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Super-resolution (SR) image reconstruction plays a vital role in 
enhancing the resolution of low-resolution (LR) images, 
benefiting various fields such as remote sensing, medical 
imaging, and surveillance. The SR problem entails reconstructing 
high-resolution (HR) images from LR inputs, typically due to the 
loss of high-frequency information and the problem's ill-posed 
nature. This review study presents a comprehensive overview of 
recent developments and approaches in SR image 
reconstruction. This study primarily presents three approaches: 
methods based on learning, methods based on reconstruction, 
and methods based on interpolation. Despite the fact that 
interpolation-based approaches, such as bicubic interpolation, 
are straightforward and quick, they frequently result in blurring 
and loss of high-frequency features. Reconstruction-based 
methods leverage prior knowledge of image characteristics to 
recover HR images, often through optimization techniques. 
However, these methods may suffer from slow convergence and 
high computational cost. Because of their capacity to learn 
complicated mappings between LR and HR picture spaces, 
learning-based methods—and deep learning approaches in 
particular—have been the center of a lot of attention lately. These 
methods leverage large datasets to train convolutional neural 
networks (CNNs) for image super-resolution, achieving 
remarkable performance in terms of visual quality and 
computational efficiency. Furthermore, we discuss the challenges 
and future directions in SR research, including the development 
of more robust and efficient algorithms, handling noisy real-
world data, and exploring novel architectures and loss functions 
to further improve SR performance. The purpose of this review 
paper is to provide a comprehensive overview of strategies for SR 
image reconstruction. It focuses on the progression from 
conventional interpolation methods to cutting-edge deep 
learning approaches. They hope that this publication will serve as 
a valuable resource for scholars and practitioners in the field of 
computer vision and image processing.  
keywords - Super-resolution, Image reconstruction, Low-
resolution images, High-resolution images, Interpolation-based 
methods  

I INTRODUCTION 
A wide range of industries, including agriculture, meteorology, geography, the military, and others, 
have found widespread applications for remote sensing imaging technology. Remote sensing 
photographs are extremely useful in a variety of contexts, including the monitoring of pests and 
diseases, the forecasting of climate change, the surveying of geological features, and the marking of 
military targets. High-resolution photos can be difficult to capture due to the fact that the quality of 
remote sensing images can be negatively impacted by a variety of variables, including interference 
from the surroundings around the sensor, optical distortion, and noise from the sensor system itself. 
Image SR, a technique that attempts to reconstruct high-resolution (HR) images from low-resolution 
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(LR) photographs, can enhance the resolution of remote sensing images. This is because SR helps 
offset the impacts of acquisition equipment and ambient conditions. The SR problem is ill-posed 
because low-pass filtering and secondary sampling processes obliterate high-frequency data. The 
inherent difficulty in solving it accounts for this. Because the SR operation requires several mappings 
from the LR space to the HR space, it results in multiple solution spaces for any LR input. Because of 
this, it is vital to establish which solution is the desired one. The three major categories that 
summarize the various approaches suggested as potential solutions to the SR problem are 
interpolation-based methods, reconstruction-based methods, and learning-based methods. Despite 
the fact that interpolation-based methods are straightforward and quick, there is a possibility that they 
will result in a reduction in model fidelity because of the removal of high-frequency information that 
occurs during upsampling. It is possible for reconstruction-based methods to suffer from poor 
convergence speed and high computational cost. However, these methods incorporate past image 
information into the surface reconstruction (SR) process. Learning-based approaches necessitate a 
significant number of LR and HR image pairs to gain the necessary knowledge for mapping between 
LR and HR image spaces. Deep learning-based algorithms have gained popularity for SR due to their 
ability to effectively predict when low-resolution photos would lack high-frequency information. This 
is because these approaches save both time and computational resources  
[1].  

 
Figure 1.SR aims to reconstruct a high-resolution (HR) image from its degraded lowresolution (LR) 

counterpart. 
  
