
International Journal of Communication Networks and Information
Security
2024, 16(4)
ISSN: 2073-607X,2076-0930
https://ijcnis.org/

Copyright © 2024 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Research Article

A Predictable performance Multi-controller-based
Monitoring Framework for SDN

Mahmoud Eissa1, Ahmed Yahya 2, Usama AbdelFattah3

1) Master student, Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.

2) Professor of Electronics, Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo,

Egypt

3) Assisstant professor, Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt

*Corresponding Author:mahbor92@gmail.com

ARTICLE INFO ABSTRACT

Received: 1 Sep 2024
Accepted: 11 Oct 2024

Software defined networks (SDNs) have been released for dynamic operations

of the networks and for controlling scalable networks. In SDN, the operating

processes are controlled by a centralized controller. The performance of the

centralized controller is decreased by increasing the scale of the network.

Monitoring functionality is an essential element of any network system. The

monitoring performance under centralized controller is decreased with large

scale networks. In this paper, a proposed monitoring framework for multi-

controller software defined networks is introduced. The introduced framework

enhances the reliability and performance of large-scale software defined

networks. Many copies of the proposed monitoring framework can run with

SDN multi-controller for monitoring large-scale networks, detecting failure in

any controller, and failover of the network failure. All copies of the introduced

monitoring framework run in parallel, each on a slice to enhance the

performance of the SDN network. All copies receive the requests from network

applications, collect considerable amounts of measurements data, process them,

and return the results to the network applications.

The contribution of this paper is introducing a reliable and high-performance

multi-controller-based SDN monitoring framework. The introduced monitoring

framework monitors large scale SDN networks with good performance and

enhances network reliability. It has the capabilities to monitor in parallel many

network applications where each application runs on a network slice. Each slice

is controlled by an SDN controller and monitored by a copy of the introduced

monitoring framework. The copies of the introduced monitoring framework are

communicated in a synchronization scheme.

Keywords:Software Defined Network, Multi-controller monitoring framework, monitoring
framework architecture, network applications.

INTRODUCTION

Software-Defined Networking (SDN) represents a modern networking approach where a
central software component, the SDN controller, oversees the network's overall behavior [1]. A

https://ijcnis.org/
mailto:mahbor92@gmail.com

 1567 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

network monitoring system (NMS) is essential for managing and observing SDN networks. One of
the key roles of an NMS is to continuously assess the internal network, identifying and addressing
various issues that can arise, such as sluggish web page loading, missing emails, unusual user
activity, insecure connections, or server malfunctions [1].

Unlike Intrusion Detection Systems (IDSs) or Intrusion Prevention Systems (IPSs), which
concentrate on identifying and thwarting unauthorized intrusions, Network Monitoring Systems
(NMSs) are primarily employed to monitor network performance under normal operating
conditions. They also collect data for network management tools, including IDSs, for better
network control.

To efficiently handle traffic monitoring tasks, the NMS must be compatible with a variety of devices
from different vendors, including mobile devices, hosts, servers, routers, and switches [2]. SDN, as
a paradigm, is founded on several key concepts, one of which is the separation of control and data
planes in traditional networks. In SDN-enabled networks, the data plane resides in forwarding
devices like SDN switches, while the control plane is centralized in SDN controllers. This division
allows for distinct layers of abstraction, offering significant flexibility in network management.

Figure 1 illustrates the architecture of an SDN-based network, depicting its components, planes,
and layers of abstraction [3]. It comprises three primary planes: the application, control, and data
planes. The control plane interacts with the data plane via the southbound interface (SBI), while
communication with the application plane is facilitated through the northbound interface (NBI).
Additionally, east-west bound APIs have been introduced to enable communication between
controllers, either within the same domain or across different domains.

Figure 1. Software-Defined Networking architecture [2].

Control plane:It is tasked with evaluating the local status of network forwarding devices and
enforcing policies to ensure the network operates efficiently. These policies may include those
related to routing, traffic engineering, and security. Unlike traditional networks, which rely on
destination-based forwarding, SDN uses flow-based forwarding. This means that all packets
matching a specific criterion are treated with the same set of actions. The control plane is
responsible for determining traffic paths and overseeing network signaling to ensure correct device
configurations are applied [1][3][4].
Data plane:It is known as the forwarding plane, is responsible for traffic forwarding in devices
such as switches, based on the policies established by the control plane. This includes filtering

