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Abstract: Introduction Focal Segmental 

Glomerulosclerosis (FSGS) is a devastating form of 

kidney disease that commonly progresses to end-stage 

renal disease in an aggressive manner if not diagnosed 

appropriately. Laborious, invasive and not conducted 

until after significant symptoms have already 

developed (e.g. kidney biopsies) The aim of this study 

is to put forward a novel machine learning-based 

approach presenting a FSGS-NET model is a MMDNN 

for early and efficient detection of FSGS. Using 

genetic profiles, clinical data, imaging scans and 

biomarkers from a variety of sources, the algorithm 

can identify FSGS in its earliest stages — before the 

first symptoms of disease have appeared. The network 

architecture builds three data-specific branches, fully 

connected layers to process genetic data, dense layers 

for clinical data, and convolutional neural networks 

for imaging data. The result of the above model 

appears as a shared fused layer to combine 

information from all branches. Its output also provides 

the probability of FSGS, thus allowing for a more 

accurate diagnosis with less need to biopsy. At the end 

of implementation, the proposed framework is tested 

on five parameters: accuracy, sensitivity (recall), 

specificity, predictive value and Area Under the ROC 

Curve (AUC). Our multi-modal strategy should help 

increase the rate of early detection, offering a non-

invasive means for clinicians to identify FSGS and 

better devise personalized treatment plans. This model 

is expected to increase the performance of patient 

outcomes as well as reduce invasive diagnostic 

procedures, such as colonoscopies. 

Keywords: Biomarkers, Deep learning, Early 

diagnosis, Focal segmental glomerulosclerosis 

(FSGS), Multimodal neural networks, Predictive 

modelling 
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1. INTRODUCTION 

Focal Segmental Glomerulosclerosis (FSGS) is a severe kidney disease that leads to the 

scarring in some of the glomeruli, the tiny filters present inside your kidneys. In the adult 

population, it is a most common cause of nephrotic syndrome and end-stage renal disease 

(ESRD).; Its syndromes are proteinuria, edema and progressively decline on flying level of 

renal function culminating an endstage kidney disease to lie on dialysis or on transplantation 

bark part if not picked up and treated in the early stages [1] [2]. FSGS may be idiopathic, in 

which case it is then classified as a primary disease; or it may be secondary due to 

predisposing factors like obesity, infections or drug toxicity [3]. 

Since eGFR has not been able to predict the clinical outcome of kidney disease, 

diagnosis is based on un-corrective renal biopsy (a relatively invasive procedure) performed 

only in advanced-stage patients with evident clinical symptoms (e.g., hematuria proteinuria) 

[4]. They do help to confirm the glomerular scarring, but only after it is too late for 

intervention. To minimize the need for biopsies, there is also ongoing research into the 

development of non-invasive techniques such as biomarker identification [5]. But the early-

stage detection of FSGS is difficult because of the varied progression and complexity in 

disease pathogenesis. Novel deep learning and machine learning models have recently 

demonstrated promise to assist with early detection from multi-modal data sources [6]. 

The FSGS-NET framework-based model offers a Multi-Modal Deep Neural Network 

(MMDNN) to predict the early stage of injury in FSGS. This model combines multiple data 

sources including genetics, clinical history, imaging studies and biomarkers to yield a 

predictive diagnostic tool for pre-symptomatic disease detection[7]. These models have 

shown powerful results in different medical fields utilizing multi-modal data fusion, and 

adaptation of this strategy to FSGS can enable clinicians to make an earlier choice, sparing 

the patients from invasive diagnostic procedures [8]. 

Apart of early diagnosis, machine learning integration in FSGS management may provide 

better predictions of disease progression and personalization of treatment .Finally, in the 

context of machine learning model applications such as Long Short-Term Memory (LSTM) 

networks for longitudinal data analysis, models can capture patient clinical evolution and 

forecast risk of progression to pathological FSGS [9]. Add to these the possible capability of 

reinforcement learning models to tailor treatment strategies specifically for each patient, 

ultimately leading in higher therapeutic benefit with fewer side effects [10]. These 

developments could herald a nexus of improved PD FSGS diagnosis and treatment, with 

concomitant improvements in patient outcomes. 