Deep learning is a research topic that is always undergoing development. In recent years, deep 
learning-based SR models have proliferated. These models have helped to achieve significant results 
on benchmark SR test datasets. Furthermore, the use of SR models to perform super-resolution 
activities on remote sensing photographs has emerged as a growing topic within SR. This is due to the 
numerous uses for SR models in the field. Researchers have put in a tremendous deal of effort to 
enhance the performance of SR models when applied to remote sensing photos.  
The first step involved building a model with three CNN layers, known as SRCNN [2]. This led Kim et 
al. to raise DRCN's network depth to twenty nodes [3], which yielded drastically better experimental 
results than SRCNN [4]. As a result, Liebel et al. [20] modified SRCNN [4] to accommodate the 
multispectral properties of remote sensing data by retraining it using satellite image datasets. VDSR 
[5] also addressed the problem of processing multi-scale images within a single framework, 
incorporating residual learning and gradient cropping into its solution. Additionally, to achieve this, 
VDSR increased the number of network layers. Lei et al. [6] proposed a hybrid local-global network 
known as LGCnet. This network, as a hybrid model, uses VDSR as its foundation. This network's 
branching structure, which incorporates both shallow and deep features, addresses the issue of losing 
local details in remote sensing images. This structure extensively utilizes both local and global data. 
Combining shallow and deep characteristics is the solution to this challenge. Guo and colleagues 
created a dual regression model, known as DRN [7], to tackle the discomfort resulting from image 
superresolution. This model directly learns the mappings from the LR images, eliminating the need to 
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rely on the HR images. Generally, they optimize most SR approaches based on the following factors to 
achieve superior results: Creating the learning strategy, choosing the loss function, and designing the 
network architecture are all examples of such labor. Deep learning-based SR approaches are receiving 
increasing attention due to their superior performance. SR has been the subject of numerous 
published survey articles. The majority of these studies, on the other hand, highlight a variety of 
evaluation metrics for the reconstruction results of statistical reconstruction algorithms.  
The purpose of this research was not merely to present a summary of the survey works that are 
currently available; rather, they aimed to provide a full overview of systematic review approaches. The 
primary focus was on the concepts and methods of deep learning, aiming to demonstrate its 
performance, originality, strengths and weaknesses, relevance, and issues. They also focused on the 
specific applications of these techniques for remote sensing graphical representations.  
The main contributions of this paper are as follows:   

• In order to give this study with a comprehensive basis, we will first provide an introduction to 
the technique of super-resolution that is performed using deep learning. This introduction 
covers all the bases: problem definitions, datasets, learning procedures, including evaluation 
methods.   

• We classify the SR algorithms based on the design requirements they meet. On top of that, 
they study the effectiveness of various performance metrics for popular SR algorithms on 
benchmark domains. Furthermore, they review several recent papers that discuss super-
resolution techniques for remote sensing image creation. This article aims to present and 
debate the visual effects of typical SR methods on remote sensing images.  

• The authors evaluate the current issues and limits of super-resolution remote sensing images 
from many perspectives, offer useful recommendations, and describe future trends and 
prospects for improvement.   

In addition, we present the results.   
What follows is a timeline of the remaining sections of this evaluation.  
The definition of deep learning-based SR, common datasets, and assessment metrics are covered in 
Section 2. You can find a detailed discussion of representative topologies for SR jobs in Section 3, 
which is available here. Section 4 employs several assessment criteria to evaluate the effectiveness of 
the SR techniques discussed in Section 3 and their use in remote sensing examples. In the fifth 
section, they will discuss the uses of SR in remote domains. Section 6 of this report discusses the 
current issues and probable future paths of SR. Section 7 concludes the effort.  
Deep-Learning-Based Super-Resolution   
Over the past few years, super-resolution deep learning [8] has experienced remarkable development 
as a result of advancements in computational capacities. Artificial neural networks established the 
concept of deep learning, an extension of machine learning [9]. Deep learning utilizes neural networks 
in its learning process. Artificial neural networks use artificial neurons as computational units to 
replicate the method by which the human brain processes information. The structure of the artificial 
neural network reflects the connections these neurons have with each other. Finding the data's feature 
distribution is the goal of deep learning, which entails learning a hierarchical representation [10] of 
the underlying features. In particular, deep learning is a strategy that employs a variety of learning 
strategies in order to continuously improve the performance of the super-resolution algorithm 
application. The deep network architecture, optimizer design, and loss function design are all 
examples of these tactics. Deep learning also aids in addressing the ill-posed problem of concurrent 
superresolution. Most of the time, the LR picture Ix is depicted as the result of the deterioration 
indicated in the following sentence:  

                                                       Ix = Ix=Iy⊗k↓s+n,                                                 (1)  
The notation Iy k represents the HR image fusion with the degenerate blur kernel k, which includes 
the double cubic blur kernel, the Gaussian blur kernel, and more blur kernels. It is essential to note 
this fact. Furthermore, the down sampling operation with scale factor s is represented by the symbol 
<0xD3>s, whereas the reference to the typical Gaussian white noise is represented by the symbol n.  
Deep learning is able to convert the operations mentioned above into an end-to-end framework, which 
enables significant time and efficiency savings. This is in contrast to classical algorithms, which deep 
learning cannot do. Looking at Figure 3, it is clear that SRCNN's network topology is responsible for 
achieving this target. When it comes to the process of super-resolution of photographs, there are 
normally three stages involved. These steps include the extraction and representation of features, the 
visualization of non-linear mapping, and the reconstruction of images. The first phase is the extraction 
of feature blocks from the low-resolution image, which is accomplished by employing 9xC3>0x97>9 
convolution. This is to provide a more specific explanation. Next, we create a highdimensional 
representation for each feature block. Then, using a 5<0x5E>5 convolution, the method comprises 
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non-linearly mapping two high-dimensional vectors. The process is mapping-based, with each vector 
representing a high-resolution patch. By integrating the high-resolution patches mentioned earlier 
using the 5-convolution technique, the final highresolution image will be created in the following 
phase.  

 
Figure 3. The network structure of SRCNN [18]. 

