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Software defined networks (SDNs) have been released for dynamic operations 

of the networks and for controlling scalable networks. In SDN, the operating 

processes are controlled by a centralized controller.  The performance of the 

centralized controller is decreased by increasing the scale of the network.  

Monitoring functionality is an essential element of any network system.  The 

monitoring performance under centralized controller is decreased with large 

scale networks.   In this paper, a proposed monitoring framework for multi-

controller software defined networks is introduced. The introduced framework 

enhances the reliability and performance of large-scale software defined 

networks. Many copies of the proposed monitoring framework can run with 

SDN multi-controller for monitoring large-scale networks, detecting failure in 

any controller, and failover of the network failure.  All copies of the introduced 

monitoring framework run in parallel, each on a slice to enhance the 

performance of the SDN network.  All copies receive the requests from network 

applications, collect considerable amounts of measurements data, process them, 

and return the results to the network applications. 

The contribution of this paper is introducing a reliable and high-performance 

multi-controller-based SDN monitoring framework. The introduced monitoring 

framework monitors large scale SDN networks with good performance and 

enhances network reliability. It has the capabilities to monitor in parallel many 

network applications where each application runs on a network slice. Each slice 

is controlled by an SDN controller and monitored by a copy of the introduced 

monitoring framework. The copies of the introduced monitoring framework are 

communicated in a synchronization scheme.   

 
Keywords:Software Defined Network, Multi-controller monitoring framework, monitoring 
framework architecture, network applications. 

 

 
INTRODUCTION 

 

Software-Defined Networking (SDN) represents a modern networking approach where a 
central software component, the SDN controller, oversees the network's overall behavior [1]. A 
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network monitoring system (NMS) is essential for managing and observing SDN networks. One of 
the key roles of an NMS is to continuously assess the internal network, identifying and addressing 
various issues that can arise, such as sluggish web page loading, missing emails, unusual user 
activity, insecure connections, or server malfunctions [1]. 

Unlike Intrusion Detection Systems (IDSs) or Intrusion Prevention Systems (IPSs), which 
concentrate on identifying and thwarting unauthorized intrusions, Network Monitoring Systems 
(NMSs) are primarily employed to monitor network performance under normal operating 
conditions. They also collect data for network management tools, including IDSs, for better 
network control. 

To efficiently handle traffic monitoring tasks, the NMS must be compatible with a variety of devices 
from different vendors, including mobile devices, hosts, servers, routers, and switches [2]. SDN, as 
a paradigm, is founded on several key concepts, one of which is the separation of control and data 
planes in traditional networks. In SDN-enabled networks, the data plane resides in forwarding 
devices like SDN switches, while the control plane is centralized in SDN controllers. This division 
allows for distinct layers of abstraction, offering significant flexibility in network management. 

Figure 1 illustrates the architecture of an SDN-based network, depicting its components, planes, 
and layers of abstraction [3]. It comprises three primary planes: the application, control, and data 
planes. The control plane interacts with the data plane via the southbound interface (SBI), while 
communication with the application plane is facilitated through the northbound interface (NBI). 
Additionally, east-west bound APIs have been introduced to enable communication between 
controllers, either within the same domain or across different domains. 

 

Figure 1. Software-Defined Networking architecture [2]. 