 1568 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

traffic and applying various actions to incoming packets. In SDN, switches are more generalized
and can enforce flow-level policies, integrating functions that were traditionally handled separately
by routers and switches in conventional networks [1][5].
Application plane:It is interact with the SDN controller through Application Programming
Interfaces (APIs). These applications include business functionalities, network management, and
security management, and they can be developed to detect issues, malicious activity, anomalies, or
other concerns [1]. Interfaces between the layers, specifically the northbound and southbound
interfaces, facilitate communication. The northbound interface connects the controller with the
application layer, while the southbound interface links the controller to the data forwarding layer.
OpenFlow is a standard protocol used for communication between the control and data planes in
SDN-enabled networks [3][6].
The SDN model is built on the concept of open interfaces, where the controller offers an API that
control applications can use to monitor and modify the network’s state. It is also allows for the
addition of new functionalities by developing further applications. The controller employs open
protocols, such as OpenFlow, to configure network nodes like switches and routers according to the
requirements of the applications, with OpenFlow being the most widely accepted standard
protocol.
An SDN monitoring system must be capable of collecting, processing, and analyzing a vast range of
data in real time to provide the necessary insights for effective network decision-making. However,
this poses a significant challenge due to the large-scale, dynamic nature of current networks, which
have high traffic volumes and strict demands on time and hardware resources.
SDN has introduced flexibility and centralized control to network management, monitoring
frameworks based on single-controller architectures face several limitations when compared to
multi-controller approaches. Single-controller systems often struggle with scalability, as they can
become bottlenecks in large networks, leading to slower data collection and decision-making. In
contrast, multi-controller architectures distribute the monitoring tasks, improving scalability and
performance. Additionally, single-controller setups are more vulnerable to failure, whereas multi-
controller frameworks enhance fault tolerance by providing redundancy and load balancing,
ensuring more resilient network management [7].

In this paper, we address this challenge by introducing a scalable monitoring framework capable of
overseeing small, medium, and large networks. This framework's monitoring capabilities can be
expanded to accommodate a growing number of tenant applications, including management-
related applications.It also monitors management applications and allows to generate accurate and
frequent monitoring reports concerning a variety of network events and emerging conditions such
as network performance bottlenecks, anomaly detection and others.

The paper contribution can be summarized as follows:
1. It presents a high-performance monitoring framework for software-defined networks.
2. It introduces a reliable multi-controller-based monitoring framework by supporting failover of

the network failure
3. It addresses the performance of the monitoring and SDN in two dimensions (i) the performance

of the monitoring framework with large size SDN (ii) the performance of monitoring framework
with large number of applications monitored by the framework.

The rest of this paper is organized as follows: Section 2 shows related work to the paper. Section 3
discusses the proposed architecture and solution. The implementation and validation of the
proposed solution are discussed in section 4. In Section 5, the validation of reliability and
monitoring framework experiments are discussed. Evaluation and comparative study are discussed
in section 6. Section 7 concludes the proposed work.

RELATED WORK

 1569 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Numerous studies have been conducted to monitor Software-Defined Networking (SDN), yet gaps
remain in these investigations. The following section critically examines the existing literature
relevant to this paper.

In the work by J. Suariz [1], a flow monitoring solution tailored for OpenFlow-based SDNs is
proposed. This solution produces reports that contain flow-level measurements. To minimize the
overhead on the controller and decrease the number of flow entries required in switches, two traffic
sampling techniques have been introduced. These methods have been implemented, validated, and
assessed using the OpenDaylight controller.

B. Isyaku, M. Zahid, M. Kamat, K. A. Bakar, and F. Ghaleb proposed innovative solutions to tackle
performance challenges in SDN arising from limited flow tables. They suggested leveraging fuzzy
logic and machine learning techniques to identify frequently accessed flow entries that should be
retained in the flow table. This research also identifies various challenges, including update
operations, resource limitations, communication overhead, and delays in packet processing [3].

M. Scarlato [5] utilized three conventional network monitoring tools—Ntop, Wireshark, and
Argus—and adapted them for monitoring SDNs. The performance of these adapted tools was
assessed, revealing that Ntop and Argus underperformed as they could not identify OpenFlow
traffic as expected.

Niu et al. [8] presented a Two-Layer Trusted Multi-Controller Architecture, a noteworthy
development in SDN designed to tackle scalability and reliability challenges in multi-controller
settings. This architecture employs a multi-chain approach that integrates Consistent Fault
Tolerance (CFT) and Byzantine Fault Tolerance (BFT) blockchains to establish a decentralized and
credible decision-making framework. It is structured into two layers: the foundational control
layer, which uses the CFT blockchain for trusted distributed coordination, and the dynamic
decision layer, employing the BFT blockchain for multi-party engagement in key processes like
anomaly detection and recovery. This dual-layer design enables flexible adjustment of decision-
making members, thereby enhancing scalability and reliability. Furthermore, it incorporates
mechanisms for initial load balancing and fine-tuned dynamic load balancing to avert controller
overload, along with a robust exception detection system based on switch reporting (EDSR) for
managing various network anomalies.