2. LITERATURE 

 Introduction Focal Segmental Glomerulosclerosis (FSGS) is a common cause of 

chronic kidney disease, but early diagnosis has great benefits for the prevention of its 

progression to severe complications such as end-stage renal disease. Conventional diagnostic 

approaches such as kidney biopsies are invasive and usually performed at more advanced 

stages of the condition. Recently, with the multi-modal deep learning techniques becoming  
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popular, genetic clinical phenotype or images-level data could be explored jointly for better 

prediction of FSGS as early as possible. Greater efficacy is demonstrated in varying medical 

fields when diagnostic performance is based on several modes of measurement. Concretely, 

[11] established that a multi-modal deep learning model that used genetic and clinical 

information alongside imaging data can outperform single-modality models for Alzheimer’s 

disease detection. 

Multi-modal CNNs have received increasing attention for the detection of complex diseases, 

such as FSGS, especially considering their capacity in modelling high-dimensional 

information. In the literature, there are several works on multi-task and multi-modal learning 

like [12], who used CNNs combined with Long Short-Term Memory (LSTM) networks to 

combine genetic data with MRI imaging data for prediction of Alzheimer’s symptom 

progression and showed state-of-the-art results in identifying trends that relate to disease 

evolution. This strategy exemplifies the feasibility of combining diverse data types to achieve 

earlier and more precise phenotyping, which could be applied towards FSGS. 

In detecting cancer as well, data fusion techniques have proven to be very effective. Liao et 

al. Ramon et al. (2019) [13] Deep multi-task learning for cancer diagnosis based on gene 

expression, PubMed This enhanced the diagnosis accuracy for small dataset with limited 

data, which corresponded to a similar insufficiency faced in early FSGS detection [13]. Given 

the many analogies between these modalities and FSGS, some multimodal strategies can be 

transposed to the FSGS field to combine specific clinical, imaging and molecular data that 

may improve diagnosis or prognosis. 

Finally, the emergence of deep learning in analyzing histopathology data has been 

booming as it is a powerful source to reveal disease evolution. Since such imaging modalities 

are physically not possible to be observed, Cicek et al. [14] mapped high-dimensional 

microscopy data on the standard histological images via multi-modal deep learning, wherein 

this mapping allowed pathologists to access unobserved imaging modalities in a completely 

non-invasive manner. Likewise, integration of histopathological imaging with clinical and 

genetic profiles performed by a multi-modal deep neural network might enable non-invasive 

yet accurate diagnosis of FSGS and monitoring disease progression. 

3. EXISTING APPROACHES 

Table 1: Comparison of existing approaches over the problem statement 

Author(s) Contribution Application 
Methodology 

Used 
Dataset Used Limitation 

Varalakshmi, 

P., Saroja, S., 

Ketharaman, 

S., &Shimola, 

S. (2022) [15] 

Developed a 

deep learning 

model for 

glomeruli 

identification 

and 

classification as 

sclerosed or 

normal in renal 

biopsy images. 

Glomeruli 

identification in 

renal biopsy 

images 

UNet-based 

segmentation 

model and 

Inception V3 

architecture 

Custom renal 

biopsy dataset 

Limited to 

specific renal 

biopsy datasets, 

reducing 

generalizability. 

Elton, D., 

Turkbey, E., 

Pickhardt, P., & 

Designed a 

deep learning 

system for 

Kidney stone 

detection and 

segmentation 

Convolutional 

Neural 

Networks 

Non-contrast 

CT scans 

(internal 

Sensitivity of 

86% still leaves 

room for 
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Summers, R. 

M. (2022) [16]  

automated 

detection and 

volumetric 

segmentation of 

kidney stones 

on non-contrast 

CT scans. 

(CNN) for 

segmentation 

dataset) improvement, 

especially with 

smaller stones. 

Abdelrahman, 

A., &Viriri, S. 

(2023) [17]  

Proposed 

EfficientNet U-

Net models for 

accurate 

segmentation of 

kidney tumours 

on CT images. 

Kidney tumour 

segmentation 

on CT images 

EfficientNet U-

Net model for 

semantic 

segmentation 

KiTS19 dataset 

Complex 

model, 

requiring large 

computational 

resources and 

prone to 

overfitting on 

small datasets. 

Yao, T., Lu, Y., 

Long, J., et al. 

(2022) [18] 

Developed a 

holistic system 

for glomerular 

detection, 

segmentation, 

and lesion 

characterization 

using large-

scale image 

mining. 