Control plane:It is tasked with evaluating the local status of network forwarding devices and 
enforcing policies to ensure the network operates efficiently. These policies may include those 
related to routing, traffic engineering, and security. Unlike traditional networks, which rely on 
destination-based forwarding, SDN uses flow-based forwarding. This means that all packets 
matching a specific criterion are treated with the same set of actions. The control plane is 
responsible for determining traffic paths and overseeing network signaling to ensure correct device 
configurations are applied [1][3][4]. 
Data plane:It is known as the forwarding plane, is responsible for traffic forwarding in devices 
such as switches, based on the policies established by the control plane. This includes filtering 
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traffic and applying various actions to incoming packets. In SDN, switches are more generalized 
and can enforce flow-level policies, integrating functions that were traditionally handled separately 
by routers and switches in conventional networks [1][5]. 
Application plane:It is interact with the SDN controller through Application Programming 
Interfaces (APIs). These applications include business functionalities, network management, and 
security management, and they can be developed to detect issues, malicious activity, anomalies, or 
other concerns [1]. Interfaces between the layers, specifically the northbound and southbound 
interfaces, facilitate communication. The northbound interface connects the controller with the 
application layer, while the southbound interface links the controller to the data forwarding layer. 
OpenFlow is a standard protocol used for communication between the control and data planes in 
SDN-enabled networks [3][6]. 
The SDN model is built on the concept of open interfaces, where the controller offers an API that 
control applications can use to monitor and modify the network’s state. It is also allows for the 
addition of new functionalities by developing further applications. The controller employs open 
protocols, such as OpenFlow, to configure network nodes like switches and routers according to the 
requirements of the applications, with OpenFlow being the most widely accepted standard 
protocol. 
An SDN monitoring system must be capable of collecting, processing, and analyzing a vast range of 
data in real time to provide the necessary insights for effective network decision-making. However, 
this poses a significant challenge due to the large-scale, dynamic nature of current networks, which 
have high traffic volumes and strict demands on time and hardware resources. 
SDN has introduced flexibility and centralized control to network management, monitoring 
frameworks based on single-controller architectures face several limitations when compared to 
multi-controller approaches. Single-controller systems often struggle with scalability, as they can 
become bottlenecks in large networks, leading to slower data collection and decision-making. In 
contrast, multi-controller architectures distribute the monitoring tasks, improving scalability and 
performance. Additionally, single-controller setups are more vulnerable to failure, whereas multi-
controller frameworks enhance fault tolerance by providing redundancy and load balancing, 
ensuring more resilient network management [7]. 

In this paper, we address this challenge by introducing a scalable monitoring framework capable of 
overseeing small, medium, and large networks. This framework's monitoring capabilities can be 
expanded to accommodate a growing number of tenant applications, including management-
related applications.It also monitors management applications and allows to generate accurate and 
frequent monitoring reports concerning a variety of network events and emerging conditions such 
as network performance bottlenecks, anomaly detection and others.  
 
The paper contribution can be summarized as follows: 
1. It presents a high-performance monitoring framework for software-defined networks. 
2. It introduces a reliable multi-controller-based monitoring framework by supporting failover of 

the network failure 
3. It addresses the performance of the monitoring and SDN in two dimensions (i) the performance 

of the monitoring framework with large size SDN (ii) the performance of monitoring framework 
with large number of applications monitored by the framework. 

The rest of this paper is organized as follows: Section 2 shows related work to the paper. Section 3 
discusses the proposed architecture and solution. The implementation and validation of the 
proposed solution are discussed in section 4.  In Section 5, the validation of reliability and 
monitoring framework experiments are discussed. Evaluation and comparative study are discussed 
in section 6. Section 7 concludes the proposed work. 

 

RELATED WORK 
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Numerous studies have been conducted to monitor Software-Defined Networking (SDN), yet gaps 
remain in these investigations. The following section critically examines the existing literature 
relevant to this paper. 

In the work by J. Suariz [1], a flow monitoring solution tailored for OpenFlow-based SDNs is 
proposed. This solution produces reports that contain flow-level measurements. To minimize the 
overhead on the controller and decrease the number of flow entries required in switches, two traffic 
sampling techniques have been introduced. These methods have been implemented, validated, and 
assessed using the OpenDaylight controller. 

B. Isyaku, M. Zahid, M. Kamat, K. A. Bakar, and F. Ghaleb proposed innovative solutions to tackle 
performance challenges in SDN arising from limited flow tables. They suggested leveraging fuzzy 
logic and machine learning techniques to identify frequently accessed flow entries that should be 
retained in the flow table. This research also identifies various challenges, including update 
operations, resource limitations, communication overhead, and delays in packet processing [3]. 

M. Scarlato [5] utilized three conventional network monitoring tools—Ntop, Wireshark, and 
Argus—and adapted them for monitoring SDNs. The performance of these adapted tools was 
assessed, revealing that Ntop and Argus underperformed as they could not identify OpenFlow 
traffic as expected. 

