
International Journal of Communication Networks and Information  
Security 
2024, 16(4) 

ISSN: 2073-607X,2076-0930 

https://ijcnis.org/  

 

 

 
Copyright © 2024 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 Research Article 

Model  Predictive Control for Nonlinear Inverted Pendulum 
Mobile Robot with Disturbance 

 
Labane Chrif 1*, Mekkaoui Mohammed 2 Zemalache Meguenni Kadda 3Meddahi Youssouf 

 
 

 

1,2Department of Electrotechnical,University of Dr Moulay Tahar, Saida, Algeria, LPCS Laboratory, Saida, Algeria 
3Department of Automatic, USTO MBOran, Algeria, LDEE Laboratory, Oran, Algeria 
4
IEEE Member, 2SAIL Laboratory, UHBC University, Chlef, Algeria 

 
 

 

*Corresponding Author:chrif.labane@univ-saida.dz  labanechrif@gmail.com 
 

Citation: Labane Chrif, “Model  Predictive Control for Nonlinear Inverted Pendulum Mobile Robot with 
Disturbance,” International Journal of Communication Networks and Information Security (IJCNIS), vol. 16, no 4, 2024. 
1918-1928.  

 

ARTICLE INFO ABSTRACT 

 

Received: 31 Sep 2024 
Accepted: 4 Nov  2024 

 

 
     The Model Predictive Control is a control technique that has been greatly investigated in recent 
years. In this paper, nonlinear model predictive control is applied to an inverted pendulum-cart 
dynamic system we know that the inverted pendulum-cart dynamic system is an inherently unstable 
and nonlinear system.The controller is robust to parameter uncertainty and disturbances so that it is 
suitable for controlling an inverted pendulum system. Based on testing with step and sine reference 
signals without interference, the controller can stabilize the system well and has a fast response. Here 
the controller aim is to move the cart to a desired position and balancing the pendulum in upright 
position. the Model Predictive controller is robust against these changes and able to make the system 
reach the reference value.  
 
      The simulation results show that the proposed controller achieves an excellent performance. Here 
the modeling and simulation of the controller are carried out using MATLAB-SIMULINK and 
simulation results 

 

 
 

 
Keywords:— Model predictive control, Inverted pendulum cart system, nonlinear system–
dynamics,  modeling 

 
INTRODUCTION 

Say that the pendulum will simply fall if the cart is not moved to balance it. Furthermore, the dynamics of the 
system is nonlinear. The objective of the control system is to balance the inverted pendulum by applying force to the 
carriage to which the pendulum is attached. A concrete example that relates directly to this inverted pendulum 
system is the attitude control of a booster rocket during takeoff.  

The inverted pendulum problem was selected because it displays nonlinear dynamic behaviour, it is unstable about 
the desired operating point (pendulum standing up), and it is non-minimum phase. As an aside, it is representative 
of some practical applications. The Segway PT is a two wheeled (in parallel), self-balancing vehicle that transports a 
single person which uses the properties of the inverted pendulum. A walking humanoid robot displays inverted 
pendulum characteristics [16]. In literature, different versions of the inverted pendulum systems are presented. The 
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familiar versions of the inverted pendulum are the cart inverted pendulum [1], the double inverted pendulum [2], 
the rotational single arm pendulum [3], the rotational two-link pendulum [4] and the triple inverted pendulum [5]. 
Since the last 7 decade, the cart inverted pendulum is widely used as a benchmark control problem [6] which has 
three different control tasks. The first one is a tracking control of the pendulum [7]. The second one is the swing up 
of the pendulum from the stable equilibrium point to the unstable equilibrium point [8]. The third one is the 
stabilization of the inverted pendulum around the unstable equilibrium point and driving the cart to the desired 
position [9]. 