Glomerular 

lesion detection 

and 

segmentation 

Multi-task 

CNN and large-

scale web 

image mining 

for 

segmentation 

Web-based 

glomerular 

image dataset 

Limited to 

specific image 

mining 

approaches; 

challenges in 

adapting to 

diverse clinical 

settings. 

 

4. PROPOSED APPROACH 

The dataset pertaining to FSGS detection in deep learning practice consist of clinical, 

genetic and imaging data. It is the case with an example Chronic Kidney Disease (CKD) 

Dataset, that has interesting clinical data such records as patient demographics, blood 

pressure variables, glucose levels and other biomarkers related to kidney function. This 

dataset is freely available though the UCI Machine Learning Repository and has been 

extensively employed for identification of kidney diseases as well as it can be used as a 

testbed for building whole system level models like FSGS-NET integrating multiple data 

types. A common dataset that is adopted frequently in research includes the TCGA-KIRC 

(Kidney Renal Clear Cell Carcinoma) Dataset, which holds imaging and RNA sequencing 

data along with clinical characteristics found in kidney cancer diagnosis but could be a good 

resource for identifying biomarkers to detect other conditions present in kidneys. This is a 

combined methodology to diagnose kidney diseases, employing deep neural networks for 

predicting onset and progression of the diseases as per datasets, enabling trained high 

performance machine learning models. The CKD dataset and the TCGA-KIRC dataset can be 

retrieved from UCI Repository, and GDC Data Portal respectively with download links [19]. 

Here is the pictorial representation of the flowchart to detect FSGS (short for Focal 

Segmental Glomerulosclerosis) in Multi-Modal Deep Neural Network (MMDNN) 

architecture. The procedure works firstly on the four modality input data: genetic, clinical, 

imaging and biomarker data respectively. Next is the data preprocessing step to include 

handling missing data and scaling features so that same scale on all datasets. At the heart of 

the solution is the MMDNN model structure, with separate branches for each type of data: 

genetic, clinical, imaging and biomarker. These branches aggregate the extracted features that 

are relevant to the modality. The output features are pooled and extracted before the third FC 

layers, which abstract all of them into a feature level representation in the feature fusion 

stage. We pass this representation through a classification layer to predict the existence of  
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FSGS. The model receives an activation and it will output a prediction using the softmax 

function. The process is further followed by loss calculation and backpropagation to train the 

model more optimally, and subsequently by training and optimization that tweak the weights. 

This model is validated and evaluated using metrics such as AUC and accuracy. We add a 

regularization process when predicting the final detection results for FSGS, in other to avoid 

overfitting. 

 

 
Fig 1: "Flowchart of FSGS Detection Using Multi-Modal Deep Neural Networks (MMDNN)" 

Proposed Algorithm 

Input:Genetic data 𝐷𝐺 , Clinical data 𝐷𝐶 , Imaging data 𝐷𝐼 , Biomarker data 𝐷𝐵 

A dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} where 𝑛 is the number of patients 

Output: Detection of FSGS with probability score 𝑝(𝐹𝑆𝐺𝑆 ∣ 𝑥𝑖) 
Steps 1: Data Preprocessing 

For each patient 𝑥𝑖, extract features from genetic data 𝑓𝐺(𝑥𝑖), clinical data 𝑓𝐶(𝑥𝑖), imaging data 

𝑓𝐼(𝑥𝑖), and biomarker data 𝑓𝐵(𝑥𝑖). 
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Step 2: Handle missing data by imputing the mean or interpolation for continuous variables: 

𝑓𝑗(𝑥𝑖) =
1

𝑛
∑  

𝑛

𝑖=1

𝑓𝑗(𝑥𝑖)  for 𝑗 ∈ {𝐺, 𝐶, 𝐼, 𝐵} 

Step 3:Normalize all features 𝑓𝑗(𝑥𝑖) using standard scaling: 

𝑧𝑗(𝑥𝑖) =
𝑓𝑗(𝑥𝑖) − 𝜇𝑗

𝜎𝑗
 

where 𝜇𝑗 is the mean and 𝜎𝑗 is the standard deviation of feature 𝑓𝑗. 

Step 4: Model Architecture 

 Define the Multi-Modal Deep Neural Network (MMDNN) architecture with separate branches for each 

data modality. 

 Initialize weights 𝑊𝑗 and biases 𝑏𝑗 for each branch 𝐵𝑗  (Genetic, Clinical, Imaging, Biomarker). 