Niu et al. [8] presented a Two-Layer Trusted Multi-Controller Architecture, a noteworthy 
development in SDN designed to tackle scalability and reliability challenges in multi-controller 
settings. This architecture employs a multi-chain approach that integrates Consistent Fault 
Tolerance (CFT) and Byzantine Fault Tolerance (BFT) blockchains to establish a decentralized and 
credible decision-making framework. It is structured into two layers: the foundational control 
layer, which uses the CFT blockchain for trusted distributed coordination, and the dynamic 
decision layer, employing the BFT blockchain for multi-party engagement in key processes like 
anomaly detection and recovery. This dual-layer design enables flexible adjustment of decision-
making members, thereby enhancing scalability and reliability. Furthermore, it incorporates 
mechanisms for initial load balancing and fine-tuned dynamic load balancing to avert controller 
overload, along with a robust exception detection system based on switch reporting (EDSR) for 
managing various network anomalies.  

Zhang et al. [9] conducted a thorough survey on multi-controller-based SDNs, exploring their 
origins, challenges, and implementation strategies. The authors noted that while multi-controller 
systems can enhance network performance, their scalability and reliability hinge on factors such as 
the number of controllers and deployment strategies. Poorly planned controller deployments can 
lead to uneven workloads and diminished control plane capacity, thereby undermining the 
anticipated scalability advantages. Limited bandwidth of connection links between switches and 
controllers can lead to communication problems and isolation, while controllers themselves are 
vulnerable to failures or attacks. Overall, the survey by Zhang et al. highlights the need for 
meticulous deployment strategies and the addressing of potential reliability issues to optimize 
performance in multi-controller SDN environments [9]. 

While Wireshark is widely recognized as a comprehensive tool, it has numerous filters specific to 
OpenFlow packets. G. Tangary demonstrated that adaptive monitoring functionalities can be 
integrated into the packet-processing pipeline to maintain the accuracy of monitoring reports 
amidst varying resource availability in the data plane [10]. 

In their survey paper [11], M. Alsaeedi, M. Mohamad, and A. AL-Roubaiey outlined four key 
challenges in OpenFlow-SDN that contribute to traffic overhead. They also highlighted research 
hurdles that need to be addressed to develop more adaptive and scalable OpenFlow-SDN solutions, 



        1570                                                                                                                                          Mahmoud Eissa/IJCNIS, 16(4),1566-1587   

                              

 

 

particularly in large-scale and dynamic network environments. One significant challenge involves 
monitoring and classifying network flows at the application level [11]. 

Moreover, in prior research, we introduced a scalable monitoring framework designed specifically 
for Software-Defined Networks (SDNs), which addressed the critical need for efficient, vendor-
independent monitoring in multi-tenant environments. The system utilized OpenFlow to retrieve 
measurement data from various network components, ensuring its adaptability to diverse 
infrastructures. Scalability was achieved by slicing the network topology with FlowVisor and 
managing each slice with a dedicated Floodlight controller. This foundation forms the basis for the 
current study, which aims to further extend the monitoring framework's capabilities and address 
some of its limitations, such as compatibility with additional SDN controllers[12].  

 

THE PROPOSED MULTI-CONTROLLER-BASED MONITORING FRAMEWORK 

In this section, the layered architecture of the monitoring framework environment, and layered 
detailed design of the proposed monitoring system are introduced.   

3.1) The layered high-level architecture of the monitoring framework environment  

The high-level architecture of the monitoring framework environment, as depicted in Figure (2), is 
arranged in a layered structure. The architecture contains four layers: network application layer, 
proposed monitoring framework layer, SDN control layer, and SDN infrastructure layer (data 
plane). The network application layer contains applications such as fault detection, anomaly 
detection, performance management and others. Each network application needs specific 
measurements data for analyzing and taking a decision based on the functionality of the 
application. The measurement data are collected by the monitoring framework. The decision 
should be sent to the monitoring framework for reconfiguring the data plane (SDN 
infrastructure).The functionality of each application is different than other applications’ 
functionalities. For example, the functionality of fault detection is different than the functionality 
of anomaly detection and performance management applications.   

The proposed monitoring framework layer contains many copies of the monitoring framework. 
Each copy is synchronized with its neighbor copies for measurements data exchange. Each 
monitoring copy monitors a slice of the SDN infrastructure.  The monitoring framework provide 
APIs to be used by network applications. 
The SDN controller layer contains N-copies of controller. Each controller copy controls a slice of 
the SDN infrastructure and used by a copy of monitoring framework. The SDN infrastructure layer 
(data plane) contains all devices and hosts of the underlying network. There are two standard 
interfaces: northbound interface and southbound interface. These two interfaces are used for 
communication between the different layers as shown in Figure 2. 
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Figure 2. The layerd architecture of the monitor software framework environment 

 

 

3.2) The detailed design of the proposed monitoring framework 

The detailed design of the monitor framework is depicted as a layered architecture as shown in 
figure 3.  The layers of the monitoring framework are L1, L2, and L3.  There are three other layers: 
Layer L0 includes network applications, layer L4 includes SDN controller and layer L5 includes 
SDN infrastructure (data plane). 