Zhang et al. [9] conducted a thorough survey on multi-controller-based SDNs, exploring their
origins, challenges, and implementation strategies. The authors noted that while multi-controller
systems can enhance network performance, their scalability and reliability hinge on factors such as
the number of controllers and deployment strategies. Poorly planned controller deployments can
lead to uneven workloads and diminished control plane capacity, thereby undermining the
anticipated scalability advantages. Limited bandwidth of connection links between switches and
controllers can lead to communication problems and isolation, while controllers themselves are
vulnerable to failures or attacks. Overall, the survey by Zhang et al. highlights the need for
meticulous deployment strategies and the addressing of potential reliability issues to optimize
performance in multi-controller SDN environments [9].

While Wireshark is widely recognized as a comprehensive tool, it has numerous filters specific to
OpenFlow packets. G. Tangary demonstrated that adaptive monitoring functionalities can be
integrated into the packet-processing pipeline to maintain the accuracy of monitoring reports
amidst varying resource availability in the data plane [10].

In their survey paper [11], M. Alsaeedi, M. Mohamad, and A. AL-Roubaiey outlined four key
challenges in OpenFlow-SDN that contribute to traffic overhead. They also highlighted research
hurdles that need to be addressed to develop more adaptive and scalable OpenFlow-SDN solutions,

 1570 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

particularly in large-scale and dynamic network environments. One significant challenge involves
monitoring and classifying network flows at the application level [11].

Moreover, in prior research, we introduced a scalable monitoring framework designed specifically
for Software-Defined Networks (SDNs), which addressed the critical need for efficient, vendor-
independent monitoring in multi-tenant environments. The system utilized OpenFlow to retrieve
measurement data from various network components, ensuring its adaptability to diverse
infrastructures. Scalability was achieved by slicing the network topology with FlowVisor and
managing each slice with a dedicated Floodlight controller. This foundation forms the basis for the
current study, which aims to further extend the monitoring framework's capabilities and address
some of its limitations, such as compatibility with additional SDN controllers[12].

THE PROPOSED MULTI-CONTROLLER-BASED MONITORING FRAMEWORK

In this section, the layered architecture of the monitoring framework environment, and layered
detailed design of the proposed monitoring system are introduced.

3.1) The layered high-level architecture of the monitoring framework environment

The high-level architecture of the monitoring framework environment, as depicted in Figure (2), is
arranged in a layered structure. The architecture contains four layers: network application layer,
proposed monitoring framework layer, SDN control layer, and SDN infrastructure layer (data
plane). The network application layer contains applications such as fault detection, anomaly
detection, performance management and others. Each network application needs specific
measurements data for analyzing and taking a decision based on the functionality of the
application. The measurement data are collected by the monitoring framework. The decision
should be sent to the monitoring framework for reconfiguring the data plane (SDN
infrastructure).The functionality of each application is different than other applications’
functionalities. For example, the functionality of fault detection is different than the functionality
of anomaly detection and performance management applications.

The proposed monitoring framework layer contains many copies of the monitoring framework.
Each copy is synchronized with its neighbor copies for measurements data exchange. Each
monitoring copy monitors a slice of the SDN infrastructure. The monitoring framework provide
APIs to be used by network applications.
The SDN controller layer contains N-copies of controller. Each controller copy controls a slice of
the SDN infrastructure and used by a copy of monitoring framework. The SDN infrastructure layer
(data plane) contains all devices and hosts of the underlying network. There are two standard
interfaces: northbound interface and southbound interface. These two interfaces are used for
communication between the different layers as shown in Figure 2.

 1571 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure 2. The layerd architecture of the monitor software framework environment

3.2) The detailed design of the proposed monitoring framework

The detailed design of the monitor framework is depicted as a layered architecture as shown in
figure 3. The layers of the monitoring framework are L1, L2, and L3. There are three other layers:
Layer L0 includes network applications, layer L4 includes SDN controller and layer L5 includes
SDN infrastructure (data plane).

Layer L1 of the monitoring framework includes three elements: requester manipulator, results
returner and synchronization module. Layer L2 contains the translator element. Layer L3 contains
the measurements data Collector element. The elements of the three layers (L1-L3) in general
receive requests from network applications, collect the necessary measurement data and returns
the results to the calling network applications. The elements can collect various types of data for
different network applications (calling applications).

 1572 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure 3: The layered detailed design of the proposed monitoring framework

The monitoring framework consists of many layers. Each layer has one or more module. The top
layer (L1) contains selector element, and synchronization element. The second layer (L2) contains
the translator module. Layer 3 (L3) contains results collector.