  
One thing that sets remote sensing images apart from natural ones is that they often depict large-scale 
scenes with small objects and varying distributions. Additionally, aerial photography, land and ocean 
satellites, and other methods typically capture these scenes from high above the earth, and different 
weather conditions can alter the quality of remote sensing images due to variations in sensor lighting 
and the obscuring effect of clouds and fog. Before we can consider super-resolution remote sensing 
picture reconstruction successful, we need to meet a number of conditions. Collecting remote sensing 
images from grasslands and woodlands results in extremely homogeneous scenery coloration. In this 
scene, using color alone to classify objects is difficult. When looking at these images at super-
resolution, it's simple to tell the difference between the "rough" forest and the "smooth" grass. We 
achieve this by utilizing the texture elements in the image.  
Training and Test Datasets  
One way to train a model is with high-quality data; this technique is known as deep learning, and it 
uses the data to train its model. High-quality data has the potential to enhance the reconstruction 
performance of a deep learning SR-based model. Deep learning is a way of knowledge acquisition. 
Previous proposals have included a wide variety of datasets for training and testing SR tasks. We 
frequently use certain datasets, like BSDS300 [11], BSDS500 [12], DIV2K [13], and others, to train SR 
models. Similarly, we can utilize BSD100 [14], Set5 [15], Set14 [16], Urban100 [17], and other similar 
models to efficiently test the prototype's performance. When it comes to super-resolution activities 
involving remote sensing photos, databases like AID [38], RSSCN7 [18], and WHU-RS19 [40] have 
seen heavy use. Most SR models train on the DIV2K [34] dataset, which is considered the most 
representative among these datasets. The DIV2K [19] dataset has a variety of images, each with its 
own distinct qualities. It includes 800 training shots, 100 validation images, and 100 test images. It is 
possible for Set5 and Set14 to appropriately reflect the performance of the model because they are 
traditional test datasets for SR tasks. The outside Scene [41] dataset includes plants, animals, 
landscapes, reservoirs, and other types of outdoor settings. Initially, we used AID [38] to identify 
objects in remote sensing photos. This particular task encompasses a total of 10,000 remote sensing 
images, each measuring 600 x 600 pixels. These images depict various scenes, such as airports, 
beaches, deserts, and more. RSSCN7 [20], comprising 2800 remote sensing photos from a variety of 
seasons and grouped at four distinct sizes, depicts a variety of settings, including farmland, parking 
lots, residential areas, and industrial regions. The WHU-RS19 collection includes remote sensing 
photos from 19 different scenarios. Each category has a total of fifty photographs. Remote sensing 
photographs represent 21 different categories of scenes at the University of California, Merced. Each 
category has 100 images, and the size of each image is 256 x 256 pixels. Northwestern Polytechnic 
University is responsible for publishing NWHU-RESISC45 magazine. Northwestern Polytechnic 
University organizes the photographs into 45 distinct categories of scenes, each containing seven 
hundred photographs. RSC11, a collection of eleven distinct categories of scenes, each containing one 
hundred specific photographs, originates from Google Earth. The SR task also incorporated several 
datasets, such as ImageNet, VOC2012, and Celeb A, previously used for other image processing tasks. 
These datasets were introduced in addition to the ones that were presented above.  
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II RESEARCH METHODOLOGY 
The study that was conducted for this work was a comprehensive review; yet, despite the fact A 
scoping review is similar to a systematic literature review but has more extensive research objectives. 
This study examines the ways in which artificial intelligence (AI) interacts with education by analyzing 
its applications, advantages, and challenges. There is a wealth of relevant literature on this subject. We 
also provide a clear image of the amount of literature and studies currently available, along with an 
outline of their subject matter, regardless of its broadness or specificity [22]. Two students, physically 
separated from one another, conducted these searches in May and June 2023. Both the Scopus and 
Google Scholar systems were the primary areas of focus from 2005 to 2023. The search yielded a total 
of ninety matches. The investigation initially identified ninety recordings for inclusion. We removed 
duplicate records to reduce the dataset to 78 for eligibility screening. The subsequent screening 
procedure eliminated five records from consideration. We evaluated the complete texts of the 
remaining 73 articles after determining their eligibility. They excluded thirteen articles due to 
insufficient full-text availability. The final analysis included a comprehensive selection of research 
articles pertinent to the study's aims, totaling fifty publications. This painstaking method not only 
adhered to strict eligibility requirements, but also thoroughly evaluated and included relevant 
literature in the study.  