Layer L1 of the monitoring framework includes three elements: requester manipulator, results 
returner and synchronization module. Layer L2 contains the translator element. Layer L3 contains 
the measurements data Collector element.  The elements of the three layers (L1-L3) in general 
receive requests from network applications, collect the necessary measurement data and returns 
the results to the calling network applications.  The elements can collect various types of data for 
different network applications (calling applications). 
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Figure 3: The layered detailed design of the proposed monitoring framework 

The monitoring framework consists of many layers. Each layer has one or more module.  The top 
layer (L1) contains selector element, and synchronization element. The second layer (L2) contains 
the translator module.   Layer 3 (L3) contains results collector. 

The selector element in layer-1 (L1) receives requests from network Applications in layer 0(L0) and 
selects the slice and its controller for executing the request. The translator element in layer-2(L2) 
translates each high-level request into a low-level request and stores the data in the database. The 
result collector in layer-3(L3) calls OpenFlow API and the controller interfaces to execute the 
required operation function (request). The measurement results collected by the result collector 
returned to the calling network application. The collected results are then stored in the results 
table. 

3.3) The Synchronization module (interface) 

The synchronization interface is provided to synchronize monitoring information in a SDN multi-
controller and big size data plane. It facilitates the exchange of monitoring data between different 
monitoring framework instances (copies). Any monitoring copy can send the measured data to its 
neighbors monitoring copies. It also tests the health of the controller of the underlying slice. The 
faulty controller is detected by the synchronization element and failover of the controller failure is 
conducted by the synchronization element. 
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IMPLEMENTATION AND VALIDATION 
 

Implementation and validation of the multi-controller-based monitoring framework. 
To implement our proposed multi-controller-based monitoring framework for SDNs, we used the 
following tools: 
1-Floodlight controller for SDN 
2-Flowvisor for slicing the SDN topology 
3- Mininet emulator for simulating SDN topologies. 
4- SQLite database 
4- Paython programming language. 

In the following section we give a brief about each one: 
The Floodlight controller is an open-source software-defined networking (SDN) controller 
developed by the Floodlight Project. It is designed to provide a robust and flexible platform for 
managing and controlling network devices, such as switches and routers, in an SDN environment. 
Floodlight operates by communicating with network devices using the OpenFlow protocol, 
enabling centralized control and dynamic management of network traffic. As a Java-based 
controller, Floodlight offers a modular architecture, allowing developers to extend and customize 
its functionality to suit specific network requirements. It supports a wide range of applications, 
including load balancing, network virtualization, and traffic monitoring. Floodlight is widely used 
in research, academia, and production environments due to its scalability, ease of use, and active 
community support, making it a popular choice for implementing and experimenting with SDN 
solutions. The Floodlight Controller is an open-source SDN controller developed by Big Switch 
Networks and is based on the OpenFlow protocol. One of the powerful features of the Floodlight 
Controller is its REST API, which provides a simple yet powerful interface for managing and 
monitoring an SDN network [13]. 

FlowVisor is a network hypervisor designed to enable network slicing in software-defined 
networks (SDNs). It acts as an intermediary layer between the physical network infrastructure and 
the control plane, allowing multiple independent network controllers to manage distinct slices of 
the network simultaneously. Each slice operates as if it were a fully isolated network, even though 
they share the same underlying hardware. 

FlowVisor achieves this by intercepting and filtering OpenFlow messages between the network 
switches and controllers. It ensures that each controller only has visibility and control over its 
designated slice, thereby maintaining isolation and security across different slices. Additionally, 
FlowVisor enforces slice-specific policies, such as bandwidth allocation and flow rules, ensuring 
that each slice operates according to the predefined rules without interference from other slices. 
This capability makes FlowVisor particularly useful in research and multi-tenant environments 
where different users or applications need to control separate portions of the network without 
impacting each other [14]. 