The selector element in layer-1 (L1) receives requests from network Applications in layer 0(L0) and
selects the slice and its controller for executing the request. The translator element in layer-2(L2)
translates each high-level request into a low-level request and stores the data in the database. The
result collector in layer-3(L3) calls OpenFlow API and the controller interfaces to execute the
required operation function (request). The measurement results collected by the result collector
returned to the calling network application. The collected results are then stored in the results
table.

3.3) The Synchronization module (interface)

The synchronization interface is provided to synchronize monitoring information in a SDN multi-
controller and big size data plane. It facilitates the exchange of monitoring data between different
monitoring framework instances (copies). Any monitoring copy can send the measured data to its
neighbors monitoring copies. It also tests the health of the controller of the underlying slice. The
faulty controller is detected by the synchronization element and failover of the controller failure is
conducted by the synchronization element.

 1573 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

IMPLEMENTATION AND VALIDATION

Implementation and validation of the multi-controller-based monitoring framework.
To implement our proposed multi-controller-based monitoring framework for SDNs, we used the
following tools:
1-Floodlight controller for SDN
2-Flowvisor for slicing the SDN topology
3- Mininet emulator for simulating SDN topologies.
4- SQLite database
4- Paython programming language.

In the following section we give a brief about each one:
The Floodlight controller is an open-source software-defined networking (SDN) controller
developed by the Floodlight Project. It is designed to provide a robust and flexible platform for
managing and controlling network devices, such as switches and routers, in an SDN environment.
Floodlight operates by communicating with network devices using the OpenFlow protocol,
enabling centralized control and dynamic management of network traffic. As a Java-based
controller, Floodlight offers a modular architecture, allowing developers to extend and customize
its functionality to suit specific network requirements. It supports a wide range of applications,
including load balancing, network virtualization, and traffic monitoring. Floodlight is widely used
in research, academia, and production environments due to its scalability, ease of use, and active
community support, making it a popular choice for implementing and experimenting with SDN
solutions. The Floodlight Controller is an open-source SDN controller developed by Big Switch
Networks and is based on the OpenFlow protocol. One of the powerful features of the Floodlight
Controller is its REST API, which provides a simple yet powerful interface for managing and
monitoring an SDN network [13].

FlowVisor is a network hypervisor designed to enable network slicing in software-defined
networks (SDNs). It acts as an intermediary layer between the physical network infrastructure and
the control plane, allowing multiple independent network controllers to manage distinct slices of
the network simultaneously. Each slice operates as if it were a fully isolated network, even though
they share the same underlying hardware.

FlowVisor achieves this by intercepting and filtering OpenFlow messages between the network
switches and controllers. It ensures that each controller only has visibility and control over its
designated slice, thereby maintaining isolation and security across different slices. Additionally,
FlowVisor enforces slice-specific policies, such as bandwidth allocation and flow rules, ensuring
that each slice operates according to the predefined rules without interference from other slices.
This capability makes FlowVisor particularly useful in research and multi-tenant environments
where different users or applications need to control separate portions of the network without
impacting each other [14].

Mininet is a network emulator that can create a virtual network comprising hosts, switches,
controllers, and links. The hosts in Mininet run standard Linux network software, and the switches
support OpenFlow, allowing for highly customizable routing and Software-Defined Networking.
Mininet is useful for research, development, learning, prototyping, testing, debugging, and any
other tasks that could benefit from having an experimental network on a laptop or other PC [15].

SQLite database is a lightweight, disk-based database that doesn’t require a separate server
process. In python, sqlite3 is a built-in module that allows programmers to interact with SQLite
database [16].For validating the proposed MCMF, we created a topology using the Mininet
emulator, sliced the topology to two slices using FlowVisor where each slice is controlled by a

 1574 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

floodlight controller. After that we used the REST APIs for retrieving measurement information
from each slice. The measured information is retrieved based on the high-level requests from
network applications. In the following we discuss each action in some detail. In addition, we test
failover capability, where the MCMF can monitor the slices with fault in one floodlight controller.
This means that the MCMF supports the monitoring reliability of multi-controller SDNs.

4.1-Creating a topology
We used the Mininet emulator to simulate a real topology called onstutorial. The onstutorial
topology is a custom network topology designed for educational and experimental purposes within
the context of software-defined networking (SDN). The onstutorial topology defines a specific
arrangement of network switches, hosts, and links, allowing users to experiment with different
network configurations, control policies, and failover mechanisms. This topology is particularly
useful for demonstrating how SDN controllers interact with network devices and manage traffic
flows across the network. By using the onstutorial topology, users can gain hands-on experience in
configuring and managing SDN-based networks, testing features like network slicing, redundancy,
and failover, all within a controlled and reproducible environment. The onstutorial consists of four
switches and 4 hosts and 8 links as shown in Figure 4.

Figure 4: The simulated topology of onstutorial.