LITERATURE REVIEW 
 
     Many modern and classical control strategies may be designed, tested, evaluated, and compared in a highly 
unstable inverted pendulum system. The control challenge involves creating dynamic models of systems for 
achieving the required response and performance of the system, therefore control law and dynamic model are 
employed. Non-linear control systems such as robotic systems, missile systems and many other non-linear control 
systems have been controlled using linear control methods such as PID control [6], [7]. 
    Some variations of nonlinear controllers that can overcome parameter uncertainty and disturbance are  adaptive 
modele predictive control [44]–[47]. The adaptive  modele predictive control is good to solve parameter uncertainty 
and disturbance [48]. Meanwhile, controller gives a good system response. Therefore, by combining those nonlinear 
controllers, the proposed controller can solve parameter uncertainty and disturbance with a good response. 
Model Predictive Control (MPC) was used in this research, mainly for its abilities to adapt to changes in the system.     
MPC is known for its accuracy, due to the prediction algorithm incorporated, along with the capability of 
disturbance rejection. Advanced control algorithms have been implemented in powertrains for some time now; the 
use of MPC pushes this boundary further, and will be important in the inverted pendulum cart in the near future, 
due to the ability to adjust the control law mid-execution. In this research, a basic explanation of MPC is presented 
to highlight the mathematics behind the controller. In the later sections, MPC will be applied to various powertrain 
configurations.[17] 
   MPC is a predictive control law in which the control input of the current step is calculated using a prediction of 
model behavior over a set future horizon. This type of control reflects human behavior and how we make decisions 
based on what we think the outcome will be. MPC tries to emulate this human thinking in anticipating changes and 
adjusting the control accordingly. The idea of predicting a set distance into the future is called the receding horizon 
concept [18]. 
 
    The algorithm is designed to continuously update information and replace past steps. For each iteration, the 
model looks one step further in the future, keeping the horizon at its fixed and predetermined length. As with any 
predictive control law, MPC must have an accurate model of the system, in order to determine future system 
behavior. One of the key aspects of MPC is the ability to reject disturbances and correct for uncertainties; thus, the 
prediction model does not need to be perfect. Another useful component of MPC is that the models can be linear or 
nonlinear, which is not the case for many controllers [9]. 
 
   Once the model predictions are calculated, the resulting error between the reference and prediction is minimized 
using a cost function and constraints. From here, the control input is determined. The process repeats itself each 
step. A block diagram representation of an MPC system is shown below: 
This paper has five sections. Section one gives a brief idea about the paper. Section two deals with the nonlinear 
modeling of the system. Section three describes the designing of various control strategies. Section four depicts the 
simulation results and observations. The paper concludes with the results obtained in section five. 

 

METHODOLOGY 
 

2 Description mathematical modelling  
2.1 Inverted pendulum system equations 

 

 Here we consider a pendulum cart system Figure 2-1 represents the free body diagram of the system. Here we 
assume that the rod of the pendulum is mass. Less and the hinge to which the pendulum is fixed is friction less. The 
mass of pendulum is concentrated at the center of gravity of the pendulum which is located at pendulum ball ’s 
center, the mass of the cart is represented as Mc and the mass of pendulum is represented as mp. The control force F 
acts along the x direction of the cart. 
The rod’s length is represented as l. The angle by which the pendulum is tilted represented as [4]   
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Fig1: Modeling of an Inverted Pendulum on Cart 

 

A. Equation 

 

The lagrange’s equations of the inverted pendulum on a cart are given as follows  𝑑𝑑𝑡 (𝜕𝐿𝜕𝑥) − 𝜕𝐿𝜕𝑥 = 𝐹 

               (1) 𝑑𝑑𝑡 (𝜕𝐿𝜕𝜃) − 𝜕𝐿𝜕𝜃 = 0 

 
Where 𝐿 = 𝐾 − 𝑃. By putting the expression of 𝐿 in (1) and (2) and after solving it, lagrange’s equations of the 