 
 

Figure 5.Overview of literature search process Defining the 
Search String: 

Determine search phrases relevant to the topic of interest, focusing on titles, abstracts, and keywords.  
Selecting Digital Libraries:  
Utilize the following digital libraries:  
ACM Digital Library (dl.acm.org)  
IEEE Xplore (ieeexplore.ieee.org)  
Science Direct (sciencedirect.com)  
SpringerLink (springerlink.com) Scopus 
(scopus.com)  
Conducting a Pilot Search:  
Conduct an initial search in each digital library using the search phrases that have been identified in 
order to evaluate the results in terms of their relevance and coverage.  
Refining the Search String:  
By taking into consideration additional synonyms, different spellings, and antonyms for the keywords, 
the search string should be refined based on the results of the pilot search. When constructing a 
comprehensive search string, it is necessary to make any necessary adjustments to the Boolean logic 
(AND, OR). Retrieving a Preliminary Set of Primary Studies:  
A preliminary collection of primary studies that are a match for the search parameters should be 
retrieved by executing the narrowed search string throughout the digital libraries that have been 
chosen. Evaluation Methods   
Depending on the circumstances, the evaluation index of image reconstruction quality may reflect the 
reconstruction accuracy of an SR model. Conversely, we can express the performance of an SR model 
through the number of parameters, the duration of its execution, and the computations carried out. 
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This section presents techniques for assessing the quality of picture reconstruction and the 
effectiveness of reconstruction.  

 
Figure 6 number of publication contributions 

A recent study evaluated the scope of research in this area by analyzing a variety of academic sources, 
investigating the influence of artificial intelligence (AI) on the educational system. The research 
looked at a wide variety of publications, such as those published by MDPI, Elsevier, Springer, and 
Wiley, as well as documents from conference proceedings. With a total of twenty publications, MDPI 
was the source that supplied the most papers among these sources. Elsevier and Springer came in a 
close second with ten papers apiece that they donated. The number of papers contributed by Wiley 
was slightly fewer, with five, but the number of papers contributed by conference proceedings was five 
more. Synthesizing insights from a variety of sources in order to provide a thorough grasp of the 
subject matter, the review's objective was to conduct an exhaustive investigation into the applications,  
benefits, and difficulties that artificial intelligence (AI) presents in educational contexts.  
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Figure 7 Volumes of Research Papers  
Over the course of several years, there has been a discernible shift in the number of research 
publications that document the influence that artificial intelligence (AI) has had on the field of 
education. The fact that only one paper was written about this subject in 2005 is indicative of the 
relatively young interest that existed at that time in the intersection of artificial intelligence and 
education. However, in 2017, this interest began to surge, leading to the addition of a single new 
publication to the existing body of knowledge. There was a considerable increase to five papers in 
2018, which indicates that there is a growing awareness of the possible applications of artificial 
intelligence in educational settings. This signified the acceleration of momentum. This pattern 
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repeated the following year, in 2019, with two more publications contributing to the ongoing 
discussion that was taking place. A further increase occurred in 2020, with four papers investigating 
various aspects of the impact that artificial intelligence has had on education. Following that, the field 
experienced a significant surge in 2021, with the publication of eleven papers, indicating a heightened 
concentration on this subject spanning multiple disciplines. In 2022, twelve publications continued to 
investigate the problems and opportunities presented by artificial intelligence in education. This 
enthusiasm continued into the year 2022. In 2023, the pattern peaked with the publication of a record 
fourteen papers. This exemplifies the growing interest and investment in comprehending and utilizing 
the potential of artificial intelligence to alter educational practices and outcomes.  

 
  
  

Figure 8 number of publication contributions in artificial intelligence (AI) 
  