Mininet is a network emulator that can create a virtual network comprising hosts, switches, 
controllers, and links. The hosts in Mininet run standard Linux network software, and the switches 
support OpenFlow, allowing for highly customizable routing and Software-Defined Networking. 
Mininet is useful for research, development, learning, prototyping, testing, debugging, and any 
other tasks that could benefit from having an experimental network on a laptop or other PC [15]. 

SQLite database is a lightweight, disk-based database that doesn’t require a separate server 
process. In python, sqlite3 is a built-in module that allows programmers to interact with SQLite 
database [16].For validating the proposed MCMF, we created a topology using the Mininet 
emulator, sliced the topology to two slices using FlowVisor where each slice is controlled by a 
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floodlight controller. After that we used the REST APIs for retrieving measurement information 
from each slice. The measured information is retrieved based on the high-level requests from 
network applications. In the following we discuss each action in some detail. In addition, we test 
failover capability, where the MCMF can monitor the slices with fault in one floodlight controller. 
This means that the MCMF supports the monitoring reliability of multi-controller SDNs.  

4.1-Creating a topology 
We used the Mininet emulator to simulate a real topology called onstutorial. The onstutorial 
topology is a custom network topology designed for educational and experimental purposes within 
the context of software-defined networking (SDN).  The onstutorial topology defines a specific 
arrangement of network switches, hosts, and links, allowing users to experiment with different 
network configurations, control policies, and failover mechanisms. This topology is particularly 
useful for demonstrating how SDN controllers interact with network devices and manage traffic 
flows across the network. By using the onstutorial topology, users can gain hands-on experience in 
configuring and managing SDN-based networks, testing features like network slicing, redundancy, 
and failover, all within a controlled and reproducible environment. The onstutorial consists of four 
switches and 4 hosts and 8 links as shown in Figure 4. 

 

Figure 4: The simulated topology of onstutorial. 

4.2- Slicing the topology into slices 
Flowvisor has been used to slice our network topology into two slices as shown in Figure 5(a,b).  
Each slice is managed by one floodlight controller (floodlight1&floodlight2) for the sake of 
scalability of our proposed MCMF and SDN networks. 

 

a) Upper slicecontrolled by floodlight1 
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b- Lower slice is controlled by Floodlight2 
Figure 5: The two slices are presented a) upper slice b) lower slice 

The simulated custom topology has been divided into two slices where each slice is controlled by a 
different floodlight controller. The high performance with scalable software defined network is 
achieved by slicing the underlying topology to slices and adding flowspaces that have been assigned 
to the two floodlight controllers for switches configuration. 

In earlierwork[12]  , we have conducted a thorough evaluation of the Multi-Controller Monitoring 
(MCM) framework's performance, specifically focusing on throughput and latency measurements 
before and after the implementation of network slicing. The initial phase of the evaluation involved 
measuring throughput and latency in a centralized monitoring setup, where the entire topology 
was managed as a single entity without slicing. In this configuration, we observed that as the 
network size and the number of monitoring requests increased, the throughput began to degrade, 
and latency became significantly higher due to the centralized nature of the system.Subsequently, 
we applied the network slicing mechanism within the MCM framework, where the network was 
divided into multiple slices. Each slice was independently managed by a separate instance of the 
Floodlight controller, enabling distributed control and monitoring across the network. The results 
post-slicing demonstrated a substantial improvement in both throughput and latency. By 
decentralizing the monitoring process and distributing the load across multiple controllers, the 
system could handle a higher volume of traffic with lower delay. Specifically, the throughput 
increased as each Floodlight controller efficiently managed its respective slice, preventing 
bottlenecks associated with the centralized monitoring system. Additionally, latency was 
significantly reduced, as each controller was able to quickly respond to monitoring requests within 
its designated slice without the overhead of managing the entire network. This evaluation confirms 
that network slicing within the MCM framework enhances both the scalability and performance of 
the monitoring system, making it more capable of managing large-scale SDN topologies[12]. 