inverted pendulum on a cart can be expressed as  

 𝐹 = (𝑚𝑝 + 𝑚𝑐)𝑥̈ + 𝑙𝑚𝑝𝑐𝑜𝑠𝜃𝜃̈ − 𝑙𝑚𝑝𝜃̇2𝑠𝑖𝑛𝜃 

  (2) 0 = 𝑙𝑚𝑝𝑐𝑜𝑠𝜃𝑥̈ + 𝑙2𝑚𝑝𝜃̈ − 𝑔𝑙𝑚𝑝𝑠𝑖𝑛𝜃 

Where 𝑚𝑝, 𝑚𝑐, 𝑔 and 𝑙 are mass of the pendulum, mass of the cart, the gravity acceleration constant, and the 

length of the pendulum, respectively. The cart position and the rod angular displacement are denoted by 𝑥 and 𝜃, 
respectively. The physical system is shown in figure 1. The state space representation of the system is obtained by 
choosing the cart applied force 𝐹 as the system input, the nonlinear model of an inverted pendulum system can be 
written as: 𝑥̇1 = 𝑥2     

  (3) 𝑥2 = 𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝑢 + 𝑑(𝑥, 𝑡)           
 

The 𝑓(𝑥,𝑡) is a nonlinear function of the system’s states and 𝑔(𝑥,𝑡) is a nonlinear function of the system’s input. 
Meanwhile, 𝑑(𝑥,𝑡) is the function of parameter uncertainty and system’s disturbance. 

 
And to overcome the under actuated problem, the output is set to be the mass position as 𝑦 = 𝑥 + 𝑙𝑠𝑖𝑛𝜃                                                                                         (4) 

The cart system is represented using nonlinear equations. The state space modelling is employed   

 𝜃̈ = 𝐹𝑐𝑜𝑠𝜃 − (𝑀 + 𝑚)𝑔𝑠𝑖𝑛𝜃 + 𝑚𝑙𝜃̇2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑚𝑙𝑐𝑜𝑠2𝜃 − (𝑀 + 𝑚)𝑙  

(5) 𝑥̈ = 𝐹 + 𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃 − 𝑚𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃(𝑀 + 𝑚) − 𝑚𝑐𝑜𝑠2𝜃  

 
The mathematical model of the system can be obtained by deriving associated lagrangian equations. Since the 

procedure well know. The details are skipped and the final model is referred to [x] for derivations. In the above, 𝑔 
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represents the graviationnal constant by defining the state vector as 𝑥 = [𝜃, 𝜃,̇ 𝑥, 𝑥̇], the state space model can be 

expressed as  𝑥̇1 = 𝑥2 𝑥̇2 = 𝐹𝑐𝑜𝑠𝑥1 − (𝑀 + 𝑚)𝑔𝑠𝑖𝑛𝑥1 + 𝑚𝑙𝑥22𝑐𝑜𝑠𝑥1𝑠𝑖𝑛𝑥1𝑚𝑙𝑐𝑜𝑠2𝑥1 − (𝑀 + 𝑚)𝑙  

(6) 𝑥̇3 = 𝑥4 𝑥̇4 = 𝐹 + 𝑚𝑙𝑥22𝑠𝑖𝑛𝑥1 − 𝑚𝑔𝑠𝑖𝑛𝑥1𝑐𝑜𝑠𝑥1𝑚𝑙𝑐𝑜𝑠2𝑥1 − (𝑀 + 𝑚)𝑙  

 

        IMPLEMENTATION  

3.MPC Inverted Pendulum System 

MPC is a predictive control law in which the control input of the current step is calculated using a prediction of 
model behavior over a set future horizon. This type of control reflects human behavior and how we make decisions 
based on what we think the outcome will be. An example is deciding when to brake based on an obstacle in the road 
ahead of you, or any time when a decision has to be made before an event happens. MPC tries to emulate this 
human thinking in anticipating changes and adjusting the control accordingly. The idea of predicting a set distance 
into the future is called the receding horizon concept. The algorithm is designed to continuously update information 
and replace past steps. For each iteration, the model looks one step further in the future, keeping the horizon at its 
fixed and predetermined length. As with any predictive control law, MPC must have an accurate model of the 
system, in order to determine future system behavior. One of the key aspects of MPC is the ability to reject 
disturbances and correct for uncertainties; thus, the prediction model does not need to be perfect. Another useful 
component of MPC is that the models can be linear or nonlinear, which is not the case for many controllers. Once 
the model predictions are calculated, the resulting error between the reference and prediction is minimized using a 
cost function and constraints. From here, the control input is determined. The process repeats itself each step. A 
block diagram representation of an MPC system is shown below: 