4.2- Slicing the topology into slices
Flowvisor has been used to slice our network topology into two slices as shown in Figure 5(a,b).
Each slice is managed by one floodlight controller (floodlight1&floodlight2) for the sake of
scalability of our proposed MCMF and SDN networks.

a) Upper slicecontrolled by floodlight1

 1575 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

b- Lower slice is controlled by Floodlight2
Figure 5: The two slices are presented a) upper slice b) lower slice

The simulated custom topology has been divided into two slices where each slice is controlled by a
different floodlight controller. The high performance with scalable software defined network is
achieved by slicing the underlying topology to slices and adding flowspaces that have been assigned
to the two floodlight controllers for switches configuration.

In earlierwork[12] , we have conducted a thorough evaluation of the Multi-Controller Monitoring
(MCM) framework's performance, specifically focusing on throughput and latency measurements
before and after the implementation of network slicing. The initial phase of the evaluation involved
measuring throughput and latency in a centralized monitoring setup, where the entire topology
was managed as a single entity without slicing. In this configuration, we observed that as the
network size and the number of monitoring requests increased, the throughput began to degrade,
and latency became significantly higher due to the centralized nature of the system.Subsequently,
we applied the network slicing mechanism within the MCM framework, where the network was
divided into multiple slices. Each slice was independently managed by a separate instance of the
Floodlight controller, enabling distributed control and monitoring across the network. The results
post-slicing demonstrated a substantial improvement in both throughput and latency. By
decentralizing the monitoring process and distributing the load across multiple controllers, the
system could handle a higher volume of traffic with lower delay. Specifically, the throughput
increased as each Floodlight controller efficiently managed its respective slice, preventing
bottlenecks associated with the centralized monitoring system. Additionally, latency was
significantly reduced, as each controller was able to quickly respond to monitoring requests within
its designated slice without the overhead of managing the entire network. This evaluation confirms
that network slicing within the MCM framework enhances both the scalability and performance of
the monitoring system, making it more capable of managing large-scale SDN topologies[12].

4.3-Deployment architecture.
Figure 6 shows the deployment architecture of multi-controller -based monitoring framework. In
the figure 6 the upper slice is controlled by floodlight1 and monitored by MCMS copy1, and the
lower slice is controlled by floodlight2 and monitored by MCMF copy2. Figure 7 a,b show the
information about each slice and its controller after the deployment operation.

 1576 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

The upper slice is controlled by floodlight1 The lower slice controlled by floodlight2

Figure 6: The Deployment architecture of the upper slice, lower slice and floodlight controllers

Figure 7.a: A Screen represents that floodlight1 physically controls the upper slice

 1577 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure 7.b: A Screen represents that Floodlight2 controls the lower slice.

4.4- Ensuring the isolation between the two slices.
Four test cases have been conducted as shown in Figure 8 for making sure that the two slices are
isolated and testing the reachability between hosts.
Test case 1: host1 sent pingall message to other all hosts, only the host 3 respond because it is in the
same slice of host 1. No response from host 2 and host 4.
Test case 2: host2 sent pingall message to other all hosts, only the host 4 sent a response because it
is in the same slice of host 2. No response from host 1 and host 3.
Test case 3: host3 sent pingall message to other all hosts, only the host 1 sent a response because it
is in the same slice of host 3. No response from host 2 and host 4.
 Test case 4: host4 sent pingall message to other all hosts, only the host 2 sent a response because it
is in the same slice of host 4. No response from host 1 and host 3.
All the four test cases are shown in the python code in Figure 8.

Figure 8: Testing the isolation between the two slices upper and lower.

It appears from figure 8, that only host1 can reach host3 and vice versa. This is because the two
hosts are in the same slice. Also, host2 only can reach host4 and vice versa. Host1 and host3 as
appears in figure 6 are managed by flooldlight1. Host2 and host4 as appears in figure 6 are
managed by floodlight2.

4.5- Validating the monitor elements of SDNs

 1578 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

After slicing and deployment validation, we test the elements of the proposed Multi- Controller
Monitoring Framework (MCMF).
The MCMF monitor consists of four elements: selector, translator, results returner, and
synchronization elements.

4.5.1-The selector element
The selector is implemented in python programming language; it selects the copy of MCMF where
the high-level request is assigned. The selection is dependent on the parameters of the request (i.e.
links, switches, or others). If the parameters of the request exist in upper slice, then the request is
assigned to floodlight1-based MCMF copy1, else is assigned to floodlight2-based MCMF copy2.

4.5.2-The Translator element
The translator element is implemented in python programming language; it receives the request
from the selector and translates it into a low-level request that makes it so easier to monitor the
network. The low -level requests call the Floodlight REST APIs for collecting needed information.
The translator algorithm is represented as a Flowchart diagram and shown in Figure 9. Figure 10
shows the implementation of receiving a request for retrieving information about specific switches
and other elements from slice 1. The system status request implementation and results are shown
in figure 11.