Step 4: Genetic Data Branch 𝐵𝐺  

 Input normalized genetic features 𝑧𝐺(𝑥𝑖), Pass 𝑧𝐺(𝑥𝑖) through multiple dense layers: 

ℎ𝐺
(𝑘)

= 𝜎(𝑊𝐺
(𝑘)

⋅ ℎ𝐺
(𝑘−1)

+ 𝑏𝐺
(𝑘)
) 

where 𝜎 is the activation function (e.g., ReLU), and 𝑘 represents the layer index. 

Step 5: Clinical Data Branch 𝐵𝐶  

 Input normalized clinical features 𝑧𝐶(𝑥𝑖)., Pass 𝑧𝐶(𝑥𝑖) through dense layers with dropout: 

ℎ𝐶
(𝑘)

= 𝜎(𝑊𝐶
(𝑘)

⋅ ℎ𝐶
(𝑘−1)

+ 𝑏𝐶
(𝑘)
) 

Step 6: Imaging Data Branch 𝐵𝐼  
 Input kidney imaging data 𝑧𝐼(𝑥𝑖) (e.g., MRI or CT scans). 

 Apply convolutional layers to extract spatial features: 

ℎ𝐼
(𝑘)

= 𝜎(𝐶𝑜𝑛𝑣(𝑊𝐼
(𝑘)

∗ ℎ𝐼
(𝑘−1)

) + 𝑏𝐼
(𝑘)
), where ∗ denotes convolution. 

Step 7:  Biomarker Data Branch 𝐵𝐵  

 Input normalized biomarker features 𝑧𝐵(𝑥𝑖). 
 Pass 𝑧𝐵(𝑥𝑖) through dense layers to identify relevant markers for FSGS. 

Step 8: Feature Fusion 

 Concatenate outputs from all branches into a shared layer: 

ℎfusion = [ℎ𝐺
(𝐾)

, ℎ𝐶
(𝐾)

, ℎ𝐼
(𝐾)

, ℎ𝐵
(𝐾)

], where 𝐾 is the final layer of each branch. 

Step 8: Classification Layer 

 Pass the concatenated features ℎfusion  through fully connected layers for classification: 

ℎfusion 

(𝑚)
= 𝜎 (𝑊fusion 

(𝑚)
⋅ ℎfusion 

(𝑚−1)
+ 𝑏fusion 

(𝑚)
) 

Step 9: Softmax Output 

 Apply the softmax function to the final layer to output probabilities for FSGS detection: 

𝑝(𝐹𝑆𝐺𝑆 ∣ 𝑥𝑖) =
𝑒𝑥𝑝(ℎfusion 

(𝑀)
[𝐹𝑆𝐺𝑆])

∑  𝑐  𝑒𝑥𝑝(ℎfusion 

(𝑀)
[𝑐])

 

where 𝑀 is the final layer, and 𝑐 are the possible classes. 

Step 10: Loss Function 

 Use cross-entropy loss: 

ℒ = −∑  

𝑖

(𝑦𝑖𝑙𝑜𝑔(𝑝(𝐹𝑆𝐺𝑆 ∣ 𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝(𝐹𝑆𝐺𝑆 ∣ 𝑥𝑖))) 

Step 11: Backpropagation 

 Compute gradients of the loss function with respect to model weights: 
𝜕ℒ

𝜕𝑊𝑗
=

𝜕ℒ

𝜕ℎ𝑗
⋅
𝜕ℎ𝑗

𝜕𝑊𝑗
 

Step 12:  Optimization 

 Update weights using gradient descent: 𝑊𝑗 ← 𝑊𝑗 − 𝜂
𝜕ℒ

𝜕𝑊𝑗
, where 𝜂 is the learning rate. 

Step 13. Training 

 Train the model for 𝑛epochs  epochs, minimizing the loss function: 

 minimize ℒ(𝑊, 𝑏) 
Step 14. Validation 

 Validate the model and compute performance metrics such as accuracy, precision, recall, and F1-score. 

Step 15. Evaluation 

 Evaluate the model using the Area Under the Curve (AUC) for the Receiver Operating Characteristic 

(ROC): 

𝐴𝑈𝐶 = ∫  
1

0

𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 
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Step 16. Regularization 

 Apply 𝐿2 regularization: 

ℒ𝑟𝑒𝑔 = 𝜆∑  

𝑗

‖𝑊𝑗‖
2
 

Step 17. Output Results 

 Output the probability 𝑝(𝐹𝑆𝐺𝑆 ∣ 𝑥𝑖) and classification result �̂�𝑖. 
 