 

                                  Fig2: Feedback of an Inverted Pendulum on Cart 

  
3.1Model Predictive Controller Design Parameters 

Designing the MPC controller takes into consideration the required constraints such as the steering angle limits. 
Figure 6 presents the main parameters and terms of the MPC controller, where the following nomenclature applies: 
k is the current sampling step and Ts the Control Time Step. Prediction horizon (P): number of time steps (the time 
on which the MPC controller looks forward to the future to make the prediction). Control Horizon (M): number of 
the possible control moves to time step k+P. The design parameters of the MPC controller are very important as this 
affects the performance and the computational complexity of solving the optimization problem. The choice of the 
design parameters should achieve the balance between the computational load and the performance. There are 
general recommendations, which can be taken into consideration for the parameters. 

 
Sample time (𝑇𝑆): determines the rate that the controller executes the control algorithm. In the case of Control 
Time Step Ts interval is too long, the controller will not be able to respond in time to the disturbance, which means 
that the performance will be negatively affected. On the other hand, if Ts is too short, the controller's response will 
be faster, but this causes a significant increase in computational load. The recommendation, in this case, is to 
choose Ts between 10 to 20 samples of the Rise Time Tr in an open-loop system, where Tr is the required time that 
the response takes to rise from 10 % to 90% of the steady-state as Figure 7 shows [15]. 
Prediction horizon (P): should be chosen in a way that covers the dynamic changes of the system and the 
recommendation are to choose P to have 20 to 30 of samples covering the open-loop transit system response [15], 
[18], [26] and [29]. 
Control Horizon (M): Only the two control moves have a significant impact on the response behavior, choosing a 
large control horizon will only increase the computation complexity, based on that, the recommendation is to 
choose M to be 10 to 20 of the prediction horizon. A small value of M provides stability while in contrast, large 
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values reduce the robustness. It is recommended to choose M to be between 3-5 – as presented in [9], [15], [18], 
and [25]. 
For the model in this paper, the following strategy was used in order to choose the parameters which achieve 
satisfactory control performance: First, we initialized the parameters based on the recommendations above 
regarding the Sample Time, Prediction Horizon, and Control Horizon. Next step, is about tuning the parameters 
and then evaluating the MPC controller performance using the MPC Designer MATLAB toolbox until the optimal 
values provided the best control performance were determined. The weights of the inputs and outputs were 
determined using the MPC Designer by setting nonzero values to the inputs and outputs which need to track a 
reference value. Based on that, the weight equal is set to zero for the steering angle as it does not track a target. The 
weight of the Lateral Position and Yaw angle were determined with nonzero values as the main objective is position 
tracing. 

 
Fig3: Principle of the receding horizon 

Consider a discrete time constrained linear time invariant system [18] , [9] 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

                                                                                         𝑦(𝑘) = 𝐶𝑥(𝑘)                                                                                              (7) 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑘) ≤ 𝑥𝑚𝑎𝑥  𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥 

 
Assume that pairs (𝐴, 𝐶)  and (𝐴, 𝐵)  are observable and controllable, respectively. Where 𝐴, 𝐵  and 𝐶  can be 

calculated from [8]. 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑢𝑚𝑖𝑛 ,  𝑢𝑚𝑎𝑥  are the minimum and maximum state and input constraints, 
respectively. The MPC solution that ensures the stability of the constrained problem in [8] can be obtained by 
solving the following optimisation problem at each sample: 𝐽(𝑢, 𝑥(𝑘)) = 𝑥𝑇(𝑘 + 𝑁)𝑄𝑥(𝑘 + 𝑁) + ∑ 𝑥𝑇(𝑘 + 𝑖)𝑁−1𝑖=0 𝑄𝑥(𝑘 + 𝑖) + 𝑢𝑇(𝑘 + 𝑖)𝑅𝑥(𝑘 + 𝑖)                                               (8) 𝑢𝑚𝑖𝑛 = [ 𝑢(𝑘)⋮𝑢(𝑘 + 𝑁 − 1)]