Figure 9: The Flowchart diagram of the translator

 1579 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure 10: Example of execution of a monitoring request (Get switches) using the proposed translator

Figure 11: Example of Testing the status of the framework during running state using the proposed translator.

 1580 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure 12: Shows the monitoring information stored in monitoring framework DB

The translator is implemented in a python language that runs over the SDN network and takes care
of requests as presented in figures 10, and 11.
 The results of the requests conducted by the translator are stored in the database of our MCMF as
shown in figure 12

4.5.3-The Result Collector:
This element used to store either the results from the translator or the data that being synchronized
from the synchronization element that will being explained after this one. The result collector is
implemented as a python code that create the Database of our MCMF framework. The algorithm of
the result collector is represented as a Flowchart in figure 13.

Figure 13: The Flowchart diagram of the result collector

The shown in figure 13, the results are stored in the database. These results will be used also by the
synchronization element to take an action if needed.

 1581 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

5-Validating SDN reliability using the synchronization element:
The synchronization element is a python code that runs over the network to make synchronization
between the two floodlight controllers for detecting any change of the two slices and enhancing the
reliability of the SDN network. For example, if there is a failure in any floodlight controller it will
be detected by the synchronization element. After detecting the failure in the floodlight, the
synchronization element is taking an action for failover.
For validating the reliability, the floodlight1 is down by a command. The synchronization element
detects that the floodlight1 is down then takes an action of failover by making the flooldight2 not to
manage only its slice but to manage the floodlight1’s slice. This means the flooldight2 manages the
entire network topology by reassigning the slice of the floodlight1 to the floodight2. The floodlight2
is now the only active controller, which manages the entire topology based on the action of the
synchronization element. All actions are stored in the MCMF Database. By detecting the down
(faulty) floodlight and failover technique introduced by the synchronization element, the reliability
of monitoring and SDN is enhanced. The algorithm of the synchronization element is represented
as a Flowchart as shown in figure 14.

Figure 14: The Flowchart Diagram of the synchronization element

6-Evaluation of the proposed multi-controller-based monitoring framework (MCMF)

1-MCMF reliability

 1582 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

 In our case study we introduce the MCMF ability of failover when one of the controllers is down.
We tested the failover in our case study by using a command to makefloodlight1 down shown in
figure 15. There are twooptions for checking the controller’s health. In Option1, a request is sent to
the translator element to check the controller’s health . If one of the controllers is down, the
translator will trigger the synchronization element to take action. The synchronization element
makes the failover process that will reassign the slice of the down controller to the active one. The
active controller can take over the two slices until the down controller is back to health status.
In option2: the synchronization element is synchronizing between the two controllers and the
synchronized data between them is stored in the monitor database. The synchronization runs
regularly until abnormal change happens in the system. The synchronization element can detect
that change and then take an action. For example, in the same case study the floodlight1 is down
and the synchronization element will take care of this change and make the active controller
controls of the down controller slice.

 Figure 15: The command that makes controller one is down for our case study

After the failover process, we tested the connection between all hosts to make sure that the two
slices are controlled by the floodlight2. As we can see in figure 16, any ping message from any host
reaches to all other hosts. This means that the two slices are controlled by floodlight2 with faulty
floodlight1.

Figure16. Ping test after failover

Figure 17a illustrates the screen of information about the physical topology controlled by floodlight
2 after failover process. Figure 17b illustrates the physical topology controlled by floodlight2 after
the failover process. The topology consists of the two slices as shown in the figure 17b.

 1583 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Figure17a. Failover active controller gui

Figure17b. Topology of active controller after failover

EVALUATION AND COMPARATIVE STUDY

 1584 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

We have implemented and tested the proposedhigh performance monitoring system that run on
SDN multi-controller, which can retrieve measurement data from the simulated data plane based on
a network application request. The monitor can receive a request from a network application to
collect measurement data, which may differ from one application to another.

We have developed and rigorously tested the Multi-Controller Monitoring framework (MCMF), a
high-performance solution designed to operate across SDN multi-controllers. The MCMF
framework excels in retrieving measurement data from the simulated data plane based on specific
network application requests, which may vary depending on the application’s requirements. This
framework is engineered for large-scale network management, with capabilities to divide the
network into multiple slices, each managed by a synchronized instance of the MCMF framework.
This synchronization module ensures seamless information exchange between instances, thereby
facilitating efficient monitoring of multitenant network applications. The MCMF framework
demonstrates superior throughput and lower latency compared to traditional centralized
monitoring frameworks that lack slicing. However, the current implementation is limited to
operating on the Floodlight SDN multi-controller, with plans to extend support to other SDN multi-
controllers in the future.