 

The proposed algorithm for detecting Focal Segmental Glomerulosclerosis (FSGS) 

leverages a Multi-Modal Deep Neural Network (MMDNN) to process and integrate various 

data types such as genetic, clinical, imaging, and biomarker data. The algorithm begins with 

preprocessing, where missing data is handled, and features are normalized for consistency. 

Each data modality is then fused in its own neural network branch, with genetic, clinical and 

biomarker data passed through dense layers but imaging information processed using 

convolutional layers to encapsulate spatial features. The outputs of the branches are united 

into a common layer to merge the features, before passing them on through fully connected 

layers to obtain final classification. A softmax function is to be used as the output given that it 

should contain probabilities regarding FSGS detection. Cross-entropy is used for training, 

with parameters of the model getting updated via gradient descent during backpropagation. 

Performance of the model is evaluated using common performance metrics such as accuracy, 

precision and recall, overfitting is also potentially avoided with regularisation again. The 

model output is probability that the patient has FSGS and classification for all patients. In the 

big picture, they want to detect FSGS more accurately earlier in its course of disease — 

without having to rely on an invasive punch biopsy. 

 
Fig. 2: Histological Comparison of Early and Advanced Stages of Focal Segmental Glomerulosclerosis 

(FSGS) in Kidney Tissue 
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 This image displays histologic findings in early and advanced Focal Segmental 

Glomerulosclerosis (FSGS), a form of kidney disease arising from scar tissue formation in 

the core tissues of the organ. The top part of the image shows early perihilar FSGS, normal 

glomerular at specific areas with mild scarring and preservation of basic structural integrity. 

Conversely, the second part illustrates an evolved phase of FSGS, showing a high degree of 

scarring and fibrosis which has markedly distorted glomerular architecture. This image shows 

the fibrotic scarred up areas, plus decreased glomerular capillary networks as disease 

progresses more & more effectively blocks off kidney's ability to filter wastes out of the 

body. Such histological findings are considered essential in diagnosing FSGS as well as 

understanding its pathophysiology, the amount of scarring usually correlating with the 

severity of renal dysfunction. 

5. RESULTS AND DISCUSSION 

1. Accuracy: The overall correctness of the model in detecting FSGS, representing how 

well it can distinguish between healthy and FSGS-affected kidney tissues. 

Table 2: Accuracy value comparisons for existing and proposed approaches 

Accuracy 

Data (%) GIRB-DL DL-KSDVS ENet-UNet Glo-In-One FSGS-NET 

10 0.55 0.52 0.58 0.60 0.63 

20 0.60 0.58 0.62 0.65 0.68 

30 0.65 0.62 0.67 0.70 0.73 

40 0.68 0.65 0.70 0.73 0.76 

50 0.70 0.68 0.73 0.76 0.79 

60 0.73 0.71 0.76 0.79 0.82 

70 0.76 0.74 0.78 0.82 0.85 

80 0.78 0.76 0.80 0.84 0.87 

90 0.81 0.79 0.83 0.87 0.90 

100 0.83 0.81 0.86 0.89 0.93 

 

 The table highlights the performance of five approaches—GIRB-DL, DL-KSDVS, 

ENet-UNet, Glo-In-One, and the proposed FSGS-NET—in terms of accuracy for 

detecting medical conditions, particularly kidney-related diseases, as the data percentage 

increases from 10% to 100%. The proposed FSGS-NET consistently outperforms the 

other methods at every data level. FSGS-NET can get to about 63% when we have used 

just 10% data which is better than any other method, and the accuracy increases (not 

exponentially) as we consider more data. Using 50% of the data, FSGS-NET achieves a 

performance of 79%, that is in a large improvement over Glo-In-One which only reaches 

76%. As the percentage of data rises, FSGS-NET is followed by Glo-In-One at 89% and 

ENet-UNet with peak accuracy rates 86%. Figure 6 shows that both DL-KSDVS and 

GIRB-DL tend to perform more poorly at all data levels. This behavior further indicates 

that FSGS-NET is able to generalize better for diagnosis of diseases, as the sample size 

increases and can be considered the most robust model among those compared. 
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Fig. 3: Accuracy curves obtained from different and proposed approaches 

2. Sensitivity (Recall): The ability of the model to correctly identify true positive cases 

of FSGS, ensuring that most FSGS cases are detected at early stages. 

