Topology Optimization in Hybrid Tree/Mesh-based Peer-to-Peer Streaming System

Tran Thi Thu Ha, Jinsul Kim, Jaehyung Park, Sunghyun Yoon, Ho-Yong Ryu

Abstract


Peer-to-Peer (P2P) video streaming is the fastest growing application of the Internet. One of the main challenge is to provide a high quality of service through the dynamic behavior of the network because a peer may join or leave anytime. Currently, P2P streaming network exist two types of users: streaming users - who use mobile devices with 3G/4G connection expect to watch the live video immediately and storage users - who use PC with wired Internet will download and then watch the video later. We realized that the streaming users may stop watching live video after a while if they find the video is out of their interest. Users leaving causes dynamic and affect the data delivery. On the other hand, the storage users that are downloading the video do not have the concern of interest and playback quality, until they start to watch the video. Hence, the storage users are relatively more stable than streaming users. This paper, we investigate the strategies on the topology construction and maintenance of P2P streaming systems with storage users are closer to the broadcaster than streaming users. And also we apply our idea on hybrid push-pull protocol that combines the benefits of pull and push mechanisms for live video delivery to provide better video streaming quality

Full Text: PDF

Refbacks

  • There are currently no refbacks.


International Journal of Communication Networks and Information Security (IJCNIS)          ISSN: 2076-0930 (Print)           ISSN: 2073-607X (Online)