The Multi-Controller Monitoring (MCM) framework is designed to be versatile and adaptable,
enabling it to function seamlessly with various vendors of data plane devices, including switches
and routers. As long as these devices support the OpenFlow protocol, the MCM framework can
effectively integrate with them. This compatibility ensures that network administrators can
leverage the advantages of the MCM framework across a wide range of networking equipment
without being limited to specific vendor solutions. By utilizing the OpenFlow protocol, the MCM
framework can facilitate consistent and efficient monitoring and management of network
resources, thereby enhancing the overall performance and scalability of Software-Defined
Networking (SDN) environments, regardless of the underlying hardware.

In a comparative study, we evaluated the MCMF framework against the Two-Layer Trusted Multi
Controller Architecture, which is grounded in a multi-chain approach to enhance scalability and
reliability in SDN environments. While our MCMF framework emphasizes synchronization and
high-performance monitoring across network slices, the Two-Layer Trusted Architecture focuses on
decentralization, decision-making credibility, and the use of CFT and BFT blockchains to ensure
reliable multi-controller coordination. By examining the key aspects and performance outcomes of
each system, we highlight the unique strengths and methodologies of the MCMF framework in
contrast to the sophisticated multi-chain mechanisms employed in the Two-Layer Trusted Multi-
Controller Architecture.

 1585 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

Table 1: a comparative study between our proposed monitoring solution and Two-Layer Trusted Multi-Controller
Architecture[7].

Aspect MCMF framework Two-Layer Trusted Multi-Controller
Architecture

Purpose and
Design Focus

Manages and synchronizes two SDN controllers
for network monitoring, failover, and redundancy

Ensures scalability and reliability in SDN
multi-controller environments using a multi-
chain approach.

Scalability
Mechanisms

Achieves scalability through synchronization of
two controllers with failover capability

Utilizes Initial Load Balancing Mechanism
(ILBM) and Fine-Grained Dynamic Load
Balancing for scalability.

Reliability and
Exception
Handling

Provides reliability through a failover mechanism
where one controller can take over if the other
fails.

Uses a sophisticated reliability mechanism
with exception detection based on switch
reporting (EDSR).

Decentralization
and Decision-
Making

Operates in a semi-centralized manner, focusing
on redundancy between two controllers

Emphasizes decentralization with CFT and
BFT blockchains for distributed coordination
and decision-making.

Performance
Guarantees

Simulation and
Results

Ensures performance by maintaining network
stability through dual-controller management.

Design suggests effective management of failover
situations, though specific simulation results are
not provided.

Focuses on high performance through
dynamic load balancing and multi-chain
architecture.

Simulation results demonstrate prevention of
controller overload and high performance
with credibility and decentralization.

CONCLUSION

In this paper, a reliable and high-performance monitoring framework for Multi-controller SDN

has been proposed. It runs on SDN multi-controller, where a copy of the monitoring system

runs on a copy of the multi-controller. Each copy of the monitoring system can exchange the

measurement data with its neighbor copies using the synchronization module in each copy. The

synchronization element of the proposed monitor detects the failure in any controller and

failover the failure by assigning the slices of the faulty floodlight to another health floodlight

controller. The proposed framework manages and monitors large scale SDN networks, where

these networks can be sliced to two or more slices. Each slice is monitored by a copy of the

monitoring system and controlled by an SDN controller. The proposed framework monitors a

large number of network applications, where each application is monitored by a copy of the

monitoring framework and controlled by SDN controller.

The monitoring framework is also a vendor-independent, capable of retrieving measurement

data from any infrastructure device, including switches, routers, links, and others. This is

because the monitoring framework uses the OpenFlow protocol for retrieving measurement data,

which is infrastructure independent. The high performance of multi-controller-based monitoring

framework has been achieved by slicing the topology of SDN to slices using flowvisor tool. Each

slice has been controlled by an instance of floodlight controller and monitored by a copy of the

proposed monitoring framework. The different network applications run in parallel on multi-

slices controlled by multi-controller and monitored by different copies of the proposed

monitoring framework. Also, the size of the network can be increased without sacrificing the

performance by slicing the networks to slices monitored by the proposed monitoring framework.

 1586 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

The scalable monitoring framework works only with Floodlight SDN multi-controller.

In the future the proposed monitoring framework can be built using large language models

(LLMs). Also in future work, we aim to explore a more adaptive approach by investigating

various SDN controllers beyond Floodlight, which will enhance the versatility of our research.