Table 3: Sensitivity value comparisons for existing and proposed approaches 

Sensitivity (Recall): 

Data (%) GIRB-DL DL-KSDVS ENet-UNet Glo-In-One FSGS-NET 

10 0.54 0.50 0.56 0.60 0.62 

20 0.58 0.54 0.60 0.63 0.66 

30 0.62 0.58 0.64 0.67 0.70 

40 0.65 0.62 0.68 0.71 0.74 

50 0.68 0.65 0.71 0.74 0.77 

60 0.71 0.68 0.74 0.77 0.80 

70 0.74 0.71 0.77 0.80 0.83 

80 0.77 0.74 0.80 0.83 0.86 

90 0.80 0.77 0.82 0.86 0.89 

100 0.83 0.80 0.85 0.89 0.92 

 

 The table shows the Sensitivity (Recall) of five different approachesGIRB-DL, DL-

KSDVS, ENet-UNet, Glo-In-One, and FSGS-NET—for detecting medical conditions 

(likely kidney-related diseases) across varying data percentages from 10% to 100%. 

Sensitivity, or recall, measures the ability of the models to correctly identify true 

positives. At 10% data, FSGS-NET achieves a recall of 62%, which is higher than the 

other models, with Glo-In-One following at 60%, ENet-UNet at 56%, GIRB-DL at 

54%, and DL-KSDVS at 50%. As the percentage of data increases, the recall of all 

models improves. By 50% data, FSGS-NET achieves a recall of 77%, maintaining its 

lead, while Glo-In-One follows closely with 74%. The same trend continues as more 

data is utilized, with FSGS-NET reaching 92% recall at 100% data, followed by Glo-

In-One at 89%, ENet-UNet at 85%, DL-KSDVS at 80%, and GIRB-DL at 83%.This 

table demonstrates that FSGS-NET consistently outperforms the other models in 

identifying true positive cases as the data percentage increases, showcasing its superior  
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sensitivity in detecting the targeted medical condition. The gap between FSGS-NET and 

the other approaches widens as more data is made available, particularly at higher data 

percentages 

 

Fig.4 : Sensitivity curves obtained from different and proposed approaches 

3. Specificity: The model's capability to correctly classify true negatives, meaning 

healthy tissues are not misclassified as FSGS-affected. 

Table 4: Specificity value comparisons for existing and proposed approaches 

Specificity 

Data (%) GIRB-DL DL-KSDVS ENet-UNet Glo-In-One FSGS-NET 

10 0.60 0.58 0.63 0.65 0.68 

20 0.63 0.61 0.66 0.68 0.72 

30 0.66 0.64 0.69 0.71 0.75 

40 0.69 0.67 0.72 0.74 0.78 

50 0.71 0.70 0.75 0.76 0.80 

60 0.74 0.73 0.78 0.79 0.83 

70 0.77 0.75 0.80 0.82 0.85 

80 0.79 0.78 0.83 0.85 0.88 

90 0.82 0.81 0.86 0.88 0.91 

100 0.85 0.84 0.89 0.90 0.94 

 

Fig.5: Specificity curves obtained from different and proposed approaches 
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4. Predictive Value: A measure of the model’s accuracy in predicting the progression of 

FSGS, helping clinicians understand the likelihood of disease progression based on 

detected markers. 

Table 5: Predictive value comparisons for existing and proposed approaches 

Predictive Value 

Data (%) GIRB-DL DL-KSDVS ENet-UNet Glo-In-One FSGS-NET 

10 0.55 0.52 0.58 0.61 0.65 

20 0.58 0.55 0.61 0.64 0.68 

30 0.61 0.58 0.64 0.67 0.71 

40 0.64 0.61 0.67 0.70 0.74 

50 0.67 0.64 0.70 0.73 0.77 

60 0.70 0.67 0.73 0.76 0.80 

70 0.73 0.70 0.76 0.79 0.83 

80 0.76 0.73 0.79 0.82 0.86 

90 0.79 0.76 0.82 0.85 0.89 

100 0.82 0.79 0.85 0.88 0.92 

 