During the process of doing a literature review on AI in education, a wide variety of subjects came to 
light, each of which received a different amount of attention from academics. Underscoring the 
significance of artificial intelligence in education as a rapidly developing field of study, the majority of 
the research, which amounted to twenty articles, concentrated specifically on the overarching topic of 
AI in education. The topic "Artificial Intelligence and Machine Learning" received ten papers because 
of the interdisciplinary nature of the impact that artificial intelligence has on educational practices 
and systems. Six publications dedicated themselves to the analysis of artificial intelligence's role in 
higher education institutions, indicating a more detailed exploration. Five articles investigating the 
implications and uses of the convergence of artificial intelligence with online learning and remote 
education have garnered significant interest. Last but not least, the field of artificial intelligence in 
tutoring systems has emerged as a specialized area of research, with four publications devoted to 
gaining an understanding of its benefits and difficulties. These studies collectively underscored the 
diverse impact of artificial intelligence on education, spanning various contexts and applications.  
Image Quality Assessment  
Measuring the performance of the model requires the use of suitable picture evaluation measures 
because it is a visual task. The image's visual effect is often where the HSI quality assessment begins. 
The next step is to conduct an impartial evaluation of the observables' structure and spectral fidelity. 
When it comes to reviewing photos, researchers typically opt for objective assessment as their primary 
method of choice because, in comparison to subjective evaluation, objective evaluation is a quicker 
and less time-consuming form of evaluation. However, the commonly used objective evaluation 
criteria at this stage often don't align with the real human visual perception. This section introduces 
several commonly used objective evaluation measures. Image Quality Assessment (IQA) metrics 
accomplish a quantitative measurement of an image's quality in relation to a reference image. These 
metrics allow for the evaluation of a picture's fidelity after applying a variety of image processing 
techniques or compression. We commonly employ the following IQA measures:  
PSNR (Peak Signal-to-Noise Ratio): The signal-to-noise ratio (PSNR) is a metric for evaluating a 
picture's quality that takes into account the signal-to-noise proportion relative to a reference image. 
The formula for calculating the PSNR is as follows:  
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PSNR=10*log10((MAX^2)/MSE)(1) Here, MAX represents the maximum pixel value that can be used 
(for example, 255 for an 8-bit image), and MSE represents the average squared difference between the 
original and distorted images of matching pixels.  
RMSE (Root Mean Square Error): A measure called root-mean-squared error (RMSE) is used to 
determine how much of a change occurred between the original and distorted images' pixels. It is 
calculated as:  RMSE = sqrt(MSE)                  (2)  
SSIM (Structural Similarity Index): The SSIM algorithm compares the luminance, contrast, and 
structure of the original image with the deformed image in order to determine the degree of structural 
similarity between the two. A value between -1 and 1 is returned by it, with 1 indicating that there is no 
difference between the two. There are terms for brightness, contrast, and structural comparisons 
included in the calculation, which itself is somewhat complicated.  
MAE (Mean Absolute Error): MAE measures the average absolute difference between 
corresponding pixels in the original and distorted images. It is calculated as:  
MAE = (1 / N) * Σ|I_original - I_distorted|    (3) Where N is 
the total number of pixels in the image.  
Deep Architectures for Super-Resolution Network Design   
This section will not only explain and demonstrate basic deep learning approaches, but also present 
and investigate a variety of common design ideas and network models used in the super-resolution 
domain. Also included in this section is the fact that network design is an essential component of the 
deep learning process. At long last, we will talk about a few design approaches that are worthy of 
investigation further.  
Learning That Is Circular It is usual practice to improve the performance of the network by increasing 
the depth and width of the model; however, doing so might result in a significant increase in the 
number of computational parameters, as illustrated in Figure 4. Recursive learning controls the 
number of model parameters and achieves the goal of sharing parameters between recursive modules. 
For the sake of simplicity, recursive learning refers to the process of repeatedly utilizing the same 
module. Within the realm of super-resolution issues, the recursive unit in DRCN [23] is a single 
convolutional layer, which allows it to use recursive learning. Additionally, by activating 16 recursions, 
the perceptual field expands to approximately 41 without adding unnecessary parameters. The layered 
usage of recursive modules, on the other hand, can result in a number of disadvantages, including the 
absence or explosion of gradients. Therefore, DRRN implements global and local residual learning to 
address the gradient problem [57]. We use ResBlock as the recursive unit to reduce the complexity of 
the training process. (24) [24] These modifications have improved ResBlock's recursive application. 
To further accelerate network training and make the information transfer process more effective, they 
proposed a connection structure that included both global and local cascade connectivity. 
Furthermore, [25]'s EBRN utilizes recursive learning to distinguish information with varying 
frequencies. To achieve this distinction, the network designs shallow modules to process low-
frequency information and deep modules to handle high-frequency information. Recent studies have 
extensively utilized recursive learning. For example, [26] proposed the SRRFN, A series of fractal 
modules with shared weights. This allows for the reuse of model parameters.  

 
Figure 4. The structure of recursive learning 

 Residual Learning   
Although recursive learning allows models to achieve a higher level of performance with the fewest 
parameters available, it also introduces the challenge of bursting or vanishing gradients at the same 
time. Residual learning is a commonly used strategy to address these challenges. (27) [27] (27) [27] 
ResNet proposed the use of residual learning as a potential application. Using layer-hopping 
connections to generate constant mappings aims to solve the problem of gradients that are either 
inflating or disappearing. This is intended to ensure that the network front-end can receive back-
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propagation gradients directly through shortcuts, as shown in Figure 5. Image super-resolution tasks 
typically require low-resolution input photos and high-resolution rebuilt images, which contain a lot 
of the key feature information. Therefore, learning only the residuals between the two sets of images is 
necessary to recover the lost information. This framework encompasses a significant number of 
models based on residual learning. [28] introduced the VDSR, a comprehensive super-resolution 
residual network based on VGG-16. This network, comprising twenty layers, uses an interpolated low-
resolution image as its input image. When the network has learned all the leftover information and 
added it to the initial image, that's its output. This is the network's final product. Reference [29] states 
that other methods exist for creating this structure. The residual branch's conventional elements 
include three convolution layers, BN layers, and the relu activation function. So we can't do super-
resolution operations on the residual module's BN layer, says EDSR [68]. The document clearly states 
this. The reason for this is that once the BN layer is processed, it normalizes the color distribution of 
any given image. This is the reason why it is the case. This leads to the loss of contrast information 
from the original image, negatively impacting the network's image quality. This leads to the frequent 
removal of the BN layer during the residual module generation process for super-resolution projects. 
This is due to the rationale stated above. RDN proposes the residual dense block (RDB), which 
preserves all the properties present in the output of each convolution layer. This is what makes the 
residual dense block (RDB) so effective. Today's world widely employs residual learning as a technique 
for building super-resolution networks and incorporates it into a wide range of models [30].  

