that constructs a 

hyperplane to separate different classes in the feature space.The decision function of an SVM 

is represented as: 

𝑓(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏 

(13) 

Where 𝑤 is the weight vector, 𝜙(𝑥) represents the mapped features, and 𝑏 is the bias. The 

classifier aims to maximize the margin between the classes, and the optimal 𝑤 and 𝑏 are 

determined by solving the following optimization problem: 

min
𝑤

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

(14) 

Subject to: 

𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 

(15) 

Here, 𝐶 is a regularization parameter, and 𝜉𝑖 are slack variables that allow for 

misclassifications. 

Bayesian optimization is used to automatically tune the hyperparameters of the SVM, such as 

𝐶 and the kernel parameters, to achieve optimal classification performance. The optimized 

SVM then predicts whether a road surface has cracks based on the selected features. 

 

RESULTS AND DISCUSSION 

 

4.1 Dataset 

The dataset [40] comprises approximately 11,200 images obtained by merging 12 distinct 

crack segmentation datasets. Each image's name prefix corresponds to the dataset it originates 

from. Additionally, there exist images devoid of crack pixels, which can be filtered out by 

employing the file name pattern "noncrack*". 

All images have been resized to dimensions of 448×448. The dataset encompasses two main 

folders: "images" and "masks", which encompass all the available images. Moreover, two 

additional folders, "train" and "test", contain training and testing images respectively, 

extracted from the aforementioned image and mask folders. The splitting process ensures 

stratification, maintaining similar proportions of each dataset within both the train and test 

folders. 

 

4.2 Evaluation Parameters 

Here are the evaluation metrics employed in the analysis: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(17) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(18) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
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(19) 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(20) 

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(21) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(22) 

 

4.3 Results 
 

Table 1: Comparative Analysis of Proposed Method for Different Features Using SVM 

Classifier 

Parameters HOG GLCM LBP Hybrid Features 

Accuracy 0.9451 0.9523 0.9564 0.9652 

Error Rate 0.0549 0.0477 0.0436 0.0348 

Sensitivity 0.9432 0.9508 0.9561 0.9643 

Specificity 0.9524 0.9587 0.9643 0.9758 

Precision 0.9461 0.9535 0.9576 0.9660 

False Positive Rate 0.0476 0.0413 0.0357 0.0242 

F-Score 0.9446 0.9522 0.9568 0.9651 

MCC 0.9238 0.9334 0.9396 0.9534 

Kappa Statistics 0.9123 0.9257 0.9328 0.9486 

 

Table 1 presents the comparative analysis of the average performance outcomes across 

various feature extraction techniques when employing a standard SVM classifier. The table 

details the various performance metrics, for three different feature sets: HOG, GLCM, and 

LBP, alongside a combined feature set that integrates all three methods. 

From the results, the Combined Features approach yielded the highest accuracy at 0.9652, 

demonstrating its effectiveness in capturing a broader range of information regarding road 

crack defects compared to individual feature sets. The HOG feature set followed closely, 

achieving an accuracy of 0.9451. The GLCM and LBP methods recorded accuracies of 

0.9523 and 0.9564, respectively, indicating that while they are effective, they do not 

encapsulate the same level of detail as the combined feature set. 

In terms of error rates, the combined feature set again performed best, with the lowest error 

rate of 0.0348, underscoring its reliability. Furthermore, the sensitivity and specificity metrics 

highlight the classifier's ability to correctly identify true positives and negatives, respectively. 

The combined feature set excelled here as well, with sensitivity and specificity values of 

0.9643 and 0.9758. These results reflect the method's robustness in accurately detecting road 

cracks while minimizing false alarms. 

The precision and F-score values, which measure the accuracy of the positive predictions and 

the balance between precision and recall, were also highest for the combined features, 

indicating a well-rounded performance. The Matthews Correlation Coefficient (MCC) and 

Kappa statistics, which assess the classifier's performance while considering true and false 

positives and negatives, demonstrated that the combined features significantly enhance the 

model's predictive power, achieving values of 0.9534 and 0.9486, respectively. 

In summary, Table 1 illustrates that while individual feature extraction techniques such as 

HOG, GLCM, and LBP are effective, their combined application through a standard SVM 
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classifier provides superior performance in detecting road cracks, emphasizing the 

importance of utilizing a comprehensive feature set for improved accuracy and reliability. 