4.3-Deployment architecture. 
Figure 6 shows the deployment architecture of multi-controller -based monitoring framework. In 
the figure 6 the upper slice is controlled by floodlight1 and monitored by MCMS copy1, and the 
lower slice is controlled by floodlight2 and monitored by MCMF copy2.  Figure 7 a,b show the 
information about each slice and its controller after the deployment operation.     
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The upper slice is controlled by floodlight1                    The lower slice controlled by floodlight2 

Figure 6: The Deployment architecture of the upper slice, lower slice and floodlight controllers 

 
Figure 7.a: A Screen represents that floodlight1 physically controls the upper slice 
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Figure 7.b:  A Screen represents that Floodlight2 controls the lower slice. 

 
4.4- Ensuring the isolation between the two slices. 
Four test cases have been conducted as shown in Figure 8 for making sure that the two slices are 
isolated and testing the reachability between hosts. 
Test case 1: host1 sent pingall message to other all hosts, only the host 3 respond because it is in the 
same slice of host 1. No response from host 2 and host 4.  
Test case 2: host2 sent pingall message to other all hosts, only the host 4 sent a response because it 
is in the same slice of host 2. No response from host 1 and host 3. 
Test case 3: host3 sent pingall message to other all hosts, only the host 1 sent a response because it 
is in the same slice of host 3. No response from host 2 and host 4.  
 Test case 4: host4 sent pingall message to other all hosts, only the host 2 sent a response because it 
is in the same slice of host 4. No response from host 1 and host 3.  
All the four test cases are shown in the python code in Figure 8. 

 

 
Figure 8: Testing the isolation between the two slices upper and lower. 

 
It appears from figure 8, that only host1 can reach host3 and vice versa. This is because the two 
hosts are in the same slice.  Also, host2 only can reach host4 and vice versa.   Host1 and host3 as 
appears in figure 6 are managed by flooldlight1.   Host2 and host4 as appears in figure 6 are 
managed by floodlight2. 
  
4.5- Validating the monitor elements of SDNs 
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After slicing and deployment validation, we test the elements of the proposed Multi- Controller 
Monitoring Framework (MCMF). 
The MCMF monitor consists of four elements: selector, translator, results returner, and 
synchronization elements. 

4.5.1-The selector element 
The selector is implemented in python programming language; it selects the copy of MCMF where 
the high-level request is assigned. The selection is dependent on the parameters of the request (i.e. 
links, switches, or others). If the parameters of the request exist in upper slice, then the request is 
assigned to floodlight1-based MCMF copy1, else is assigned to floodlight2-based MCMF copy2. 

4.5.2-The Translator element   
The translator element is implemented in python programming language; it receives the request 
from the selector and translates it into a low-level request that makes it so easier to monitor the 
network. The low -level requests call the Floodlight REST APIs for collecting needed information. 
The translator algorithm is represented as a Flowchart diagram and shown in Figure 9. Figure 10 
shows the implementation of receiving a request for retrieving information about specific switches 
and other elements from slice 1. The system status request implementation and results are shown 
in figure 11.   

 
Figure 9: The Flowchart diagram of the translator 
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Figure 10: Example of execution of a monitoring request (Get switches) using the proposed translator 

 

 

 

 
Figure 11: Example of Testing the status of the framework during running state using the proposed translator. 
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Figure 12: Shows the monitoring information stored in monitoring framework DB 

 

The translator is implemented in a python language that runs over the SDN network and takes care 
of requests as presented in figures 10, and 11. 
 The results of the requests conducted by the translator are stored in the database of our MCMF as 
shown in figure 12 

 
4.5.3-The Result Collector: 
This element used to store either the results from the translator or the data that being synchronized 
from the synchronization element that will being explained after this one. The result collector is 
implemented as a python code that create the Database of our MCMF framework. The algorithm of 
the result collector is represented as a Flowchart in figure 13. 
 

 
Figure 13: The Flowchart diagram of the result collector 

 

The shown in figure 13, the results are stored in the database. These results will be used also by the 
synchronization element to take an action if needed.  
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5-Validating SDN reliability using the synchronization element: 
The synchronization element is a python code that runs over the network to make synchronization 
between the two floodlight controllers for detecting any change of the two slices and enhancing the 
reliability of the SDN network.  For example, if there is a failure in any floodlight controller it will 
be detected by the synchronization element. After detecting the failure in the floodlight, the 
synchronization element is taking an action for failover. 
For validating the reliability, the floodlight1 is down by a command. The synchronization element 
detects that the floodlight1 is down then takes an action of failover by making the flooldight2 not to 
manage only its slice but to manage the floodlight1’s slice.  This means the flooldight2 manages the 
entire network topology by reassigning the slice of the floodlight1 to the floodight2.  The floodlight2 
is now the only active controller, which manages the entire topology based on the action of the 
synchronization element.  All actions are stored in the MCMF Database. By detecting the down 
(faulty) floodlight and failover technique introduced by the synchronization element, the reliability 
of monitoring and SDN is enhanced. The algorithm of the synchronization element is represented 
as a Flowchart as shown in figure 14. 