 
Figure 5. The structure of residual learning. 

  
The term "global residual learning" refers to the jump connection that builds from the input to the 
output, even though this technique for global residual learning manages to produce satisfactory 
results. This is due to the inability of global residual learning to recover a significant amount of lost 
information at increasingly complex network levels. As a result, researchers recommend using local 
residual learning, which aids in detail preservation and is located in every few stacked layers. Models 
that use a technique that blends global and local residual learning to carry out their operations. People 
have noticed that photographs of varying sizes exhibit a variety of characteristics, and these diverse 
characteristics will contribute to the generation of superior quality reconstructed images. We have 
presented multi-scale learning as a technique that enables models to fully exploit characteristics at 
many sizes, concurrently applying it to a large number of SR models. This is due to the effective 
demonstration of multi-scale learning. Since [31] concluded that earlier models were less scalable and 
robust to scale, multi-scale learning has been applied to strategic planning. As a result, multi-scale 
learning was utilized. In his presentation, he used a 1xC7>1 convolution kernel, along with 3xC7>3 
and 5xC7>5 convolution kernels, to gather data at several scales, introducing a multi-scale residual 
module (MSRB). This can be seen in Figure 6. Additionally, the implementation of local residual 
learning aimed to enhance the efficiency of network training. For the purpose of extracting and fusing 
picture features that are present at many scales, the authors of [32] presented a multi-scale feature 
fusion residual block, also known as MSFFRB. The combination of multi-scale learning and residual 
learning was an effective method for achieving this goal. To extract information about variable 
frequencies, the multi-scale feature extraction and attention module (MSFEAAB) described in [33] 
used convolution kernels with varying sizes within the same layer. We did this to achieve the goal of 
extracting information. The extraction of low-frequency components is mostly the responsibility of 
convolution kernels of a smaller size, whereas the extraction of highfrequency components is primarily 
the responsibility of convolution kernels of a bigger size. Despite collecting rich image features, the 
algorithm's complexity remains unchanged. An increasing number of SR network models have 
incorporated multi-scale learning in recent times to enhance their performance. In the paper ELAN 
[34], the authors presented the grouped multi-scale self-attention (GMSA) module as a method for 
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establishing long-range dependencies. This module computes self-attention by using windows of 
varying widths on a set of non-overlapping feature maps.  

 
Figure 6. The structure of multi-scale residual block (MSRB) 

  
Attention Mechanism  
With convolutional neural networks, local knowledge is more important than global features. We 
created the attention mechanism to address this issue. A wide variety of computer vision activities 
make extensive use of the attention mechanism, which is frequently incorporated as a component into 
the backbone network. This mechanism's primary goal is to distribute computational resources to 
more significant jobs with limited processing capacity. In summary, the attention mechanism allows 
the network to ignore irrelevant information and focus on important ones. In the past, numerous 
works have been offered with the intention of facilitating the progress of attention processes. For 
instance, in [35], they introduced a novel "squeeze and excite" (SE) block. According to Figure 7, this 
block can change how channel feature replies work in a way that adapts to how channels depend on 
each other. The attention mechanism has started to focus on picture super-resolution tasks due to 
ongoing research and advancements in this field  
  

.  
Figure 7. The structure of channel attention mechanism [80]. 