𝑇
                                                                                                 (9) 

 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑘 + 𝑖) ≤ 𝑥𝑚𝑎𝑥 

                                                                                  𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥                                                                                (10) 
 

                                                                              {𝑥(𝑘 + 𝑖 − 1) = 𝐴𝑥(𝑘 + 𝑖) + 𝐵𝑢(𝑘 + 𝑖)         𝑖 ≥ 0𝑦(𝑘 + 𝑖 − 1) =  𝐶𝑥(𝑘 + 𝑖)                                                                                                            (11) 

 
Where  𝑥(𝑘 + 𝑖) is the vector of predicted states at instant 𝑘. 𝑁 is the prediction horizon 𝑄 ≥ 0, and 𝑅 > 0 are a tuning parameter. 𝑄 > 0 is the penalty on the final states. At each 

sample. The optimal sequence  𝑈 = [𝑢∗(𝑘)     𝑢∗(𝑘 + 1) … … . . 𝑢∗(𝑘 + 𝑁 − 1)]𝑇 is obtained by solving (9). The first row of the optimal sequence is 
applied to the system according to the receding horizon policy. The predicted states can be written in matrix form 
as: 
 𝑋 = 𝑀𝑥(𝑘) + 𝑃𝑈 
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Where 𝑀 = [ 𝐴𝐴2⋮𝐴𝑁] ,      𝑃 = ⌈⌈⌈⌈
 𝐵𝐴𝐵⋮𝐴𝑁−2𝐵𝐴𝑁−1𝐵  0𝐵⋮⋮⋯  ⋯⋯⋮⋮𝐴𝐵  0⋮⋮0𝐵⌉⌉⌉⌉

 
                                                                                (12)                 

                                                             𝑋 = [𝑥(𝑘 + 1)𝑥(𝑘 + 2)⋮𝑥(𝑘 + 𝑁)] ,       𝑈 = [ 𝑢(𝑘)𝑢(𝑘 + 1)⋮𝑢(𝑘 + 𝑁 − 1)]                                                                       (13) 

Using equation (13), the optimisation problem in (9) can be rewritten as: 
 𝐽(𝑥(𝑘)) = 12 𝑥𝑇(𝑘)𝑌𝑥(𝑘) + 𝑢𝑚𝑖𝑛 {12 𝑈𝑇𝐻𝑈 + 𝑥𝑇(𝑘)𝐹𝑥(𝑘)}                                                                         (14) 

                                                                                                𝐺𝑈 ≤ 𝑊𝑒 + 𝐸𝑥(𝑘) 

 

Where 𝐺,𝑊𝑒 , 𝐸 are constant matrices that can be constructed from the constraints in (8). 
 𝐻 = 2(𝑃𝑇𝑄̃𝑃 + 𝑅̃),      𝐹 = 𝑃𝑇𝑄̃𝑀 

(15) 𝑌 = 2(𝑀𝑇𝑄̃𝑀 + 𝑄). 
 

Where 𝑄̃and 𝑅̃ can be constructed as follows: 

 

𝑄̃ = ⌈⌈⌈
⌈ 𝑄0⋮⋮0  0⋯⋮⋮⋯  ⋯⋯⋮𝑄0   0⋮⋮0𝑄⌉⌉⌉

⌉ 
        𝑅 = ⌈⌈⌈⌈

 𝑅0⋮⋮0  0⋯⋮⋮⋯  ⋯⋯⋮𝑅0   0⋮⋮0𝑅⌉⌉⌉⌉
 
                                                                                  (16) 

 

Note that, the matrices 𝐺,𝑊𝑒 , 𝐸, 𝐻, 𝐹 and 𝑌 can be computed offline 

 

RESULTS AND DISCUSSION 

 

The simulation results using the MATLAB-SIMULINK software package and the motor parameters listed in Table1. 
Internal and measurement zero-mean white Gaussian noises are injected. 