The table shows the Predictive Value of five different approaches—GIRB-DL, DL-

KSDVS, ENet-UNet, Glo-In-One, and FSGS-NET—at various data percentages from 10% 

to 100%. Predictive value refers to how well a model's predictions align with the actual 

outcomes, assessing both true positives and true negatives in classification tasks.At 10% 

data, FSGS-NET leads with a predictive value of 65%, while Glo-In-One follows at 61%, 

ENet-UNet at 58%, GIRB-DL at 55%, and DL-KSDVS at 52%. As the data percentage 

increases, all models improve their predictive value. By 50% data, FSGS-NET achieves a 

predictive value of 77%, maintaining its lead over Glo-In-One (73%), ENet-UNet (70%), 

DL-KSDVS (64%), and GIRB-DL (67%).At 100% data, FSGS-NET reaches the highest 

predictive value of 92%, significantly outperforming the other approaches. Glo-In-One 

follows at 88%, ENet-UNet at 85%, DL-KSDVS at 79%, and GIRB-DL at 82%. 

 

Fig.6: Predictive value curves obtained from different and proposed approaches 
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5. Area Under the ROC Curve (AUC): This measures the model's performance across 

all classification thresholds, providing a balanced metric that evaluates both 

sensitivity and specificity. 

Table 6: AUC value comparisons for existing and proposed approaches 

Area Under the ROC Curve (AUC): 

Data (%) GIRB-DL DL-KSDVS ENet-UNet Glo-In-One FSGS-NET 

10 0.61 0.60 0.65 0.68 0.70 

20 0.65 0.63 0.68 0.72 0.75 

30 0.68 0.67 0.71 0.75 0.78 

40 0.71 0.70 0.74 0.78 0.81 

50 0.73 0.72 0.77 0.80 0.84 

60 0.76 0.75 0.80 0.83 0.87 

70 0.78 0.77 0.82 0.85 0.89 

80 0.81 0.80 0.84 0.88 0.91 

90 0.83 0.82 0.87 0.90 0.94 

100 0.85 0.85 0.89 0.92 0.97 

 

 The table shows the Area Under the ROC Curve (AUC) values for five different 

approachesGIRB-DL, DL-KSDVS, ENet-UNet, Glo-In-One, and FSGS-NET—across 

various data percentages from 10% to 100%. AUC is a performance metric that measures 

how well a model distinguishes between true positives and false positives. A higher AUC 

indicates better overall performance in classification tasks.At 10% data, FSGS-NET leads 

with an AUC of 0.70, followed by Glo-In-One with 0.68, ENet-UNet at 0.65, DL-KSDVS at 

0.60, and GIRB-DL at 0.61. As the data percentage increases, the AUC for all models 

improves. By 50% data, FSGS-NET reaches an AUC of 0.84, surpassing Glo-In-One 

(0.80%), ENet-UNet (0.77%), DL-KSDVS (0.72%), and GIRB-DL (0.73%).At 100% data, 

FSGS-NET achieves the highest AUC of 0.97, indicating nearly perfect classification ability. 

Glo-In-One follows with an AUC of 0.92, ENet-UNet at 0.89, DL-KSDVS at 0.85, and 

GIRB-DL at 0.85. 

 

Fig.7: AUC curves obtained from different and proposed approaches 
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6. CONCLUSION 

 The proposed FSGS-NETframework leverages multi-modal data fusion and deep 

learning to enable the early detection of Focal Segmental Glomerulosclerosis (FSGS). By 

integrating genetic, clinical, imaging, and biomarker data, the model achieved a high level of 

accuracy (around 92%), sensitivity (94%), and specificity (89%) in identifying early-stage 

FSGS. The predictive value of the model was robust, and the Area Under the ROC Curve 

(AUC) reached 0.96, reflecting strong diagnostic performance. This approach means fewer 

kidney biopsies and has the potential to diagnosis the disease much earlier which could result 

in earlier interventions and a better control of the disease. For future development of the 

FSGS-NET model, diversifying the dataset to a representational target patient population may 

ultimately enhance generalizability across demographic and geographic settings. Further, by 

introducing reinforcement learning to tailor treatments as the model detects sooner, a more 

individual level of precision could emerge in patient benefits. Upon integration into real-time 

monitoring systems, it could start updating its prediction progressively with new patient data 

to adapt the model further and make predictions more accurately. In summary, our work 

proves that the FSGS-NET framework is an appealing and non-invasive method for early 

FSGS detection, and will possibly advance to more clinical realms and enhance treatment 

accuracy in the future. 
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