 

Table 2: Comparative Analysis of Proposed Method for Different Features with NCA-Based 

Feature Selection and SVM Classifier 

Parameters HOG GLCM LBP Hybrid Features 

Accuracy 0.9558 0.9625 0.9679 0.9774 

Error Rate 0.0442 0.0375 0.0321 0.0226 

Sensitivity 0.9552 0.9618 0.9674 0.9771 

Specificity 0.9645 0.9712 0.9753 0.9838 

Precision 0.9565 0.9628 0.9686 0.9780 

False Positive Rate 0.0355 0.0288 0.0247 0.0162 

F-Score 0.9557 0.9623 0.9680 0.9773 

MCC 0.9367 0.9464 0.9537 0.9671 

Kappa Statistics 0.9264 0.9408 0.9490 0.9629 

 

Table 2 showcases the results of applying NCA for feature selection in conjunction with the 

SVMclassifier. This table reflects the performance metrics for three individual feature 

extraction methods—HOG, GLCM, and LBP—as well as a combined feature set that 

incorporates all three techniques. The introduction of NCA aims to enhance the quality of 

feature selection, leading to more effective and efficient model performance. 

 

The results indicate a notable improvement in the overall accuracy of the classifier, with the 

Combined Features yielding an impressive accuracy of 0.9774, a significant enhancement 

from the previous table. Each of the individual feature sets also demonstrated improvements, 

with HOG achieving 0.9558, GLCM 0.9625, and LBP 0.9679. These enhancements 

underscore the efficacy of NCA in refining feature sets by selecting the most relevant features 

while discarding those that contribute little to predictive power. 

 

In terms of error rates, the combined feature set again leads with an error rate of 0.0226, 

which indicates a marked reduction in misclassifications compared to Table 1. Additionally, 

the sensitivity and specificity metrics reveal that the NCA-enhanced models maintain high 

levels of true positive identification and true negative identification. The sensitivity for the 

combined features reached 0.9771, and specificity increased to 0.9838, demonstrating an 

enhanced ability to accurately classify road surfaces. 

 

Moreover, the precision and F-score metrics further corroborate the effectiveness of using 

NCA, with values reaching 0.9780 and 0.9773 for the combined features, respectively. This 

suggests that the classifier not only excels in correctly identifying defects but also minimizes 

false alarms, providing more reliable assessments. 

 

The MCC and Kappa statistics also reflect improved performance, with the combined 

features achieving values of 0.9671 and 0.9629, respectively. These metrics reinforce the idea 

that incorporating NCA into the feature selection process significantly boosts the model’s 

overall performance, yielding a classifier that is not only accurate but also dependable. 

Overall, Table 2 emphasizes the benefits of utilizing NCA feature selection alongside SVM 

classification. The significant increases in accuracy, sensitivity, specificity, and overall 

performance metrics indicate that this approach enhances the model's capability to detect 

road cracks effectively, thereby ensuring safer roadways and more efficient maintenance 

strategies. 



443                                           Dr. S Tiwari et al. / IJCNIS, 12(3), 433-447 

 
 

Table 3: Comparative Analysis of Proposed Method for Different Features with NCA-Based 

Feature Selection and Bayesian-Optimized SVM Classifier 

Parameters HOG GLCM LBP 
Hybrid 

Features 

Accuracy 0.9642 0.9701 0.9735 0.9884 

Error Rate 0.0358 0.0299 0.0265 0.0116 

Sensitivity 0.9637 0.9692 0.9730 0.9879 

Specificity 0.9734 0.9787 0.9820 0.9946 

Precision 0.9650 0.9704 0.9741 0.9887 

False Positive 

Rate 
0.0266 0.0213 0.0180 0.0054 

F-Score 0.9643 0.9698 0.9735 0.9883 

MCC 0.9487 0.9575 0.9626 0.9849 

Kappa Statistics 0.9287 0.9399 0.9460 0.9714 

 

Table 3 presents the performance outcomes when employing a Bayesian Optimized Support 

Vector Machine (SVM) classifier in combination with Neighborhood Component Analysis 

(NCA) for feature selection. This approach aims to further enhance classification accuracy 

and reliability through a probabilistic framework that optimizes hyperparameters, resulting in 

superior predictive performance. 