 

Table 1. The parameters of the inverted pendulum on a cart 
Symbol Parameter Value 

M Mass of cart 1 

m Mass of pendulum 1 
L The length of rod 0,5 

g Gravity 9,81 

k friction coefficient of cart 10 

 

Assume the following initial conditions for the cart/pendulum assembly: 

The cart is stationary at 𝒙 = 𝟎 

The inverted pendulum is stationary at the upright position 𝜽 = 𝟎 

The control objectives are: 
Cart can be moved to a new position between -8 and 8 with a set point change. 

When tracking such a set point change, the rise time should be less than 4 seconds (for performance) and 
theovershoot should be less than 5 percent (for robustness). 
The final scenario is the tacking of a desired cart position in front of the applied disturbance. 
Validate the MPC design with a closed-loop simulation in Simulink. 
The nonlinear simulation, all the control objectives are successfully achieved. 

 

4.1Tracking Test 

 
In this test, the tracking of the cart position to a desired position as well as the regulation of the rod angular 
displacement are considered. Assume that, the rod angular displacement is set at 20 degree and the desired position 
is 8 meter. Figure 4 shows that the proposed controller is able to derive the cart to the required position and the rod 
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angular displacement is derived to the equilibrium point. The control action is shown in Figure 5. 
 

   

                                (a) 

                                            (c) 

  

(b) 

                                              (d) 

 

 
  

Fig4:Tracking test with disturbance (a) cart position (b) cart velocity (c) rod angular displacement (d) rod angular 

velocity 
 

 

Fig5: Control action for the regulation test 

 

4.2 Tracking with Applied Disturbance Test 
 

In this test, a step change in the rod angular displacement is applied to the previous tracking test. The objective is to 
test the robustness of the proposed controller. Figure 6 illustrates the step change in the rod angular displacement. 
The controller performance is shown in Figure 7. As shown in Figure 7, the proposed controller has the ability to 
reject the system disturbance. The control action is shown in Figure 7. 

      
 

(a)                                                                                             (b) 
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                                             (c)                                                                                                (d) 

Fig 6: Tracking test with disturbance (a) cart position (b) cart velocity (c) rod angular displacement (d) rod angular velocity 
 

 
Fig 7: Control action for the regulation test 

 
4.3Tracking Test in the two directions 
The control objectives are: 
Cart can be moved on the right and left with a new cart position between -4 and 4 with a s change. 

      
(a)                                                                                             (b) 

      
(c)                                                                                                (d) 

Fig 8: Rod Regulation to the equilibrium point (a) cart position 

(b) cart velocity (c) rod angular displacement (d) rod angular 

velocity 
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Fig 9: Control action for the regulation test 
 

4.4 Tracking with Applied Disturbance Test 
 
The objective is to test the robustness of the proposed controller. The desired position is -4 and 4 meter. Figure 5 
shows that the proposed controller is able to derive the cart to the required position and the rod angular 
displacement is derived to the equilibrium point. The control action is shown in Figure 11. 

    
(a)                                                                                             (b) 

    
                                                  (c)                                                                                               (d) 

Fig 10: Tracking test with disturbance (a) cart position (b) cart velocity (c) rod angular 

displacement (d) rod angular velocity 
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Fig 11: Control action for the regulation test 

 
CONCLUSION 

 

      This paper presented an evaluation of a modern controller MPC to control the nonlinear inverted pendulum cart 

system. It is analysed for cases of using disturbance and without disturbance is executed. The pendulum stabilies in 

the vertical position and the cart reaches the desired position even in the presence of disturbance input. The 

performance of MPC method is superior than PID and LQR method, effective, robust and simple. The simulation 

results shows that the proposed controller has to the ability to regulate the rod angular displacement, derive the cart 

to the desired position and reject the system disturbance. The control design of MPC guaranteed the system 

converge in a finite time, there for proposed paper shall be helpful for researchers in the field of nonlinear 

applications such as control of aircraft, missile and satellites 
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