Channel Attention  
In RCAN [36], a residual channel attention block (RCAB) was presented as a means of achieving 
improved accuracy through the process of learning the connection between channels in order to 
change individual channel attributes. Liu et al. [37] added an enhanced spatial attention (ESA) block 
to make the network focus more on the important spatial elements, which are part of the residual 
features. Every residual block may be smaller and easier to insert because this block used a 1/1 
convolution to decrease the number of channels. Additionally, we utilize three of the three-by-three 
convolution combinations to broaden the scope of the perceptual field. Using this technique will result 
in the loss of several intermediate features during the image reconstruction process. This is because 
channel attention treats each convolution layer independently, without considering the correlation 
between the various levels. Based on this understanding, the authors of [38] A layer attention module 
(LAM) and a CSAM make up the holistic attention network (HAN). By gathering how features at 
different depths rely on each other, the LAM can offer different levels of attention to different layers of 
features. This will then allow the CSAM to learn about the relationships at different points in each 
feature map. This will make it easier for the LAM to find global features. The second-order channel 
attention (SOCA) function in SAN learns the relationship between the features on different channels. 
We use the second-order averages of the features to achieve this result. Before training the channel 
attention, the MMCA module changed the picture characteristics to the frequency domain using the 
discrete cosine transform (DCT). We took this action to accurately reconstruct the SOTA results.  
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Non-Local Attention  
Most of the time, image super-resolution networks can only effectively extract local information from 
images. They don't notice the link between long-range properties in pictures because their perceptual 
field size is too small. However, the information that this may provide is critical for image 
reconstruction. This has led to suggestions for certain studies about the association of non-local 
features. For example, in SAN, the region non-local RLNL module aims to segment the input image 
into its component parts and apply non-local operations to each of those parts independently. The 
tally comes to 39. In order to understand the relationships between deep features in one place and 
those in other places, someone proposed employing a non-local recurrent network (NLRN). A few 
examples of applications for this network are image recovery and recurrent neural networks (RNN) 
that incorporate non-local operations. Research demonstrated that a cross-scale non-local (CS-NL) 
attention module could aid in the non-local focus of CSNLN. Using this module, one can determine 
the degree to which their image's LR feature blocks resemble their HR target feature blocks. This 
makes the SR model work better.  
Other Attention   
In addition to the typical attention mechanisms discussed earlier, there are a few attention 
mechanisms that were constructed from a specific perspective. The contextual reasoning attention 
network, for instance, is responsible for the generation of attention masks by utilizing global 
contextual information. This enables the constant adjustment of the convolutional kernel size to adapt 
to changes in visual features. 40.0] Because it shares attention across windows of varying sizes and 
performs attention calculations more quickly, a module named grouped multi-scale self-attention 
(GMSA) was proposed. Some processes are superfluous for tasks with extremely high resolution, and 
the transformer's self-attention computation is too large, according to the reasoning. The GMSA 
module was therefore suggested. [Forty] The non-local self-attention system made use of sparse 
representation to improve attention mechanism performance and reduce operation count.  
Feedback Mechanism   
A key distinction between the feedback system and the input-to-target object mapping is the inclusion 
of a self-correcting phase in the model's learning process. Transferring data from the system's back 
end to its front end is the main focus of this section. Feedback and recursive learning are quite similar 
in operation. Recursive learning shares parameters between modules, whereas feedback allows the 
parameters to self-correct. Over the past few years, computer vision tasks have gradually incorporated 
feedback systems. People also frequently use feedback systems in SR models because they can send a 
lot of detailed information to the network's front end. It's easier to turn LR images back into HR 
images because they help handle shallow information. 42. 42. The suggested depth inverse projection 
network for super-resolution uses a stage structure that switches between upsampling and 
downsampling to get each level of error feedback. We built it on top of DBPN [42], a feedback 
mechanism for super-resolution video jobs. RBPN uses an encoder-decoder method to combine 
singleframe input and multi-frame input into a single image. DBPN also adds a response system. The 
SFRBN suggests using a feedback module (FB). The preceding module's output serves as an input for 
the subsequent module. This process enhances low-level knowledge.  
Transformer-Based Models  
As of late, transformer's prominence in NLP has prompted its use in computer vision tasks. Experts 
have successively offered image categorization [43], picture segmentation [44], and numerous other 
transformer-based algorithms. If your goal is to recover the textural features of your photographs, a 
transformer should be used because it can model long-term dependencies in images [45] and retrieve 
high-frequency information. Transformers have the same benefit. [45] [46] One possible option for 
improving the resolution of images is to employ a texture transformer network. As the technique's 
texture transformer fuses several feature levels in a cross-scale fashion, it transfers texture 
information extracted from the reference image to the high-resolution image. The final result would be 
superior to more modern approaches. In its 47th year, an attention transformer that combines 
channel attention with the traditional transformer was suggested as a hybrid. This transformer 
improves the capacity to examine pixel data. Furthermore, we suggested OCAB, an overlapping 
crossattention module, to enhance feature fusion across multiple windows. (48) A lightweight and 
efficient super-resolution CNN with a transformer (ESRT) was suggested for the purpose of deep 
feature extraction. One aspect of the extraction process is the CNN portion's ability to dynamically 
resize the feature map. On the other hand, the efficient multithreaded attention (EMHA) and efficient 
transformer (ET) methods capture the long-term associations between comparable patches in an 
image. To put it another way, this improves model performance while reducing the demand on 
computational resources. Combining the transformer with CNN for SwinIR allows for super-
resolution reconstruction, which in turn allows for the determination of long-term picture 
dependencies using a shifted window approach. in section 49. They suggested a hierarchical patch 
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transformer to gradually restore high-resolution images. This transformer allows for the hierarchical 
partitioning of an image's patches for distinct regions. Images with a lot of texture, for example, might 
have smaller patches applied to them.  