 
Figure 14: The Flowchart Diagram of the synchronization element 

 
6-Evaluation of the proposed multi-controller-based monitoring framework (MCMF) 
 

1-MCMF reliability 
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 In our case study we introduce the MCMF ability of   failover when one of the controllers is down. 
We tested the failover in our case study by using a command to makefloodlight1 down shown in 
figure 15. There are twooptions for checking the controller’s health.  In Option1, a request is sent to 
the   translator element to check the controller’s health .  If one of the controllers is down, the 
translator will trigger the synchronization element to take action. The synchronization element 
makes the failover process that will reassign the slice of the down controller to the active one. The 
active controller can take over the two slices until the down controller is back to health status.  
In option2:   the synchronization element is synchronizing between the two controllers and the 
synchronized data between them is stored in the monitor database.  The synchronization runs 
regularly until abnormal change happens in the system.  The synchronization element can detect 
that change and then take an action. For example, in the same case study the floodlight1 is down 
and the synchronization element will take care of this change and make the active controller 
controls of the down controller slice.   
 

 
         Figure 15: The command that makes controller one is down for our case study  

 

After the failover process, we tested the connection between all hosts to make sure that the two 
slices are controlled by the floodlight2. As we can see in figure 16, any ping message from any host 
reaches to all other hosts. This means that the two slices are controlled by floodlight2 with faulty 
floodlight1.  

 
Figure16. Ping test after failover 

 

Figure 17a illustrates the screen of information about the physical topology controlled by floodlight 
2 after failover process. Figure 17b illustrates the physical topology controlled by floodlight2 after 
the failover process. The topology consists of the two slices as shown in the figure 17b. 
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Figure17a. Failover active controller gui 

 

 
Figure17b. Topology of active controller after failover 

 

 

 
 
 
 
 
 
 
 
 
 

EVALUATION AND COMPARATIVE STUDY 
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We have implemented and tested the proposedhigh performance monitoring system that run on 
SDN multi-controller, which can retrieve measurement data from the simulated data plane based on 
a network application request. The monitor can receive a request from a network application to 
collect measurement data, which may differ from one application to another.   

We have developed and rigorously tested the Multi-Controller Monitoring framework (MCMF), a 
high-performance solution designed to operate across SDN multi-controllers. The MCMF 
framework excels in retrieving measurement data from the simulated data plane based on specific 
network application requests, which may vary depending on the application’s requirements. This 
framework is engineered for large-scale network management, with capabilities to divide the 
network into multiple slices, each managed by a synchronized instance of the MCMF framework. 
This synchronization module ensures seamless information exchange between instances, thereby 
facilitating efficient monitoring of multitenant network applications. The MCMF framework 
demonstrates superior throughput and lower latency compared to traditional centralized 
monitoring frameworks that lack slicing. However, the current implementation is limited to 
operating on the Floodlight SDN multi-controller, with plans to extend support to other SDN multi-
controllers in the future.  

The Multi-Controller Monitoring (MCM) framework is designed to be versatile and adaptable, 
enabling it to function seamlessly with various vendors of data plane devices, including switches 
and routers. As long as these devices support the OpenFlow protocol, the MCM framework can 
effectively integrate with them. This compatibility ensures that network administrators can 
leverage the advantages of the MCM framework across a wide range of networking equipment 
without being limited to specific vendor solutions. By utilizing the OpenFlow protocol, the MCM 
framework can facilitate consistent and efficient monitoring and management of network 
resources, thereby enhancing the overall performance and scalability of Software-Defined 
Networking (SDN) environments, regardless of the underlying hardware. 