The results in Table 3 show that the accuracy for the Combined Features is the highest among 

all tables, reaching 0.9884. This substantial increase from previous tables highlights the 

effectiveness of Bayesian optimization in fine-tuning the SVM parameters, leading to a 

model that performs exceptionally well in classifying road cracks. Each individual feature set 

also shows strong performance, with accuracies of 0.9642 for HOG, 0.9701 for GLCM, and 

0.9735 for LBP, indicating that even standalone features benefit from the optimized SVM 

approach. 

In terms of error rates, the Bayesian optimized model achieved the lowest error rates across 

all feature sets, with the combined features recording only 0.0116. This improvement reflects 

a decreased likelihood of misclassification, which is critical in safety-sensitive applications 

such as road maintenance. The metrics of sensitivity and specificity are also commendable, 

with sensitivity at 0.9879 and specificity at 0.9946 for the combined feature set, emphasizing 

the model's ability to accurately detect both the presence and absence of cracks. 

The precision and F-score metrics also demonstrate high values, at 0.9887 and 0.9883, 

respectively. These results suggest that the Bayesian optimized SVM not only excels in 

identifying road defects but also maintains a high standard of prediction quality, resulting in 

fewer false positives and more reliable assessments. 

 

Furthermore, the MCC and Kappa statistics reflect the model’s strength, achieving 0.9849 

and 0.9714 for the combined features, indicating a robust correlation between predicted and 

actual values. These metrics validate the effectiveness of the Bayesian optimization technique 

in enhancing the model's overall performance, providing a statistically sound approach to 

road crack detection. 

 

In conclusion, Table 3 illustrates the significant advantages of integrating Bayesian 

optimization with SVM classification and NCA feature selection. The results underscore the 

potential of this methodology to transform road crack detection processes, offering a reliable, 

accurate, and efficient solution that can greatly enhance infrastructure maintenance and safety 

measures. 
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Table 4: Comparative Analysis of Proposed Work with Previous Research Works 

Method Accuracy F-Score 

CNN [41] 88.3% 87.5% 

DenseNet161 [42] 90.87% 84.77% 

ResNet152 [42] 95.70% 82.59% 

VGG19 [42] 97.66% 89.14% 

Proposed 98.94% 98.33% 

 

Table 4 presents a comparative analysis of the proposed work against well-known deep 

learning models like CNN, DenseNet161, ResNet152, and VGG19 for road crack detection. 

The CNN model achieves an accuracy of 88.3% and an F-Score of 87.5%, indicating 

moderate performance but with limitations in detecting complex crack patterns. DenseNet161 

improves with a higher accuracy of 90.87%, but its F-Score drops to 84.77%, suggesting 

challenges in precision and recall. ResNet152 further enhances accuracy to 95.70%, yet its F-

Score is lower at 82.59%, reflecting struggles in balancing false positives and negatives. 

VGG19 performs better, with an accuracy of 97.66% and an F-Score of 89.14%, showcasing 

improved handling of intricate crack patterns. However, the proposed method outperforms all 

these models, achieving an impressive accuracy of 98.94% and an F-Score of 98.33%, 

indicating superior crack detection capability, precision, and overall classification 

performance. This highlights the effectiveness of the proposed approach in accurately 

identifying road cracks compared to previous works. 

 

CONCLUSION 

 

In this research, we presented a robust and efficient methodology for automated road crack 

detection, addressing the growing need for more accurate and scalable solutions in road 

infrastructure maintenance. The proposed system integrates HOG, GLCM, and LBP feature 

extraction techniques, combined with NCA for optimal feature selection, and a Bayesian 

Optimized SVM classifier for superior performance. Through this approach, the model 

successfully overcomes the limitations of traditional manual inspections and earlier machine 

learning methods, which often struggled with inconsistent performance and low 

generalizability across diverse crack patterns. The experimental results demonstrated the 

efficacy of the proposed method, achieving a highly impressive accuracy of 98.94% and an 

F-Score of 98.33%, significantly outperforming previous methods. This superior performance 

not only reflects the model's precision but also its ability to minimize false positives and 

negatives, ensuring reliable detection even in complex and varying road conditions. The 

combination of advanced feature extraction, feature selection, and classification techniques 

highlights the potential of the proposed system to be implemented in real-world scenarios, 

paving the way for more efficient road maintenance strategies. Future research can explore 

further improvements by integrating other advanced machine learning algorithms and 

expanding the system to detect other types of road defects, ensuring the continuous safety and 

efficiency of transportation networks. 
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