Reference-Based Models   
The suggested reference-based SR approach mitigates the inherent pathological difficulty of SR. This 
method enables the acquisition of an LR image by degrading a large number of HR photos. In order to 
improve data diversity, RefSR used external images from various sources, such as cameras, video 
frames, and network images as a reference. We then used these images to reconstruct LR images and 
provide additional information. According to [50], one problem with the previous RefSR is that it 
relies on reference images with similar content to the LR images, which can affect the reconstruction 
results if not taken into account. After matching the features of the reference image and the LR image, 
SRNTT borrowed the concept of neural texture migration for semantically relevant features to address 
previously discussed challenges. The reference image served as the foundation for the texture 
transformer that TTSR proposed. This transformer's job was to take the reference image's texture data 
and paste it into the high-resolution version.  
Remote Sensing Applications   
High-resolution remote sensing images that include a tremendous deal of detail are among the most 
important characteristics that contribute to the success of remote sensing applications. These 
applications include recognition of scenes and detection of targets. Consequently, the effort to develop 
super-resolution methods for remote sensing has significantly increased. In an effort to tackle the 
features of remote sensing photos from different angles, many academics have suggested super-
resolution algorithms in recent years. This section will examine two primary methods: supervised 
remote sensing image super resolution and unsupervised remote sensing image super resolution. We 
will also provide a concise overview of their respective attributes.  
Supervised Remote Sensing Image Super-Resolution  
When training models to map between the two categories of remote sensing data, it is common to pair 
low-resolution and high-resolution photos. According to the preponderance of the current remote 
sensing image super-resolution approaches, supervised learning is the preferred method. In [51], a 
multiscale convolution network (MSCNN) is developed to extract features from remote sensing 
images. This network employs various diameters of convolution kernels to acquire more detailed and 
comprehensive features. Pan et al. devised the RDBPN, which is a reverse model of the DBPN and 
ResNet. The projection units of RDBPN incorporate a dense residual connection to generate global 
and local residuals. In addition, it achieves feature reuse, providing more comprehensive features for 
superresolution large-scale remote sensing images. it is  [52] We introduced the coupleddiscriminate 
GAN (CDGAN) to focus on remote sensing images with more low-frequency characteristics and flat 
regions. We provide the discriminator in CDGAN with inputs from both real HR images and SR 
images to enhance the network's ability to distinguish between low-frequency portions of remote 
sensing photographs. We further optimize the network with the help of a linked adversarial loss 
function. In [53], the authors propose the MHAN, a hybrid higher-order attention network. It 
comprises two networks: one for feature extraction and the other for feature refining. We employ the 
High-order attention mechanism (HOA) as one such process to reconstruct the high-frequency 
features of remote sensing photos. We further improve the layered features by incorporating 
frequency awareness. Although EDBPN is an enhanced variant of DBPN, the generator network's 
foundation is DBPN. The integration of an enhanced residual channel attention module (ERCAM) 
enhances the performance of E-DBPN by maintaining the original features of the input image and 
training the network to focus on the most critical regions of remote sensing images. This module is 
capable of extracting features that are beneficial for super-resolution extraction. E-DBPN introduces a 
sequential feature fusion module, or SFFM, to process the feature output from various projection units 
in a progressive manner. Common characteristics of remote sensing images include a wide range of 
scene dimensions and objects with significantly different sizes. Using remote sensing images, we can 
resolve this issue.  
Unsupervised Remote Sensing Image Super-Resolution   
Although there has been progress using the supervised learning super-resolution approach, problems 
with LR-HR remote sensing picture matching persist. Firstly, both existing technology and 
environmental factors fail to meet the demand for high-resolution remote sensing images. Secondly, 
the ideal degradation modes (e.g., double triple down sampling, Gaussian blur, etc.) used to acquire 
these images don't even come close to replicating the degradation of realistic low-resolution images.  
We acquire high-resolution remote sensing pictures through recurrent rounds by rebuilding the image 
using a generator network. It is necessary to project the produced noise to the target resolution in 
order to guarantee that the reconstruction constraint is met on the LR input image; this step is 
described in detail in [54]. The article [55] proposes a distant sensing super-resolution network based 
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on CycleGAN. This training setup involves feeding the output of the degradation network into the 
super resolution network, and vice versa. They may optimize the network's performance by creating a 
cyclic loss function. Reference 56 presents the theory of the unsupervised network UGAN. In order to 
augment the unsupervised super-resolution process with additional data, the network directly 
supplies the generator network with low-resolution remote sensing images. It then uses convolution 
kernels of varying sizes to extract features. We use the difference between the degraded model image 
and the original low-resolution image from the remote sensing network to construct a loss function 
[60]. To do this, one must follow the steps outlined in [57–58], which include training with a 
mountain of synthetic data and culminate in creating a model that faithfully mimics real degradation.  

CONCLUSIONS 
This research aims to examine deep learning-based picture superresolution algorithms in detail. 
Included in these methods are common datasets, procedures for evaluating picture quality, methods 
for reconstructing models, deep learning techniques, and optimization of network metrics. A 
comprehensive presentation on image super-resolution techniques and their application to remote 
sensing images is also part of the package. And lastly, although there has been much progress in the 
field of study regarding picture super-resolution technologies, particularly with regard to the 
generation of super-resolution remote sensing images, there are still many issues that need 
remediation. Problems include poor model inference efficiency, a lack of a standardized method for 
evaluating picture quality, and unsatisfactory reconstruction of real-world images. More efficient and 
lightweight model design techniques, more flexible approaches to remote sensing picture super-
resolution, and more accurate and diverse image evaluation metrics are some of the promising 
avenues for further research and development that we highlight. All parties involved believe that this 
review will be useful for researchers interested in remote sensing image processing and image super-
resolution techniques. As a result, knowledge of these procedures might grow within the area.  
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