In a comparative study, we evaluated the MCMF framework against the Two-Layer Trusted Multi 
Controller Architecture, which is grounded in a multi-chain approach to enhance scalability and 
reliability in SDN environments. While our MCMF framework emphasizes synchronization and 
high-performance monitoring across network slices, the Two-Layer Trusted Architecture focuses on 
decentralization, decision-making credibility, and the use of CFT and BFT blockchains to ensure 
reliable multi-controller coordination. By examining the key aspects and performance outcomes of 
each system, we highlight the unique strengths and methodologies of the MCMF framework in 
contrast to the sophisticated multi-chain mechanisms employed in the Two-Layer Trusted Multi-
Controller Architecture. 
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Table 1: a comparative study between our proposed monitoring solution and Two-Layer Trusted Multi-Controller 
Architecture[7]. 

 

Aspect MCMF framework Two-Layer Trusted Multi-Controller 
Architecture 

Purpose and 
Design Focus 

Manages and synchronizes two SDN controllers 
for network monitoring, failover, and redundancy 

Ensures scalability and reliability in SDN 
multi-controller environments using a multi-
chain approach. 

Scalability 
Mechanisms 

Achieves scalability through synchronization of 
two controllers with failover capability 

Utilizes Initial Load Balancing Mechanism 
(ILBM) and Fine-Grained Dynamic Load 
Balancing for scalability. 

Reliability and 
Exception 
Handling 

Provides reliability through a failover mechanism 
where one controller can take over if the other 
fails. 

Uses a sophisticated reliability mechanism 
with exception detection based on switch 
reporting (EDSR). 

Decentralization 
and Decision-
Making 

 
Operates in a semi-centralized manner, focusing 
on redundancy between two controllers 

 
Emphasizes decentralization with CFT and 
BFT blockchains for distributed coordination 
and decision-making. 

Performance 
Guarantees 
 
 
Simulation and 
Results 

 
Ensures performance by maintaining network 
stability through dual-controller management. 
 
 
 
Design suggests effective management of failover 
situations, though specific simulation results are 
not provided. 

 
Focuses on high performance through 
dynamic load balancing and multi-chain 
architecture. 
 
 
Simulation results demonstrate prevention of 
controller overload and high performance 
with credibility and decentralization. 
 

 

 

CONCLUSION 
 

In this paper, a reliable and high-performance monitoring framework for Multi-controller SDN 

has been proposed.   It runs on SDN multi-controller, where a copy of the monitoring system 

runs on a copy of the multi-controller. Each copy of the monitoring system can exchange the 

measurement data with its neighbor copies using the synchronization module in each copy. The 

synchronization element of the proposed monitor detects the failure in any controller and 

failover the failure by assigning the slices of the faulty floodlight to another health floodlight 

controller.  The proposed framework manages and monitors large scale SDN networks, where 

these networks can be sliced to two or more slices. Each slice is monitored by a copy of the 

monitoring system and controlled by an SDN controller. The proposed framework monitors a 

large number of network applications, where each application is monitored by a copy of the 

monitoring framework and controlled by SDN controller.     

The monitoring framework is also a vendor-independent, capable of retrieving measurement 

data from any infrastructure device, including switches, routers, links, and others. This is 

because the monitoring framework uses the OpenFlow protocol for retrieving measurement data, 

which is infrastructure independent. The high performance of multi-controller-based monitoring 

framework has been achieved by slicing the topology of SDN to slices using flowvisor tool. Each 

slice has been controlled by an instance of floodlight controller and monitored by a copy of the 

proposed monitoring framework. The different network applications run in parallel on multi-

slices controlled by multi-controller and monitored by different copies of the proposed 

monitoring framework. Also, the size of the network can be increased without sacrificing the 

performance by slicing the networks to slices monitored by the proposed monitoring framework. 
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The scalable monitoring framework works only with Floodlight SDN multi-controller.   

In the future the proposed monitoring framework can be built using large language models 

(LLMs). Also in future work, we aim to explore a more adaptive approach by investigating 

various SDN controllers beyond Floodlight, which will enhance the versatility of our research. 

Additionally, integrating machine learning techniques for predictive analytics will enable more 

intelligent network management, allowing for proactive adjustments based on traffic patterns 

and potential network disruptions. This direction not only aims to improve the overall 

performance and reliability of SDN implementations but also addresses the evolving demands of 

dynamic network environments. By focusing on these enhancements, we anticipate significant 

advancements in the capabilities of SDN architectures, leading to more resilient and efficient 

networking solutions. 
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