Additionally, integrating machine learning techniques for predictive analytics will enable more

intelligent network management, allowing for proactive adjustments based on traffic patterns

and potential network disruptions. This direction not only aims to improve the overall

performance and reliability of SDN implementations but also addresses the evolving demands of

dynamic network environments. By focusing on these enhancements, we anticipate significant

advancements in the capabilities of SDN architectures, leading to more resilient and efficient

networking solutions.

REFERENCES

[1] J. Suarez-Varela, P. Barlet-Ros, “Flow monitoring in Software-Defined Networks,” Computer

Networks, vol. , no. , pp. , 2018, doi:10.1016/j.comnet.2018.02.020.

[2] A. J. Aparcana-Tasayco, F. Mendoza-Cardenas, D. Diaz-Ataucuri, “Open and interactive NMS

for network monitoring in Software Defined Networks,” 2022 International Conference, IEEE, vol.

, no. , pp. , 2022.

[3] N. F. Mir, Computer and Communication Networks, 2nd ed. 2015, Prentice Hall.

[4] C. Lee, C. Yoon, S. Shin, S. K. Cha, “INDAGO: A new framework for detecting malicious SDN

applications,” 2018 IEEE 26th Int. Conf. Netw. Protoc., pp. 220–230, 2018,

doi:10.1109/ICNP.2018.00031.

[5] M. Scarlato, “Network monitoring in Software Defined Network,” Master on New Technologies

in Computer Science, Itinerary Networks and Telematics, UniversitàdegliStudi di Cagliari, Cagliari,

Sardinia, Italy, 2014.

[6] Y. Liu, B. Zhao, P. Zhao, P. Fan, H. Liu, “A survey: Typical security issues of Software-Defined

Networking,” China Communications, vol. 16, no. 7, pp. 13–31, 2019, doi:

10.23919/j.cc.2019.07.002.

[7]M. N. Yusuf, K. B. A. Bakar, B. Isyaku, B. Mukhlif, F. Fadhil, "Distributed controller placement

in Software-Defined Networks with consistency and interoperability problems," Journal of

Electrical and Computer Engineering, vol. 2023, article ID 6466996, 33 pages, 2023. doi:

10.1155/2023/6466996.

[8] X. Niu, J. Guan, X. Gao, S. Jiang, “Scalable and reliable SDN multi-controller system based on

trusted multi-chain,” 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC), Kyoto, Japan, 2022, pp. 758–763, doi:

10.1109/PIMRC54779.2022.9977820.

[9] J. Zhang, Q. Chen, X. Liu, “Multi-controller based Software-Defined Networking: A survey,”

IEEE Communications Surveys & Tutorials, 2023, doi: 10.1109/COMSUR.2023.3302194.

[10] G. Tangari, “Accurate and resource-efficient monitoring for future networks,” Doctoral thesis

(Ph.D.), UCL (University College London), 2019.

[11] M. Alsaeedi, M. M. Mohamad, A. A. Al-Roubaiey, “Toward adaptive and scalable OpenFlow-

SDN flow control: A survey,” IEEE Access, vol. 7, pp. 107346–107379, 2019.

[12]Mahmoud Eissa, Ahmed Yahya, Usama Gad, “A Scalable Monitoring System for Software

Defined Networks,” International Journal of Distributed and Parallel Systems (IJDPS), vol. 15, no.

1, pp. 1–14, 2024, doi: 10.5121/ijdps.2024.15101.

 1587 Mahmoud Eissa/IJCNIS, 16(4),1566-1587

[13] Hasan ÖZER, İbrahim Taner OKUMUŞ “A Scalable and Efficient Port-Based Adaptive

Resource Monitoring Approach in Software Defined Networks” The Journal of Graduate School of

Natural and Applied Sciences of Mehmet Akif Ersoy University 13(1): 9-26 (2022).

[14] M. T. Kurniawan, M. Fathinuddin, H. A. Widiyanti, G. R. Simanjuntak, “Network slicing on

SDN using FlowVisor and POX controller to traffic isolation enforcement,” 2021 International

Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 2021, pp. 1–6,

doi: 10.1109/ICEET53442.2021.9659765.

[15] K. Patel, J. Chaudhari, H. Mewada, H. Jayswal, R. Patel, D. Kirange, “Shortest path forwarding

in Software-Defined Networks using RYU controller,” International Journal of Electrical and

Electronics Engineering, vol. 11, pp. 299–305, 2024, doi: 10.14445/23488379/IJEEE-V11I5P127.

 [16] S. Suraya, M. Sholeh, “Designing and implementing a database for thesis data management by

using the Python Flask framework,” International Journal of Engineering, Science and Information

Technology (IJESTY), vol. 2, no. 1, pp. 1–10, 2022.

	INTRODUCTION
	RELATED WORK
	Figure 2. The layerd architecture of the monitor software framework environment

	CONCLUSION
	REFERENCES

